Light Emission Properties of Thermally Evaporated CH3NH3PbBr3 Perovskite from Nano- to Macro-Scale: Role of Free and Localized Excitons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, H.-H.; Wang, F.; Adjokatse, S.; Zhao, N.; Loi, M.A. Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films. Adv. Funct. Mater. 2016, 26, 4653–4659. [Google Scholar] [CrossRef]
- Hoye, R.L.Z.; Fakharuddin, A.; Congreve, D.N.; Wang, J.; Schmidt-Mende, L. Light emission from perovskite materials. APL Mater. 2020, 8, 070401–070404. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, L.; Chen, L.; Guo, N.; Li, G.; Tian, Z.; Mao, B.; Zhao, Y. In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n Perovskite Films. Adv. Funct. Mater. 2017, 27, 1603568–1603576. [Google Scholar] [CrossRef]
- Iftikhar, F.J.; Wali, Q.; Yang, S.; Iqbal, Y.; Jose, R.; Munir, S.; Gondal, I.A.; Khan, M.E. Structural and optoelectronic properties of hybrid halide perovskites for solar cells. Org. Electron. 2021, 91, 106077–106095. [Google Scholar] [CrossRef]
- Gao, C.; Liu, J.; Liao, C.; Ye, Q.; Zhang, Y.; He, X.; Guo, X.; Mei, J.; Lau, W. Formation of organic–inorganic mixed halide perovskite films by thermal evaporation of PbCl2 and CH3NH3I compounds. RSC Adv. 2015, 5, 26175–26180. [Google Scholar] [CrossRef]
- Ma, Q.; Huang, S.; Wen, X.; Green, M.A.; Ho-Baillie, A.W. Hole Transport Layer Free Inorganic CsPbBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation. Adv. Energy Mater. 2016, 6, 1502202–1502207. [Google Scholar] [CrossRef]
- Erkilic, U.; Ji, H.G.; Nishibori, E.; Ago, H. One-step vapour phase growth of two-dimensional formamidium-based perovskite and its hot carrier dynamics. Phys. Chem. Chem. Phys. 2020, 22, 21512–21519. [Google Scholar] [CrossRef]
- Moser, T.; Artuk, K.; Jiang, Y.; Feurer, T.; Gilshtein, E.; Tiwari, A.N.; Fu, F. Revealing the perovskite formation kinetics during chemical vapour deposition. J. Mater. Chem. A 2020, 8, 21973–21982. [Google Scholar] [CrossRef]
- Hodes, G. Perovskite-Based Solar Cells. Science 2013, 342, 317–318. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Yang, Z.; Zhou, N.; Deng, Y.; Zhao, J.; Xiao, X.; Rudd, P.; Moran, A.; Yan, Y.; et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 2019, 10, 5633–5641. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R.H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–22. [Google Scholar] [CrossRef]
- Mariano, F.; Listorti, A.; Rizzo, A.; Colella, S.; Gigli, G.; Mazzeo, M. Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. APL 2017, 111, 163301. [Google Scholar] [CrossRef]
- Kim, H.; Roh, K.; Murphy, J.P.; Zhao, L.; Gunnarsson, W.B.; Longhi, E.; Barlow, S.; Marder, S.R.; Rand, B.P.; Giebink, N.C. Optically Pumped Lasing from Hybrid Perovskite Light-Emitting Diodes. Adv. Opt. Mater. 2020, 8, 1901297–1901311. [Google Scholar] [CrossRef]
- Shang, Q.; Li, M.; Zhao, L.; Chen, D.; Zhang, S.; Chen, S.; Gao, P.; Shen, C.; Xing, J.; Xing, G.; et al. Role of the Exciton-Polariton in a Continuous-Wave Optically Pumped CsPbBr3 Perovskite Laser. Nano Lett. 2020, 20, 6636–6643. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, M.L.; Anni, M. Amplified Spontaneous Emission and Lasing in Lead Halide Perovskites: State of the Art and Perspectives. Appl. Sci. 2019, 9, 4591. [Google Scholar] [CrossRef] [Green Version]
- Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F.; Sarritzu, V.; Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A.; et al. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 2014, 5, 5049–5059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Trinh, M.T.; Niesner, D.; Zhu, H.; Norman, Z.; Owen, J.S.; Yaffe, O.; Kudisch, B.J.; Zhu, X.Y. Trap states in Lead Iodide Perovskites. J. Am. Chem. Soc. 2015, 137, 2089–2096. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, D.; Saba, M.; Quochi, F.; Mura, A.; Bongiovanni, G. The role of excitons in 3D and 2D perovskites. J. Mater. Chem. C 2019, 7, 12006–12018. [Google Scholar] [CrossRef]
- Van de Riet, I.; Fang, H.-H.; Adjokatse, S.; Kahmann, S.; Loi, M.A. Influence of morphology on photoluminescence properties of methylammonium lead tribromide films. J. Lumin. 2020, 220, 117033–117040. [Google Scholar] [CrossRef]
- Quitsch, W.-A.; De Quilettes, D.W.; Pfingsten, O.; Schmitz, A.; Ognjanovic, S.; Jariwala, S.; Koch, S.; Winterer, M.; Ginger, D.S.; Bacher, G. The Role of Excitation Energy in Photobrightening and Photodegradation of Halide Perovskite Thin Films. J. Phys. Chem. Lett. 2018, 9, 2062–2069. [Google Scholar] [CrossRef] [PubMed]
- Brenes, R.; Guo, D.; Osherov, A.; Noel, N.K.; Eames, C.; Hutter, E.M.; Pathak, S.K.; Niroui, F.; Friend, R.H.; Islam, M.S.; et al. Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals. Joule 2017, 1, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Yao, J.; Wang, H.; Wang, P.; Gurney, R.S.; Intaniwet, A.; Ruankham, P.; Choopun, S.; Liu, D.; Wang, T. Trap passivation and efficiency improvement of perovskite solar cells by a guanidium additive. Mater. Chem. Front. 2019, 3, 1357–1364. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, Y.; Hu, Y. Traps in metal halide perovskites: Characterization and passivation. Nanoscale 2020, 12, 22425–22451. [Google Scholar] [CrossRef]
- Anni, M.; Cretí, A.; De Giorgi, M.L.; Lomascolo, M. Local Morphology Effects on the Photoluminescence Properties of Thin CsPbBr3 Nanocrystal Films. Nanomaterials 2021, 11, 1470. [Google Scholar] [CrossRef] [PubMed]
- Mariano, F.; Cretì, A.; Carbone, L.; Genco, A.; D’Agostino, S.; Carallo, S.; Montagna, G.; Lomascolo, M.; Mazzeo, M. The enhancement of excitonic emission crossing Saha equilibrium in trap passivated CH3NH3PbBr3 perovskite. Commun. Phys. 2020, 3, 41–51. [Google Scholar] [CrossRef]
- Saha, M.N. On a physical theory of stellar spectra. Proc. R. Soc. Lond. Ser. A 1921, 99, 135–153. [Google Scholar] [CrossRef]
- Greffet, J.-J.; Carminati, R. Image Formation in Near-Field Optics. Prog. Surf. Sci. 1997, 56, 133–237. [Google Scholar] [CrossRef]
- Triolo, C.; Patanè, S.; Mazzeo, M.; Gambino, S.; Gigli, G.; Allegrini, M. Pure optical nano-writing on light-switchable spiropyrans/merocyanine thin film. Opt. Express 2014, 22, 283–288. [Google Scholar] [CrossRef]
- Triolo, C.; Cacciola, A.; Saija, R.; Trusso, S.; Spadaro, M.C.; Neri, F.; Ossi, P.M.; Patanè, S. Near-Field Optical Detection of Plasmon Resonance from Gold Nanoparticles: Theoretical and Experimental Evidence. Plasmonics 2015, 10, 63–70. [Google Scholar] [CrossRef]
- Triolo, C.; Savasta, S.; Settineri, A.; Trusso, S.; Saija, R.; Agarwal, N.R.; Patanè, S. Near-field imaging of surface plasmon vortex-modes around a single elliptical nanohole in a gold film. Sci. Rep. 2019, 9, 5320–5329. [Google Scholar] [CrossRef] [PubMed]
