Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions
Abstract
:1. Introduction
2. Phases and Properties of MoTe2
2.1. 2H Phase
2.2. 1T′ Phase
2.3. Td Phase
3. Construction of 2D MoTe2 Hetero-Phase Homojunctions
3.1. Direct Synthesis
3.2. Post-Processing
4. Applications of 2D MoTe2 Hetero-Phase Homojunctions
4.1. Electronic Devices
4.1.1. Transistors
4.1.2. Logical Devices
4.1.3. Memory Devices
4.1.4. Capacitors
4.2. Optoelectronic Devices
4.3. Electrocatalysis Materials
5. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, G.E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Soc. Newsl. 2006, 11, 33–35. [Google Scholar] [CrossRef]
- Packan, P.A. Pushing the Limits. Science 1999, 285, 2079–2081. [Google Scholar] [CrossRef]
- Lundstrom, M. Applied physics. Moore’s law forever? Science 2003, 299, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Young, K.K. Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron. Devices 1989, 36, 399–402. [Google Scholar] [CrossRef]
- Bin, Y.; Wann, C.H.J.; Nowak, E.D.; Noda, K.; Chenming, H. Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET′s. IEEE Trans. Electron. Devices 1997, 44, 627–634. [Google Scholar] [CrossRef]
- Bar-Yam, Y.; Joannopoulos, J.D. Dangling bond in a-Si:H. Phys. Rev. Lett. 1986, 56, 2203–2206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.B.; Wei, S.H. Surface energy and the common dangling bond rule for semiconductors. Phys. Rev. Lett 2004, 92, 086102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Duan, X.; Shin, H.J.; Park, S.; Huang, Y.; Duan, X. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43–53. [Google Scholar] [CrossRef]
- Tung, R.T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304. [Google Scholar]
- Shen, P.C.; Su, C.; Lin, Y.; Chou, A.S.; Cheng, C.C.; Park, J.H.; Chiu, M.H.; Lu, A.Y.; Tang, H.L.; Tavakoli, M.M.; et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217. [Google Scholar] [CrossRef]
- Louie, S.G.; Cohen, M.L. Electronic structure of a metal-semiconductor interface. Phys. Rev. B 1976, 13, 2461–2469. [Google Scholar] [CrossRef]
- Nishimura, T.; Kita, K.; Toriumi, A. Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Appl. Phys. Lett. 2007, 91, 123123. [Google Scholar] [CrossRef]
- Sotthewes, K.; van Bremen, R.; Dollekamp, E.; Boulogne, T.; Nowakowski, K.; Kas, D.; Zandvliet, H.J.W.; Bampoulis, P. Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides. J. Phys. Chem. C Nanomater. Interfaces 2019, 123, 5411–5420. [Google Scholar] [CrossRef] [Green Version]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.-F.; Shen, S.-H.; Lu, Q.; Liu, X.; Li, H.; Zheng, J.; Yu, C.-P.; Zhong, X.; Gu, L.; et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron. 2019, 2, 164–170. [Google Scholar] [CrossRef]
- Sung, J.H.; Heo, H.; Si, S.; Kim, Y.H.; Noh, H.R.; Song, K.; Kim, J.; Lee, C.S.; Seo, S.Y.; Kim, D.H.; et al. Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 2017, 12, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Keum, D.H.; Cho, S.; Kim, J.H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S.W.; Yang, H.; et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486. [Google Scholar] [CrossRef]
- Sun, Y.; Pan, J.; Zhang, Z.; Zhang, K.; Liang, J.; Wang, W.; Yuan, Z.; Hao, Y.; Wang, B.; Wang, J.; et al. Elastic Properties and Fracture Behaviors of Biaxially Deformed, Polymorphic MoTe2. Nano Lett. 2019, 19, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, B.; Berdiyorov, G.R.; Makaremi, M.; Rabczuk, T. Mechanical responses of two-dimensional MoTe2; pristine 2H, 1T and 1T′ and 1T′/2H heterostructure. Extreme Mech. Lett. 2018, 20, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-J.; Wang, R.-N.; Dong, G.-Y.; Wang, S.-F.; Fu, G.-S.; Wang, J.-L. Mechanical properties of 1T-, 1T′-, and 1H-MX2 monolayers and their 1H/1T′-MX2 (M = Mo, W and X = S, Se, Te) heterostructures. AIP Adv. 2019, 9, 125208. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Kane, C.L.; Mele, E.J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803. [Google Scholar] [CrossRef] [Green Version]
