Ionic Transport in CsNO2-Based Nanocomposites with Inclusions of Surface Functionalized Nanodiamonds
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Initial Nanodiamonds
3.2. The Effect of ND Surface Treatment on the Crystal Structure and Specific Surface Area
Investigation of the Surface of Nanodiamonds by IR Spectroscopy
3.3. Transport Properties of Composites (1 − x)CsNO2-xND
Transport Properties of Composites (1 − x)CsNO2-xND with Functionalized ND
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dolmatov, V.Y.; Veretennikova, M.V.; Marchukov, V.A.; Sushchev, V.G. Modern industrial possibilities for the synthesis of nanodia-monds. Solid State Phys. 2004, 46, 596–600. [Google Scholar] [CrossRef]
- Xu, Z.; Jeedigunta, S.; Kumar, A. A Study of Polyaniline Deposited Nanocrystalline Diamond Films for Glucose Detection. J. Nanosci. Nanotechnol. 2007, 7, 2092–2095. [Google Scholar] [CrossRef] [PubMed]
- Garguilo, J.; Davis, B.; Buddie, M.; Köck, F.; Nemanich, R. Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films. Diam. Relat. Mater. 2004, 13, 595–599. [Google Scholar] [CrossRef]
- Dolmatov, V.Y. Detonation-synthesis nanodiamonds: Synthesis, structure, properties and applications. Russ. Chem. Rev. 2001, 70, 607–626. [Google Scholar] [CrossRef]
- Osawa, E. Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 2007, 16, 2018–2022. [Google Scholar] [CrossRef]
- Krueger, A. The structure and reactivity of nanoscale diamond. J. Mater. Chem. 2008, 18, 1485–1492. [Google Scholar] [CrossRef]
- Jiang, T.; Xu, K. FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 1995, 33, 1663–1671. [Google Scholar] [CrossRef]
- Skorik, N.A.; Krivozubov, A.L.; Karzhenevskii, A.P.; Spitsyn, B.V. Physicochemical study of the nanodiamond surface. Prot. Met. Phys. Chem. Surfaces 2011, 47, 54–58. [Google Scholar] [CrossRef]
- Zou, Q.; Wang, M.Z.; Li, Y.G. Analysis of the nanodiamond particlefabricated by detonation. J. Exp. Nanosci. 2010, 5, 319–328. [Google Scholar] [CrossRef]
- Comet, M.; Pichot, V.; Siegert, B.; Britz, F.; Spitzer, D. Detonation nanodiamonds for doping Kevlar. J. Nanosci. Nanotechnol. 2010, 10, 4286–4292. [Google Scholar] [CrossRef] [PubMed]
- Mochalin, V.; Osswald, S.; Gogotsi, Y. Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Pow-ders. Chem. Mater. 2009, 21, 273–279. [Google Scholar] [CrossRef]
- Tu, J.-S.; Perevedentseva, E.; Chung, P.-H.; Cheng, C.-L. Size-dependent surface CO stretching frequency investigations on nanodiamond particles. J. Chem. Phys. 2006, 125, 174713. [Google Scholar] [CrossRef] [PubMed]
- Spitsyn, B.V.; Gradoboev, M.N.; Galushko, T.B.; Karpukhina, T.A.; Serebryakova, N.V.; Kulakova, I.I.; Melnik, N.N. Chemical properties of nanodiamond. Nato Sci. Ser. II 2005, 192, 241–252. [Google Scholar]
- Yin, L.-W.; Li, M.-S.; Cui, J.-J.; Song, Y.-J.; Li, F.-Z.; Hao, Z.-Y. Atom force microscopy study on HTHP as-grown diamond single crystals. Appl. Phys. A 2001, 73, 653–657. [Google Scholar] [CrossRef]
- Liang, Y.; Ozawa, M.; Krueger, A. A General Procedure to Functionalize Agglomerating Nanoparticles Demonstrated on Nanodiamond. ACS Nano 2009, 3, 2288–2296. [Google Scholar] [CrossRef] [PubMed]
- Osswald, S.; Yushin, G.; Mochalin, V.; Kucheyev, S.O.; Gogotsi, Y. Control of sp2/sp3Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. J. Am. Chem. Soc. 2006, 128, 11635–11642. [Google Scholar] [CrossRef]
- Gordeyev, S.K.; Korchagina, S.B.; Can Nanodiamonds Be “Small”?, J. Can Nanodiamonds Be “Small”? J. Superhard Mater. 2004, 26, 32–38. [Google Scholar]
- Gaebel, T.; Bradac, C.; Chen, J.; Say, J.M.; Brown, L.; Hemmer, P.; Rabeau, J. Size-reduction of nanodiamonds via air oxida-tion. Diam. Relat. Mater. 2012, 21, 28–32. [Google Scholar] [CrossRef]
- Krüger, A.; Liang, Y.; Jarre, G.; Stegk, J. Surface functionalization of detonation diamond suitable for biological applica-tions. J. Mater. Chem. 2006, 16, 2322–2328. [Google Scholar] [CrossRef]
- Krueger, A.; Ozawa, M.; Jarre, G.; Liang, Y.; Stegk, J.; Lu, L. Deagglomeration and functionalization of detonation diamond. Phys. Status Solidi A 2007, 204, 2881–2887. [Google Scholar] [CrossRef]
