A Review on Pulsed Laser Fabrication of Nanomaterials in Liquids for (Photo)catalytic Degradation of Organic Pollutants in the Water System
Abstract
:1. Introduction
2. Pulsed Laser Fabrication of Nanomaterials in Liquids
3. Laser-Made Nanomaterials for (Photo)catalytic Degradation of Pollutants
3.1. Construction of Photocatalytic System for Pollutant Degradation
3.2. Photocatalytic Degradation of Organic Dyes in the Water System
3.3. Catalytic Reduction of 4-Nitropenol and Nitrobenzene in the Water System
3.4. Discussion on Laser Technology for Pollutant Removal in the Water System
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, S.; Qi, H.; Hou, P.; Liu, K. Resource recovery from textile wastewater: Dyes, salt, and water regeneration using solar-driven interfacial evaporation. J. Clean. Prod. 2023, 391, 136148. [Google Scholar] [CrossRef]
- Watanabe, M.; Ohta, Y.; Licang, S.; Motoyama, N.; Kikuchi, J. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality. Food. Chem. 2015, 169, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Guo, Z.; Wang, X.; Xiang, S.; Sun, T.; Zhao, R.; He, J.; Liu, F. Transfer route and driving forces of antibiotic resistance genes from reclaimed water to groundwater. Environ. Pollut. 2023, 330, 121800. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Pei, M.; Zhao, Y.; Zhou, M.; Sha, X. Novel polydimethylsiloxane/graphene oxide polyurethane sponge for remediation of petroleum-contaminated water, Inorg. Chem. Commun. 2023, 148, 110291. [Google Scholar]
- Li, W.; Wang, B.; Yuan, Y.; Wang, S. Spatiotemporal distribution patterns and ecological risk of multi-pesticide residues in the surface water of a typical agriculture area in China. Sci. Total. Environ. 2023, 870, 161872. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Bai, F.; Tian, H.; Wang, C.; Ma, J. Treatment of nanofiltration concentrate of landfill leachate using advanced oxidation process incorporated with bioaugmentation. Environ. Pollut. 2023, 318, 120827. [Google Scholar] [CrossRef]
- Mohamed, H.S.H.; Rabia, M.; Zhou, X.G.; Qin, X.S.; Khabiri, G.; Shaban, M.; Younus, H.A.; Hu, S.T.Z.Y.; Liu, J.; Li, Y.; et al. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation. J. Mater. Sci. Technol. 2021, 83, 179–187. [Google Scholar] [CrossRef]
- Wang, H.; Pyatenko, A.; Koshizaki, N.; Moehwald, H.; Shchukin, D. Single crystalline ZnO spherical particles by pulsed laser irradiation of colloidal nanoparticles for ultraviolet photodetection. ACS Appl. Mater. Interfaces. 2014, 6, 2241–2247. [Google Scholar] [CrossRef]
- Van, K.N.; Huu, H.T.; Thi, V.N.N.; Thi, T.L.L.; Truong, D.H.; Truong, T.T.; Dao, N.N.; Vo, V.; Tran, D.L.; Vasseghian, Y. Facial construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere 2022, 289, 133120. [Google Scholar] [CrossRef]
- Ahmad, A.; Javed, M.S.; Khan, S.; Almutairi, T.M.; Mohammed, A.A.; Luque, R. Green synthesized Ag decorated CeO2 nanoparticles: Efficient photocatalysts and potential antibacterial agents. Chemosphere 2023, 310, 136841. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Zou, Y.; Yan, J.; Liu, Y.; Shukrullah, S.; Naz, M.Y.; Hussain, H.; Khan, W.Q.; Khalid, N.R. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Adv. Colloid. Interfac. 2023, 311, 102830. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Cho, K.H.; Presser, V.; Su, X. Recent advances in wastewater treatment using semiconductor photocatalysts. Curr. Opin. Green. Sust. 2022, 36, 100644. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Z.; Yan, J.; Lu, B.; Li, X. A review on pulsed laser preparation of nanocomposites in liquids and their applications in photocatalysis. Catalysts 2022, 12, 1532. [Google Scholar] [CrossRef]