- Naylor, C.H.; Parkin, W.M.; Ping, J.; Gao, Z.; Zhou, Y.R.; Kim, Y.; Streller, F.; Carpick, R.W.; Rappe, A.M.; Drndic, M.; et al. Monolayer Single-Crystal 1T′-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. Nano Lett. 2016, 16, 4297–4304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wieder, B.J.; Li, J.; Yan, B.; Bernevig, B.A. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 2019, 123, 186401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Naumov, P.G.; Ali, M.N.; Rajamathi, C.R.; Schnelle, W.; Barkalov, O.; Hanfland, M.; Wu, S.C.; Shekhar, C.; Sun, Y.; et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 2016, 7, 11038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soluyanov, A.A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II Weyl semimetals. Nature 2015, 527, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wu, S.-C.; Ali, M.N.; Felser, C.; Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 2015, 92, 161107. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gresch, D.; Soluyanov, A.A.; Xie, W.; Kushwaha, S.; Dai, X.; Troyer, M.; Cava, R.J.; Bernevig, B.A. MoTe2: A Type-II Weyl Topological Metal. Phys. Rev. Lett. 2016, 117, 056805. [Google Scholar] [CrossRef] [Green Version]
- Dawson, W.G.; Bullett, D.W. Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C Solid State Phys. 1987, 20, 6159–6174. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, H.; Krylyuk, S.; Milligan, C.A.; Zhu, Y.; Zemlyanov, D.Y.; Bendersky, L.A.; Burton, B.P.; Davydov, A.V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2- and Mo1−xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55–61. [Google Scholar] [CrossRef]
- Ruppert, C.; Aslan, O.B.; Heinz, T.F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231–6236. [Google Scholar] [CrossRef]
- Tang, Q. Tuning the phase stability of Mo-based TMD monolayers through coupled vacancy defects and lattice strain. J. Mater. Chem. C 2018, 6, 9561–9568. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Q.; Cheng, L.; Addou, R.; Kim, J.; Kim, M.J.; Wallace, R.M. Defects and Surface Structural Stability of MoTe2 Under Vacuum Annealing. ACS Nano 2017, 11, 11005–11014. [Google Scholar] [CrossRef]
- Yang, L.; Wu, H.; Zhang, W.; Chen, Z.; Li, J.; Lou, X.; Xie, Z.; Zhu, R.; Chang, H. Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T′-MoTe2 films. Nanoscale 2018, 10, 19906–19915. [Google Scholar] [CrossRef]
- Park, J.C.; Jung, E.; Lee, S.; Hwang, J.; Lee, Y.H. Evidence of shallow band gap in ultrathin 1T′-MoTe2 via infrared spectroscopy. Phys. Rev. B 2020, 101, 235434. [Google Scholar] [CrossRef]
- Song, P.; Hsu, C.; Zhao, M.; Zhao, X.; Chang, T.-R.; Teng, J.; Lin, H.; Loh, K.P. Few-layer 1T′ MoTe2 as gapless semimetal with thickness dependent carrier transport. 2D Mater. 2018, 5, 031010. [Google Scholar] [CrossRef]
- Yuan, S.; Luo, X.; Chan, H.L.; Xiao, C.; Dai, Y.; Xie, M.; Hao, J. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 2019, 10, 1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Li, P.; Zhou, J.; He, W.Y.; Huang, X.; Yi, J.; Fan, J.; Ji, Z.; Jing, X.; Qu, F.; et al. Transport evidence of asymmetric spin-orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 2019, 10, 2044. [Google Scholar] [CrossRef]