- Stavis, C.; Clare, T.L.; Butler, J.E.; Radadia, A.D.; Carr, R.; Zeng, H.; King, W.P.; Carlisle, J.A.; Aksimentiev, A.; Bashir, R.; et al. Surface functionalization of thin-film diamond for highly stable and selective biological interfaces. Proc. Natl. Acad. Sci. USA 2010, 108, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Lud, S.Q.; Steenackers, M.; Jordan, R.; Bruno, P.; Gruen, D.M.; Feulner, P.; Garrido, J.A.; Stutzmann, M. Chemical Grafting of Biphenyl Self-Assembled Monolayers on Ultrananocrystalline Diamond. J. Am. Chem. Soc. 2006, 128, 16884–16891. [Google Scholar] [CrossRef] [PubMed]
- Maier, F.; Ristein, J.; Ley, L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys. Rev. B 2001, 64, 165411. [Google Scholar] [CrossRef]
- Mateyshina, Y.G.; Iskakova, A.A.; Ulihin, A.S.; Uvarov, N.F. Transport properties of cesium nitrite. Russ. J. Electrochem. 2015, 51, 615–618. [Google Scholar] [CrossRef]
- Mateyshina, Y.G.; Uvarov, N.F. Ionic conductivity of alkali nitrites. Solid State Ion. 2017, 302, 77–82. [Google Scholar] [CrossRef]
- Mateyshina, Y.G.; Slobodyuk, A.; Kavun, V.; Uvarov, N. Conductivity and NMR study of composite solid electrolytes CsNO2-A (A = SiO2, Al2O3, MgO). Solid State Ion. 2018, 324, 196–201. [Google Scholar] [CrossRef]
- Loginov, A.V.; Mateyshina, Y.G.; Aparnev, A.I.; Uvarov, N.F. Synthesis of BaSnO3/SnO2 Nanocomposites as Heterogene-ous Additive for Composite Solid Electrolytes. Russ. J. Appl. Chem. 2018, 91, 1660–1664. [Google Scholar] [CrossRef]
- Mateyshina, Y.G.; Alekseev, D.; Khusnutdinov, V.; Uvarov, N. Mechanochemical synthesis of inert component for composite solid electrolytes CsNO2-MgAl2O4. Mater. Today Proc. 2019, 12, 13–16. [Google Scholar] [CrossRef]
- Mateyshina, Y.; Alekseev, D.; Uvarov, N. The effect of the nanodiamonds additive on ionic conductivity of silver iodide. Mater. Today Proc. 2020, 25, 373–376. [Google Scholar] [CrossRef]
- Kulakova, I.I.; Tarasevich, B.N.; Rudenko, A.P.; Dorshpalamin, N.; Gubagevich, T.M. The nature and infrared spectral characteristics of chemically modified ultradispersed diamonds. Mosc. Univ. Bull. Chem. 1993, 34, 506–510. [Google Scholar]
- Maier, J. Ionic conduction in space charge regions. Prog. Solid State Chem. 1995, 23, 171–263. [Google Scholar] [CrossRef]
Functionalization Condition, h | CSR by Scherrer (± 1.0), nm | Ss, m2/g | ||
---|---|---|---|---|
Initial ND | 0 | 7.5 | 293 ± 20 | |
Liquid-phase oxidation (NDacid) | 0.17 | 4.6 | 290 ± 20 | |
0.33 | 4.4 | 287 ± 20 | ||
0.5 | 4.4 | 284 ± 20 | ||
1 | 4.3 | 215 ± 20 | ||
2 | 4.3 | 161 ± 20 | ||
3 | 4.2 | 125 ± 10 | ||
48 | 4.2 | 110 ± 10 | ||
Gas-phase oxidation (NDair) | T = 200 °C | 19 | 4.2 | 333 ± 20 |
27 | 4.2 | 308 ± 20 | ||
T = 300 °C | 10 | 4.7 | 322 ± 20 | |
15 | 4.0 | 352 ± 20 | ||
Gas-phase reduction (NDH2) | 0.5 | 5.1 | 300 ± 20 | |
2 | 4.3 | 294 ± 20 | ||
4 | 3.8 | 317 ± 20 |
CsNO2 | 0.1CsNO2-0.9ND Composites | ||||
---|---|---|---|---|---|
Initial ND | NDAcid | NDair | NDH2 | ||
T, °C | σ, S/cm | ||||
150 | 3.2 × 10−6 | 3.8 × 10−4 | 5.6 × 10−4 | 1.0 × 10−3 | 8.3 × 10−4 |
200 | 1.1 × 10−5 | 1.9 × 10−3 | 3.2 × 10−3 | 5.0 × 10−3 | 4.8 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateyshina, Y.G.; Alekseev, D.V.; Uvarov, N.F. Ionic Transport in CsNO2-Based Nanocomposites with Inclusions of Surface Functionalized Nanodiamonds. Nanomaterials 2021, 11, 414. https://doi.org/10.3390/nano11020414
Mateyshina YG, Alekseev DV, Uvarov NF. Ionic Transport in CsNO2-Based Nanocomposites with Inclusions of Surface Functionalized Nanodiamonds. Nanomaterials. 2021; 11(2):414. https://doi.org/10.3390/nano11020414
Chicago/Turabian StyleMateyshina, Yulia G., Dmitriy V. Alekseev, and Nikolai F. Uvarov. 2021. "Ionic Transport in CsNO2-Based Nanocomposites with Inclusions of Surface Functionalized Nanodiamonds" Nanomaterials 11, no. 2: 414. https://doi.org/10.3390/nano11020414
APA StyleMateyshina, Y. G., Alekseev, D. V., & Uvarov, N. F. (2021). Ionic Transport in CsNO2-Based Nanocomposites with Inclusions of Surface Functionalized Nanodiamonds. Nanomaterials, 11(2), 414. https://doi.org/10.3390/nano11020414