Adsorption Behavior of Toxic Carbon Dichalcogenides (CX2; X = O, S, or Se) on β12 Borophene and Pristine Graphene Sheets: A DFT Study
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Geometric Structures
3.2. Adsorption Energy Calculations
3.3. Band Structure Calculations
3.4. Charge Transfer Calculations
3.5. Density of State Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Lustig, W.P.; Li, J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem. Soc. Rev. 2018, 47, 4729–4756. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, S.X.; Liu, H.; Xu, J.Y.; Fu, K.; Klimont, Z.; Hao, J.M.; He, K.B.; Cofala, J.; Amann, M. NOx emissions in China: Historical trends and future perspectives. Atmos. Chem. Phys. 2013, 13, 9869–9897. [Google Scholar] [CrossRef]
- DeCoste, J.B.; Peterson, G.W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 2014, 114, 5695–5727. [Google Scholar] [CrossRef]
- Mannucci, P.M.; Harari, S.; Martinelli, I.; Franchini, M. Effects on health of air pollution: A narrative review. Intern. Emerg. Med. 2015, 10, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Quadrelli, R.; Peterson, S. The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy 2007, 35, 5938–5952. [Google Scholar] [CrossRef]
- Zhang, C.H.; Derakhshandeh, M. CS2 adsorption on pristine and Al-doped graphynes: A DFT study. Comput. Theor. Chem. 2021, 1204, 113380. [Google Scholar] [CrossRef]
- Roohi, H.; Ardehjani, N.A. Adsorption behaviour of NO, NO2, CO and CS2 molecules on the surface of carbon-doped gallium nitride nanosheet: A DFT study. Surf. Sci. 2022, 717, 121988. [Google Scholar] [CrossRef]
- Khan, M.D.; Aamir, M.; Akhtar, J.; Malik, M.A.; Revaprasadu, N. Metal selenobenzoate complexes: Novel single source precursors for the synthesis of metal selenide semiconductor nanomaterials. Mater. Today Proc. 2019, 10, 66–74. [Google Scholar] [CrossRef]
- Wittig, C.; Smith, I.W.M. Carbon monoxide chemical laser from the reaction O + Cse → CO† + Se. Appl. Phys. Lett. 1972, 21, 536–538. [Google Scholar] [CrossRef]
- Pan, W.-H.; Fackler, J.P.; Chen, H.W. Preparations and proton, carbon-13, and phosphorus-31 nuclear magnetic resonance studies of some N,N-dialkyldiselenocarbamate complexes and their phosphine derivatives. X-ray crystal structure of Pt(Se2CN(i-Bu)2)2. Inorg. Chem. 1981, 20, 856–863. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B Condens. Matter 2008, 77, 125416–125421. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Mahmoud, A.H.M.; Soliman, K.A.; Mekhemer, G.A.H.; Ahmed, M.N.; Shawky, A.M.; Abourehab, M.A.S.; Elkaeed, E.B.; Soliman, M.E.S.; Moussa, N.A.M. Borophene and Pristine Graphene 2D Sheets as Potential Surfaces for the Adsorption of Electron-Rich and Electron-Deficient pi-Systems: A Comparative DFT Study. Nanomaterials 2022, 12, 1028. [Google Scholar] [CrossRef]
- Naumis, G.G. Electronic properties of two-dimensional materials. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Yang, E.-H., Datta, D., Ding, J., Hader, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 77–109. [Google Scholar]
- Lee, Y.; Lee, S.; Hwang, Y.; Chung, Y.-C. Modulating magnetic characteristics of Pt embedded graphene by gas adsorption (N2, O2, NO2, SO2). Appl. Surf. Sci. 2014, 289, 445–449. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, S.; Engelhard, M.H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I.A.; Lin, Y. Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 2010, 20, 7491–7496. [Google Scholar] [CrossRef]
- Tang, Y.A.; Yang, Z.X.; Dai, X.Q. Noble metals induced magnetic properties of graphene. J. Magn. Magn. Mater. 2011, 323, 2441–2447. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Chen, Y.B.; Zhou, K.G.; Liu, C.H.; Zeng, J.; Zhang, H.L.; Peng, Y. Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study. Nanotechnology 2009, 20, 185504. [Google Scholar] [CrossRef]
- Dai, J.Y.; Yuan, J.M.; Giannozzi, P. Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study. Appl. Phys. Lett. 2009, 95, 232105. [Google Scholar] [CrossRef]
