Low-Voltage Solution-Processed Zinc-Doped CuI Thin Film Transistors with NOR Logic and Artificial Synaptic Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Precursor Solution
2.2. Preparation for Characterization of Zn-Doped CuI Film
2.3. Fabrication of CuI TFT and Zn-Doped CuI TFTs
2.4. Device of Measuring Chitosan Capacitance
2.5. Characterization Equipment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, D.; Jang, J.; Park, J.H.; Kim, D.; Rim, Y.S.; Hwang, D.K.; Noh, Y.-Y. Recent progress in the development of backplane thin film transistors for information displays. J. Inform. Disp. 2021, 22, 1–11. [Google Scholar] [CrossRef]
- Yu, J.; Liu, G.; Liu, A.; Meng, Y.; Shin, B.; Shan, F. Solution-processed p-type copper oxide thin-film transistors fabricated by using a one-step vacuum annealing technique. J. Mater. Chem. C. 2015, 3, 9509–9513. [Google Scholar] [CrossRef]
- Kim, C.H.-M.; Choi, S.-H.; Jeong, H.J.; Lee, J.-H.; Kim, J.; Park, J.-S. Highly dense and stable p-Type thin-film transistor based on atomic layer deposition SnO fabricated by two-step crystallization. ACS Appl. Mater. Interfaces 2021, 13, 30818–30825. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Baek, I.-H.; Kim, D.H.; Pyeon, J.J.; Chung, T.-M.; Baek, S.-H.; Kim, J.-S.; Han, J.H.; Kim, S.K. Fabrication of high-performance p-type thin film transistors using atomic-layer-deposited SnO films. J. Mater. Chem. C. 2017, 5, 3139–3145. [Google Scholar] [CrossRef]
- Shih, C.W.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high hole mobility metal-oxide thin-film transistors. Sci. Rep. 2018, 8, 889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Li, H.; Xu, J.-B.; Wang, L. Recent advances of solution-processed metal oxide thin-film transistors. ACS Appl. Mater. Interfaces 2018, 10, 25878–25901. [Google Scholar] [CrossRef]
- Kim, S.Y.; Ahn, C.H.; Lee, J.H.; Kwon, Y.H.; Hwang, S.; Lee, J.Y.; Cho, H.K. P-channel oxide thin film transistors using solution-processed copper oxide. ACS Appl. Mater. Interfaces 2013, 5, 2417–2421. [Google Scholar] [CrossRef]
- Shan, F.; Liu, A.; Zhu, H.; Kong, W.; Liu, J.; Shin, B.; Fortunato, E.; Martins, R.; Liu, G. High-mobility p-type NiOx thin-film transistors processed at low temperatures with Al2O3 high-k dielectric. J. Mater. Chem. C 2016, 4, 9438–9444. [Google Scholar] [CrossRef]
- Liu, A.; Nie, S.; Liu, G.; Zhu, H.; Zhu, C.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. J. Mater. Chem. C 2017, 5, 2524–2530. [Google Scholar] [CrossRef]
- Jang, B.; Kim, T.; Lee, S.; Lee, W.-Y.; Kang, H.; Cho, C.S.; Jang, J. High performance ultrathin SnO2 thin-film transistors by sol-gel method. IEEE Electron Device Lett. 2018, 39, 1179–1182. [Google Scholar] [CrossRef]
- Jang, J.; Chung, S.; Kang, H.; Subramanian, V. P-type CuO and Cu2O transistors derived from a sol–gel copper (II) acetate monohydrate precursor. Thin Solid Films 2016, 600, 157–161. [Google Scholar] [CrossRef]
- Wang, Z.; Nayak, P.K.; Caraveo-Frescas, J.A.; Alshareef, H.N. Recent developments in p-Type oxide semiconductor materials and devices. Adv. Mater. 2016, 28, 3831–3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, A.; Zhu, H.; Guo, Z.; Meng, Y.; Liu, G.; Fortunato, E.; Martins, R.; Shan, F. Solution combustion synthesis: Low-temperature processing for p-type Cu:NiO thin films for transparent electronics. Adv. Mater. 2017, 29, 1701599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.H.L.; Xi, K.; Blamire, M.G.; Egdell, R.G. P-type transparent conducting oxides. J. Phys. Condens. Mat. 2016, 28, 383002. [Google Scholar] [CrossRef]
- Yang, C.; Knei, M.; Lorenz, M.; Grundmann, M. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. Proc. Natl. Acad. Sci. USA 2016, 113, 12929–12933. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Dou, W.; Wang, Y.; Zeng, J.; Wang, L.; Lei, L.; Tang, D. Solution-Processed p-Type CuI Thin-Film Transistors with NAND Logic Function. IEEE Trans. Electron Devices 2022, 69, 6480–6484. [Google Scholar] [CrossRef]
- Liu, A.; Zhu, H.; Park, W.-T.; Kim, S.-J.; Kim, H.; Kim, M.-G.; Noh, Y.-Y. High-performance p-channel transistors with transparent Zn doped CuI. Nat. Commun. 2020, 11, 4039. [Google Scholar] [CrossRef]
- Zhao, W.; Han, L.; Zhang, N.; Zhang, X.; Dong, S.; Liu, Y.; Ye, Z. High-gain transparent inverters based on deuterated ZnO TFTs fabricated by atomic layer deposition. IEEE Electron Device Lett. 2020, 41, 1508–1511. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, J.; Liu, M.; Zhang, L.; Jiang, B.; Zhang, M.; Zhang, X. Highly transparent, ultra-thin flexible, full-color mini-LED display with indium–gallium–zinc oxide thin-film transistor substrate. J. Soc. Inf. Disp. 2020, 28, 926–935. [Google Scholar] [CrossRef]