- Rhodes, D.; Chenet, D.A.; Janicek, B.E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A.; et al. Engineering the Structural and Electronic Phases of MoTe2 through W Substitution. Nano Lett. 2017, 17, 1616–1622. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Zhong, S.; Kim, H.H.; Ye, G.; Ye, Z.; Winford, L.; McHaffie, D.; Rilak, I.; Chen, F.; Luo, X.; et al. Dimensionality-driven orthorhombic MoTe2 at room temperature. Phys. Rev. B 2018, 97, 041410. [Google Scholar] [CrossRef] [Green Version]
- Guguchia, Z.; von Rohr, F.; Shermadini, Z.; Lee, A.T.; Banerjee, S.; Wieteska, A.R.; Marianetti, C.A.; Frandsen, B.A.; Luetkens, H.; Gong, Z.; et al. Signatures of the topological s+- superconducting order parameter in the type-II Weyl semimetal Td-MoTe2. Nat. Commun. 2017, 8, 1082. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Kim, S.; Liu, M.; Cevallos, F.A.; Cava, R.J.; Ong, N.P. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 2020, 368, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; McCormick, T.M.; Ochi, M.; Zhao, Z.; Suzuki, M.T.; Arita, R.; Wu, Y.; Mou, D.; Cao, H.; Yan, J.; et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 2016, 15, 1155–1160. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.C.; Lv, H.Y.; Luo, X.; Lu, W.J.; Pei, Q.L.; Lin, G.T.; Han, Y.Y.; Zhu, X.B.; Song, W.H.; Sun, Y.P. Extremely large magnetoresistance in the type-II Weyl semimetal MoTe2. Phys. Rev. B 2016, 94, 235154. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Jang, J.; Kim, S.-I.; Jung, S.-G.; Kim, J.; Cho, S.; Kim, S.W.; Rhee, J.Y.; Park, K.-S.; Park, T. Origin of extremely large magnetoresistance in the candidate type-II Weyl semimetal MoTe2-x. Sci. Rep. 2018, 8, 13937. [Google Scholar] [CrossRef] [PubMed]
- Empante, T.A.; Zhou, Y.; Klee, V.; Nguyen, A.E.; Lu, I.H.; Valentin, M.D.; Naghibi Alvillar, S.A.; Preciado, E.; Berges, A.J.; Merida, C.S.; et al. Chemical Vapor Deposition Growth of Few-Layer MoTe2 in the 2H, 1T′, and 1T Phases: Tunable Properties of MoTe2 Films. ACS Nano 2017, 11, 900–905. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, W.; Li, J.; Cheng, S.; Xie, Z.; Chang, H. Tellurization Velocity-Dependent Metallic-Semiconducting-Metallic Phase Evolution in Chemical Vapor Deposition Growth of Large-Area, Few-Layer MoTe2. ACS Nano 2017, 11, 1964–1972. [Google Scholar] [CrossRef]
- Kim, T.; Park, H.; Joung, D.; Kim, D.; Lee, R.; Shin, C.H.; Diware, M.; Chegal, W.; Jeong, S.H.; Shin, J.C.; et al. Wafer-Scale Epitaxial 1T′, 1T′-2H Mixed, and 2H Phases MoTe2 Thin Films Grown by Metal-Organic Chemical Vapor Deposition. Adv. Mater. Interfaces 2018, 5, 1800439. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Liu, S.; Cheng, X.; Xu, W.; Li, P.; Wan, Y.; Yang, S.; Gong, W.; Yuan, K.; et al. Millimeter-Scale Single-Crystalline Semiconducting MoTe2 via Solid-to-Solid Phase Transformation. J. Am. Chem Soc. 2019, 141, 2128–2134. [Google Scholar] [CrossRef]
- Park, J.C.; Yun, S.J.; Kim, H.; Park, J.H.; Chae, S.H.; An, S.J.; Kim, J.G.; Kim, S.M.; Kim, K.K.; Lee, Y.H. Phase-Engineered Synthesis of Centimeter-Scale 1T′- and 2H-Molybdenum Ditelluride Thin Films. ACS Nano 2015, 9, 6548–6554. [Google Scholar] [CrossRef]
- Yoo, Y.; DeGregorio, Z.P.; Su, Y.; Koester, S.J.; Johns, J.E. In-Plane 2H-1T′ MoTe2 Homojunctions Synthesized by Flux-Controlled Phase Engineering. Adv. Mater. 2017, 29, 1605461. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, K.; Zubair, A.; Zhang, X.; Ouyang, F.; Palacios, T.; Dresselhaus, M.S.; Li, Y.; Kong, J. Role of Molecular Sieves in the CVD Synthesis of Large-Area 2D MoTe2. Adv. Funct. Mater. 2017, 27, 1603491. [Google Scholar] [CrossRef]
- Kim, H.; Johns, J.E.; Yoo, Y. Mixed-Dimensional In-Plane Heterostructures from 1D Mo6Te6 and 2D MoTe2 Synthesized by Te-Flux-Controlled Chemical Vapor Deposition. Small 2020, 16, 2002849. [Google Scholar] [CrossRef]