- Azhagurajan, M.; Kajita, T.; Itoh, T.; Kim, Y.G.; Itaya, K. In Situ Visualization of Lithium Ion Intercalation into MoS2 Single Crystals using Differential Optical Microscopy with Atomic Layer Resolution. J. Am. Chem. Soc. 2016, 138, 3355–3361. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.J.; Xue, J.M.; Kang, W. Gas adsorption on MoS2 monolayer from first-principles calculations. Chem. Phys. Lett. 2014, 595–596, 35–42. [Google Scholar] [CrossRef]
- Li, Y.; Wu, W.; Ma, F. Blue phosphorene/graphene heterostructure as a promising anode for lithium-ion batteries: A first-principles study with vibrational analysis techniques. J. Mater. Chem. A 2019, 7, 611–620. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Zhang, G.; Zhang, Y.W. Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures. J. Phys. Chem. C 2015, 119, 13929–13936. [Google Scholar] [CrossRef]
- Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Leandri, C.; Ealet, B.; Le Lay, G. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene. Appl. Phys. Lett. 2010, 96, 183102. [Google Scholar] [CrossRef]
- Du, Y.; Zhuang, J.; Liu, H.; Xu, X.; Eilers, S.; Wu, K.; Cheng, P.; Zhao, J.; Pi, X.; See, K.W.; et al. Tuning the band gap in silicene by oxidation. ACS Nano 2014, 8, 10019–10025. [Google Scholar] [CrossRef] [PubMed]
- Cahangirov, S.; Topsakal, M.; Akturk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef] [Green Version]
- Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M.C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510–2516. [Google Scholar] [CrossRef]
- Mannix, A.J.; Zhou, X.F.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.; Fisher, B.L.; Santiago, U.; Guest, J.R.; et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516. [Google Scholar] [CrossRef]
- Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R.Y.; Tsang, S.H.; Teo, E.H.T. Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS Nano 2018, 12, 1262–1272. [Google Scholar] [CrossRef]
- Ranjan, P.; Sahu, T.K.; Bhushan, R.; Yamijala, S.S.; Late, D.J.; Kumar, P.; Vinu, A. Freestanding Borophene and Its Hybrids. Adv. Mater. 2019, 31, e1900353. [Google Scholar] [CrossRef]
- Zhou, H.B.; Cai, Y.Q.; Zhang, G.; Zhang, Y.W. Superior lattice thermal conductance of single-layer borophene. NPJ 2D Mater. Appl. 2017, 1, 14. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Gao, G.; Yakobson, B.I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. 2015, 54, 13022–13026. [Google Scholar] [CrossRef]
- Li, X.B.; Xie, S.Y.; Zheng, H.; Tian, W.Q.; Sun, H.B. Boron based two-dimensional crystals: Theoretical design, realization proposal and applications. Nanoscale 2015, 7, 18863–18871. [Google Scholar] [CrossRef]
- Penev, E.S.; Kutana, A.; Yakobson, B.I. Can Two-Dimensional Boron Superconduct? Nano Lett. 2016, 16, 2522–2526. [Google Scholar] [CrossRef]
- Xu, S.G.; Zhao, Y.J.; Liao, J.H.; Yang, X.B.; Xu, H. The nucleation and growth of borophene on the Ag (111) surface. Nano Res. 2016, 9, 2616–2622. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.Q.; Cui, Q.Y.; Du, A.J.; Sun, Q. Borophene: A metal-free and metallic electrocatalyst for efficient converting CO2 into CH4. ChemCatChem 2020, 12, 1483–1490. [Google Scholar] [CrossRef]
- Tan, X.; Tahini, H.A.; Smith, S.C. Borophene as a promising material for charge-modulated switchable CO2 capture. ACS Appl. Mater. Interfaces 2017, 9, 19825–19830. [Google Scholar] [CrossRef] [PubMed]
- Ta, L.T.; Hamada, I.; Morikawa, Y.; Dinh, V.A. Adsorption of toxic gases on borophene: Surface deformation links to chemisorptions. RSC Adv. 2021, 11, 18279–18287. [Google Scholar] [CrossRef]
- Huang, C.S.; Murat, A.; Babar, V.; Montes, E.; Schwingenschlogl, U. Adsorption of the gas molecules NH3, NO, NO2, and CO on borophene. J. Phys. Chem. C 2018, 122, 14665–14670. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B Condens. Matter 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M.C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jonsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, H.; Shao, H.Z.; Ning, Z.Y.; Xu, Y.F.; Ni, G.; Lu, H.L.; Zhang, D.W.; Zhu, H.Y. Stability and strength of atomically thin borophene from first principles calculations. Mater. Res. Lett. 2017, 5–6, 399–407. [Google Scholar] [CrossRef]