- Saba, M.; Quochi, F.; Mura, A.; Bongiovanni, G. Excited State Properties of Hybrid Perovskites. Acc. Chem. Res. 2016, 49, 166–173. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.-D.; Qiu, Y.-H.; Chen, K.; Zhou, L.; Wang, Q.-Q. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets. AIP Adv. 2018, 8, 025108–025117. [Google Scholar] [CrossRef]
- He, H.; Yu, Q.; Li, H.; Li, J.; Si, J.; Jin, Y.; Wang, N.; Wang, J.; He, J.; Wang, X.; et al. Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun. 2016, 7, 10896–10903. [Google Scholar] [CrossRef]
- Shibata, H.; Sakai, M.; Yamada, A.; Matsubara, K.; Sakurai, K.; Tampo, H.; Ishizuka, S.; Kim, K.-K.; Niki, S. Excitation-Power Dependence of Free Exciton Photoluminescence of Semiconductors. Jpn. J. Appl. Phys. 2005, 44, 6113–6114. [Google Scholar] [CrossRef]
- Mohan, V.; Jain, P.K. Spectral Heterogeneity of Hybrid Lead Halide Perovskites Demystified by Spatially-Resolved Emission. J. Phys. Chem. C 2017, 35, 19392–19400. [Google Scholar] [CrossRef]
- Wang, K.-H.; Li, L.-C.; Shellaiah, M.; Sun, K.W. Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr3) Single Crystals. Sci. Rep. 2017, 7, 13643–13657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Zhang, K.; Li, Y.; Yao, L.; Zhang, Y.; Wang, Y.; Zhai, W.; Tao, L.; Du, H.; Ran, G. Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature. Appl. Phys. Lett. 2016, 108, 071109–071114. [Google Scholar] [CrossRef]
- Shi, T.; Yin, W.-J.; Hong, F.; Zhu, K.; Yan, Y. Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 2015, 106, 103902–103908. [Google Scholar] [CrossRef]
- Spitha, N.; Kohler, D.D.; Hautzinger, M.P.; Li, J.; Jin, S.; Wright, J.C. Discerning between Exciton and Free-Carrier Behaviors in Ruddlesden−Popper Perovskite Quantum Wells through Kinetic Modeling of Photoluminescence Dynamics. J. Phys. Chem. C 2020, 124, 17430–17439. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triolo, C.; De Giorgi, M.L.; Lorusso, A.; Cretì, A.; Santangelo, S.; Lomascolo, M.; Anni, M.; Mazzeo, M.; Patané, S. Light Emission Properties of Thermally Evaporated CH3NH3PbBr3 Perovskite from Nano- to Macro-Scale: Role of Free and Localized Excitons. Nanomaterials 2022, 12, 211. https://doi.org/10.3390/nano12020211
Triolo C, De Giorgi ML, Lorusso A, Cretì A, Santangelo S, Lomascolo M, Anni M, Mazzeo M, Patané S. Light Emission Properties of Thermally Evaporated CH3NH3PbBr3 Perovskite from Nano- to Macro-Scale: Role of Free and Localized Excitons. Nanomaterials. 2022; 12(2):211. https://doi.org/10.3390/nano12020211
Chicago/Turabian StyleTriolo, Claudia, Maria Luisa De Giorgi, Antonella Lorusso, Arianna Cretì, Saveria Santangelo, Mauro Lomascolo, Marco Anni, Marco Mazzeo, and Salvatore Patané. 2022. "Light Emission Properties of Thermally Evaporated CH3NH3PbBr3 Perovskite from Nano- to Macro-Scale: Role of Free and Localized Excitons" Nanomaterials 12, no. 2: 211. https://doi.org/10.3390/nano12020211
APA StyleTriolo, C., De Giorgi, M. L., Lorusso, A., Cretì, A., Santangelo, S., Lomascolo, M., Anni, M., Mazzeo, M., & Patané, S. (2022). Light Emission Properties of Thermally Evaporated CH3NH3PbBr3 Perovskite from Nano- to Macro-Scale: Role of Free and Localized Excitons. Nanomaterials, 12(2), 211. https://doi.org/10.3390/nano12020211