- Xie, Z.; Lei, W.; Zhang, W.; Liu, Y.; Yang, L.; Wen, X.; Chang, H. High-Performance Large-Scale Vertical 1T′/2H Homojunction CVD-Grown Polycrystalline MoTe2 Transistors. Adv. Mater. Interfaces 2021, 8, 2002023. [Google Scholar] [CrossRef]
- Xu, X.; Liu, S.; Han, B.; Han, Y.; Yuan, K.; Xu, W.; Yao, X.; Li, P.; Yang, S.; Gong, W.; et al. Scaling-up Atomically Thin Coplanar Semiconductor-Metal Circuitry via Phase Engineered Chemical Assembly. Nano Lett. 2019, 19, 6845–6852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Xu, X.; Xu, W.; Han, B.; Ding, Z.; Gu, P.; Gao, P.; Ye, Y. Large-Scale Vertical 1T′/2H MoTe2 Nanosheet-Based Heterostructures for Low Contact Resistance Transistors. ACS Appl. Nano Mater. 2020, 3, 10411–10417. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Liu, S.; Han, B.; Gu, P.; Li, S.; Xu, W.; Peng, Y.; Han, Z.; Chen, J.; et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 2021, 372, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Kim, S.; Kim, J.H.; Zhao, J.; Seok, J.; Keum, D.H.; Baik, J.; Choe, D.-H.; Chang, K.J.; Suenaga, K.; et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, H.; Chen, W.; Hou, B.; Qiu, Z.-J.; Shao, H.; Zhu, H.; Monserrat, B.; Fu, D.; Weng, H.; et al. Sub-picosecond photo-induced displacive phase transition in two-dimensional MoTe2. Npj 2D Mater. Appl. 2020, 4, 14. [Google Scholar] [CrossRef]
- Si, C.; Choe, D.; Xie, W.; Wang, H.; Sun, Z.; Bang, J.; Zhang, S. Photoinduced Vacancy Ordering and Phase Transition in MoTe2. Nano Lett. 2019, 19, 3612–3617. [Google Scholar] [CrossRef]
- Tan, Y.; Luo, F.; Zhu, M.; Xu, X.; Ye, Y.; Li, B.; Wang, G.; Luo, W.; Zheng, X.; Wu, N.; et al. Controllable 2H-to-1T′ phase transition in few-layer MoTe2. Nanoscale 2018, 10, 19964–19971. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-Y.; Park, J.; Park, J.; Song, K.; Cha, S.; Sim, S.; Choi, S.-Y.; Yeom, H.W.; Choi, H.; Jo, M.-H. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 2018, 1, 512–517. [Google Scholar] [CrossRef]
- Li, Y.; Duerloo, K.-A.N.; Wauson, K.; Reed, E.J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 2016, 7, 10671. [Google Scholar] [CrossRef] [PubMed]
- Duerloo, K.A.; Li, Y.; Reed, E.J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun 2014, 5, 4214. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Keum, D.H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y.H. Room Temperature Semiconductor-Metal Transition of MoTe2 Thin Films Engineered by Strain. Nano Lett. 2016, 16, 188–193. [Google Scholar] [CrossRef]
- Duerloo, K.A.; Reed, E.J. Structural Phase Transitions by Design in Monolayer Alloys. ACS Nano 2016, 10, 289–297. [Google Scholar] [CrossRef]
- Zhang, C.; Kc, S.; Nie, Y.; Liang, C.; Vandenberghe, W.G.; Longo, R.C.; Zheng, Y.; Kong, F.; Hong, S.; Wallace, R.M.; et al. Charge Mediated Reversible Metal-Insulator Transition in Monolayer MoTe2 and WxMo1−xTe2 Alloy. ACS Nano 2016, 10, 7370–7375. [Google Scholar] [CrossRef]
- Young, J.; Reinecke, T.L. Controlling the H to T′ structural phase transition via chalcogen substitution in MoTe2 monolayers. Phys. Chem. Chem. Phys. 2017, 19, 31874–31882. [Google Scholar] [CrossRef]
- Zhou, Y.; Reed, E.J. Structural Phase Stability Control of Monolayer MoTe2 with Adsorbed Atoms and Molecules. J. Phys. Chem. C 2015, 119, 21674–21680. [Google Scholar] [CrossRef]
- Eshete, Y.A.; Ling, N.; Kim, S.; Kim, D.; Hwang, G.; Cho, S.; Yang, H. Vertical Heterophase for Electrical, Electrochemical, and Mechanical Manipulations of Layered MoTe2. Adv. Funct. Mater. 2019, 29, 1904504. [Google Scholar] [CrossRef]
- Pelella, A.; Kharsah, O.; Grillo, A.; Urban, F.; Passacantando, M.; Giubileo, F.; Iemmo, L.; Sleziona, S.; Pollmann, E.; Madauss, L.; et al. Electron Irradiation of Metal Contacts in Monolayer MoS2 Field-Effect Transistors. ACS Appl. Mater. Interfaces 2020, 12, 40532–40540. [Google Scholar] [CrossRef]