- Chakarova-Kack, S.D.; Schroder, E.; Lundqvist, B.I.; Langreth, D.C. Application of van der Waals density functional to an extended system: Adsorption of benzene and naphthalene on graphite. Phys. Rev. Lett. 2006, 96, 146107. [Google Scholar] [CrossRef]
- Lu, Y.H.; Xu, Y.J.; Zhang, J.A.; Zhang, Q.W.; Li, L.; Tian, J.L. Adsorption of Carbon Dioxide Gas by Modified Graphene: A Theoretical Study. Chemistryselect 2022, 7, e202104067. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory, 1st ed.; Clarendon Press: Oxford, UK, 1990; Volume XVIII, p. 438. [Google Scholar]
- Sun, Q.; Yang, Z.; Huo, Y.; Liu, R.; Xu, L.-C.; Xue, L.; Liu, X. Designing and optimizing β1-borophene organic gas sensor: A theoretical study. Surf. Sci. 2022, 719, 122030. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhang, C.; Deng, M.S.; Cai, S.H. The structural and electronic properties of metal atoms adsorbed on graphene. Phys. E 2017, 93, 265–270. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, H.; Wang, F.D.; Zhang, W.D.; Tang, S.W.; Ma, J.M.; Gong, H.W.; Zhang, J.P. Adsorption of phosgene molecule on the transition metal-doped graphene: First principles calculations. Appl. Surf. Sci. 2017, 425, 340–350. [Google Scholar] [CrossRef]
2D Sheet | Adsorption Site a | Carbon Dichalcogenides (CX2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CO2 | CS2 | CSe2 | ||||||||
Eads (kcal/mol) | d (Å) | Qt b (e) | Eads (kcal/mol) | d (Å) | Qt b (e) | Eads (kcal/mol) | d (Å) | Qt b (e) | ||
Vertical Configuration c | ||||||||||
β12 | T | −2.05 | 3.24 | −0.0117 | −3.54 | 3.35 | −0.0219 | −5.35 | 3.30 | −0.0127 |
H | −1.76 | 3.14 | −0.0122 | −4.25 | 3.09 | −0.0199 | −6.73 | 3.04 | −0.0036 | |
Br1 | --- d | --- d | --- d | --- d | --- d | --- d | --- d | --- d | --- d | |
Br2 | −2.13 | 3.17 | −0.0120 | −3.47 | 3.34 | −0.0233 | −5.04 | 3.33 | −0.0189 | |
GN | T | −1.77 | 3.16 | −0.0055 | −3.13 | 3.31 | −0.0077 | −4.39 | 3.31 | −0.0051 |
H | −1.95 | 3.03 | −0.0059 | −3.28 | 3.23 | −0.0097 | −4.49 | 3.26 | −0.0072 | |
Br | −1.79 | 3.14 | −0.0055 | −3.14 | 3.29 | −0.0072 | −4.39 | 3.30 | −0.0040 | |
Parallel Configuration c | ||||||||||
β12 | T | −2.86 | 3.41 | −0.0213 | −5.49 | 3.49 | 0.0044 | −8.54 | 3.43 | 0.0513 |
H | −4.42 | 3.17 | −0.0271 | −6.53 | 3.32 | 0.0139 | −10.96 | 3.26 | 0.0724 | |
Br1 | −3.78 | 3.22 | −0.0304 | −6.29 | 3.38 | −0.0039 | −9.54 | 3.34 | 0.0335 | |
Br2 | −2.96 | 3.37 | −0.0225 | −5.69 | 3.44 | 0.0044 | −8.74 | 3.39 | 0.0484 | |
GN | T | −3.64 | 3.19 | −0.0155 | −5.17 | 3.46 | −0.0010 | −6.81 | 3.49 | 0.0063 |
H | −3.29 | 3.26 | −0.0114 | −4.83 | 3.52 | 0.0008 | −6.45 | 3.55 | 0.0118 | |
Br | −3.77 | 3.14 | −0.0146 | −5.31 | 3.42 | −0.0019 | −6.91 | 3.47 | 0.0068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.A.A.; Mahmoud, A.H.M.; Mekhemer, G.A.H.; Shawky, A.M.; Soliman, M.E.S.; Moussa, N.A.M. Adsorption Behavior of Toxic Carbon Dichalcogenides (CX2; X = O, S, or Se) on β12 Borophene and Pristine Graphene Sheets: A DFT Study. Nanomaterials 2022, 12, 3411. https://doi.org/10.3390/nano12193411
Ibrahim MAA, Mahmoud AHM, Mekhemer GAH, Shawky AM, Soliman MES, Moussa NAM. Adsorption Behavior of Toxic Carbon Dichalcogenides (CX2; X = O, S, or Se) on β12 Borophene and Pristine Graphene Sheets: A DFT Study. Nanomaterials. 2022; 12(19):3411. https://doi.org/10.3390/nano12193411
Chicago/Turabian StyleIbrahim, Mahmoud A. A., Amna H. M. Mahmoud, Gamal A. H. Mekhemer, Ahmed M. Shawky, Mahmoud E. S. Soliman, and Nayra A. M. Moussa. 2022. "Adsorption Behavior of Toxic Carbon Dichalcogenides (CX2; X = O, S, or Se) on β12 Borophene and Pristine Graphene Sheets: A DFT Study" Nanomaterials 12, no. 19: 3411. https://doi.org/10.3390/nano12193411
APA StyleIbrahim, M. A. A., Mahmoud, A. H. M., Mekhemer, G. A. H., Shawky, A. M., Soliman, M. E. S., & Moussa, N. A. M. (2022). Adsorption Behavior of Toxic Carbon Dichalcogenides (CX2; X = O, S, or Se) on β12 Borophene and Pristine Graphene Sheets: A DFT Study. Nanomaterials, 12(19), 3411. https://doi.org/10.3390/nano12193411