- Zhu, Y.; Mao, H.; Zhu, Y.; Zhu, L.; Chen, C.; Wang, X.; Ke, S.; Fu, C.; Wan, C.; Wan, Q. Photoelectric synapse based on InGaZnO nanofibers for high precision neuromorphic computing. IEEE Electron Device Lett. 2022, 43, 651–654. [Google Scholar] [CrossRef]
- Jiang, D.; Li, J.; Fu, W.; Chen, Q.; Yang, Y.; Zhou, Y.; Zhang, J. Light-stimulated artificial synapse with memory and learning functions by utilizing an aqueous solution-processed In2O3/AlLiO thin-film transistor. ACS Appl. Electron. Mater. 2020, 2, 2772–2779. [Google Scholar] [CrossRef]
- Ogawa, K.; Yui, T.; Okuyama, K. Three D structures of chitosan. Int. J. Biol. Macromol. 2004, 34, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Oh, J.G.; Kim, D.; Baek, J.; Kim, I.H.; Nam, S.; Jeong, Y.J.; Jang, J. Copper iodide and oxide semiconductor thin films patterned by spray-spin coating for fabricating complementary inverters: Improving stability with passivation layers. Appl. Surf. Sci. 2022, 608, 155081. [Google Scholar] [CrossRef]
- Dou, W.; Zhu, L.; Jiang, J.; Wan, Q. Flexible dual-gate oxide TFTs gated by chitosan film on paper substrates. IEEE Electron Device Lett. 2013, 34, 259–261. [Google Scholar] [CrossRef]
- Yuan, X.; Dou, W.; Gan, X.; Hou, W.; Lei, L.; Zhou, W.; Tang, D. Junctionless Electric-Double-Layer Thin-Film Transistors with Logic Functions. Phys. Status Solidi Rapid Res. Lett. 2023, 28, 2200480. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, J.; Xia, Y.; Kim, B.; He, Y.Y.; Renn, M.J.; Lodge, T.P.; Frisbie, C.D. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 2008, 7, 900–906. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, G.; Guo, L.; Zhu, L.; Wan, Q. Flexible transparent junctionless TFTs with oxygen-tuned indium-zinc-oxide channels. IEEE Electron Device Lett. 2013, 34, 888–890. [Google Scholar] [CrossRef]
- Duboué-Dijon, E.; Mason, P.E.; Fischer, H.E.; Jungwirth, P. Hydration and ion pairing in aqueous Mg2+ and Zn2+ solutions: Force-field description aided by neutron scattering experiments and ab initio molecular dynamics simulations. J. Phys. Chem. B 2017, 122, 3296–3306. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-Y.; Chen, W.-T.; Hsu, P.-H. Ultrathin Mg0.05Sn0.95Ox-Based Thin-Film Transistor by Mist Chemical Vapor Deposition. IEEE Trans. Electron Devices 2021, 68, 3390–3395. [Google Scholar] [CrossRef]
- Kim, C.H.; Tondelier, D.; Geffroy, B.; Bonnassieux, Y.; Horowitz, G. Characterization of the pentacene thin-film transistors with an epoxy resin-based polymeric gate insulator. Eur. Phys. J. Appl. Phy. 2012, 57, 20201. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Xu, Y.; Pan, Z.; Li, W.; Chu, J. Direct patterning on top-gate organic thin-film transistors: Improvement of on/off ratio, subthreshold swing, and uniformity. IEEE Electron Device Lett. 2020, 41, 1082–1085. [Google Scholar] [CrossRef]
- Tsuji, M.; Iimura, S.; Kim, J.; Hosono, H. Hole concentration reduction in CuI by Zn substitution and its mechanism: Toward Device Application. ACS Appl. Mater. Interfaces 2022, 14, 33463–33471. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, X.; Dou, W.; Hou, W.; Yuan, X.; Lei, L.; Zhou, Y.; Yang, J.; Chen, D.; Zhou, W.; Tang, D. Low-Voltage Solution-Processed Zinc-Doped CuI Thin Film Transistors with NOR Logic and Artificial Synaptic Function. Nanomaterials 2023, 13, 2345. https://doi.org/10.3390/nano13162345
Gan X, Dou W, Hou W, Yuan X, Lei L, Zhou Y, Yang J, Chen D, Zhou W, Tang D. Low-Voltage Solution-Processed Zinc-Doped CuI Thin Film Transistors with NOR Logic and Artificial Synaptic Function. Nanomaterials. 2023; 13(16):2345. https://doi.org/10.3390/nano13162345
Chicago/Turabian StyleGan, Xiaomin, Wei Dou, Wei Hou, Xing Yuan, Liuhui Lei, Yulan Zhou, Jia Yang, Diandian Chen, Weichang Zhou, and Dongsheng Tang. 2023. "Low-Voltage Solution-Processed Zinc-Doped CuI Thin Film Transistors with NOR Logic and Artificial Synaptic Function" Nanomaterials 13, no. 16: 2345. https://doi.org/10.3390/nano13162345
APA StyleGan, X., Dou, W., Hou, W., Yuan, X., Lei, L., Zhou, Y., Yang, J., Chen, D., Zhou, W., & Tang, D. (2023). Low-Voltage Solution-Processed Zinc-Doped CuI Thin Film Transistors with NOR Logic and Artificial Synaptic Function. Nanomaterials, 13(16), 2345. https://doi.org/10.3390/nano13162345