- Wang, B.; Luo, H.; Wang, X.; Wang, E.; Sun, Y.; Tsai, Y.-C.; Zhu, H.; Liu, P.; Jiang, K.; Liu, K. Bifunctional NbS2-Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. ACS Nano 2020, 14, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolomeo, A.; Grillo, A.; Urban, F.; Iemmo, L.; Giubileo, F.; Luongo, G.; Amato, G.; Croin, L.; Sun, L.; Liang, S.-J.; et al. Asymmetric Schottky Contacts in Bilayer MoS2 Field Effect Transistors. Adv. Funct. Mater. 2018, 28, 1800657. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Zhang, H.; Yoo, Y.; Degregorio, Z.P.; Jin, L.; Golani, P.; Ghasemi Azadani, J.; Low, T.; Johns, J.E.; Bendersky, L.A.; et al. MoTe2 Lateral Homojunction Field-Effect Transistors Fabricated using Flux-Controlled Phase Engineering. ACS Nano 2019, 13, 8035–8046. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Azizimanesh, A.; Sewaket, A.; Peña, T.; Watson, C.; Liu, M.; Askari, H.; Wu, S.M. Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol. 2019, 14, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Li, J.; Shi, B.; Zhang, X.; Pan, Y.; Ye, M.; Quhe, R.; Wang, Y.; Zhang, H.; Yan, J.; et al. Gate-tunable interfacial properties of in-plane ML MX2 1T′-2H heterojunctions. J. Mater. Chem. C 2018, 6, 5651–5661. [Google Scholar] [CrossRef]
- Li, A.; Pan, J.; Dai, X.; Ouyang, F. Electrical contacts of coplanar 2H/1T′ MoTe2 monolayer. J. Appl. Phys. 2019, 125, 075104. [Google Scholar] [CrossRef]
- Pawar, S.A.; Kim, D.; Lee, R.; Kang, S.-W.; Patil, D.S.; Kim, T.W.; Shin, J.C. Efficient supercapacitor based on polymorphic structure of 1T′-Mo6Te6 nanoplates and few-atomic-layered 2H-MoTe2: A layer by layer study on nickel foam. Chem. Eng. J. 2019, 371, 182–192. [Google Scholar] [CrossRef]
- Luo, H.; Wang, B.; Wang, E.; Wang, X.; Sun, Y.; Liu, K. High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions. Crystals 2019, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, J.; Hu, W.; Liao, L.; Wang, P.; Wang, X.; Gong, F.; Chen, Y.; Wu, G.; Luo, W.; et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 2016, 27, 445201. [Google Scholar] [CrossRef]
- Luo, H.; Wang, B.; Wang, E.; Wang, X.; Sun, Y.; Li, Q.; Fan, S.; Cheng, C.; Liu, K. Phase-transition modulated, high-performance dual-mode photodetectors based on WSe2/VO2 heterojunctions. Appl. Phys. Rev. 2019, 6, 041407. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Hsu, H.-P.; Liu, G.-H.; Dai, T.-Z.; Shih, Y.-T. Enhanced Photoresponsivity of 2H-MoTe2 by Inserting 1T-MoTe2 Interlayer Contact for Photodetector Applications. Crystals 2021, 11, 964. [Google Scholar] [CrossRef]
- Chen, Y.; Ou, P.; Bie, X.; Song, J. Basal plane activation in monolayer MoTe2 for the hydrogen evolution reaction via phase boundaries. J. Mater. Chem. A 2020, 8, 19522–19532. [Google Scholar] [CrossRef]
- McGlynn, J.C.; Dankwort, T.; Kienle, L.; Bandeira, N.A.G.; Fraser, J.P.; Gibson, E.K.; Cascallana-Matias, I.; Kamaras, K.; Symes, M.D.; Miras, H.N.; et al. The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nat. Commun. 2019, 10, 4916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Liu, K. Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions. Nanomaterials 2022, 12, 110. https://doi.org/10.3390/nano12010110
Guo J, Liu K. Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions. Nanomaterials. 2022; 12(1):110. https://doi.org/10.3390/nano12010110
Chicago/Turabian StyleGuo, Jing, and Kai Liu. 2022. "Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions" Nanomaterials 12, no. 1: 110. https://doi.org/10.3390/nano12010110
APA StyleGuo, J., & Liu, K. (2022). Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions. Nanomaterials, 12(1), 110. https://doi.org/10.3390/nano12010110