- Khan, M.E.; Khan, M.M.; Cho, M.H. Recent progress of metal-graphene nanostructures in photocatalysis. Nanoscale 2018, 10, 9427–9440. [Google Scholar] [CrossRef]
- Khan, M.E. State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: Photocatalysis. Nanoscale Adv. 2021, 3, 1887–1900. [Google Scholar] [CrossRef]
- Li, H.; Ji, H.; Liu, J.; Liu, W.; Li, F.; Shen, Z. Interfacial modulation of Znln2S4 with high active Zr-S4 sites for boosting photocatalytic activation of oxygen and degradation of emerging contaminant. Appl. Catal. B Environ. 2023, 328, 122481. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; He, C.; Zhu, C.; Li, Q.; Li, X.; Liu, K.; Zeng, X. Selective laser-induced preparation of metal-semiconductor nanocomposites and applications for enhanced photocatalytic performance in the degradation of organic pollutants. J. Alloy. Compd. 2021, 867, 159062. [Google Scholar] [CrossRef]
- Zeng, Q.; Yang, L.; Zhang, Q.; Cai, T.; Wang, Y.; Cao, Y.; Lv, J.; Xiong, Z.; Wu, S.; Oh, R. Shaddock peels derived multilayer biochar with embedded CoO@Co nanoparticles for peroxymonosulfate based wastewater treatment. Chemosphere 2023, 325, 138398. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Alade, I.O.; Alkanad, K.; Alnaggar, G.; Khan, A.; Khan, M.Y.; Elsayed, K.A.; Manda, A.A.; Onaizi, S.A. Fabrication of Z-scheme TiO2/BP/g-C3N4 nanocomposite via pulsed laser ablation in liquid for photocatalytic overall water splitting. Opt. Mater. 2022, 128, 112428. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Alade, I.O.; Alkanad, K.; Alnaggar, G.; Khan, A.; Khan, M.Y.; Elsayed, K.A.; Manda, A.A.; Hossain, M.K. WO3/BP/g-C3N4-based cauliflower nanocomposite fabricated by pulsed laser ablation for overall water splitting. Opt. Laser. Technol. 2022, 151, 108014. [Google Scholar] [CrossRef]
- Gholami, P.; Heidari, A.; Khataee, A.; Ritala, M. Oxygen and nitrogen plasma modification of ZnCuCo LDH-graphene nanocomposites for photocatalytic hydrogen production and antibiotic degradation. Sep. Purif. Technol. 2023, 325, 124706. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Bhatnagar, A.; Vahid, B. Synthesis of N-doped magnetic WO3-x@Mesoporous carbon using a diatom template and plasma modification: Visible-light-driven photocatalytic activities, ACS Appl. Mater. Interfaces. 2021, 13, 13072–13086. [Google Scholar] [CrossRef] [PubMed]
- Gholami, P.; Khataee, A.; Ritala, M. Template-free hierarchical trimetallic oxide photocatalytic derived from organically modified ZnCuCo layered double hydroxide. J. Clean. Prod. 2022, 366, 132761. [Google Scholar] [CrossRef]
- Sambyal, S.; Sharma, R.; Mandyal, P.; Balou, S.; Gholami, P.; Fang, B.; Shandilya, P.; Priye, A. Advancement in two-dimensional carbonaceous nanomaterials for photocatalytic water detoxification and energy conversion. J. Environ. Chem. Eng. 2023, 11, 109517. [Google Scholar] [CrossRef]
- Amendola, V.; Amans, D.; Ishikawa, Y.; Koshizaki, N.; Scirè, S.; Companini, G.; Reichenberger, S.; Barcikowski, S. Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chemistry. A Eur. J. 2020, 26, 9206–9242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gökce, B.; Notthoff, C.; Barcikowski, S. Layered seed-growth of AgGe football like microspheres via precursor-free picosecond laser synthesis in water. Sci. Rep. 2015, 5, 13661. [Google Scholar] [CrossRef]
- Sarkar, D.; Ghosh, C.K.; Mukherjee, S.; Chattopadhyay, K.K. Three dimensional Ag2O/TiO2 Type-Ⅱ (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces. 2013, 5, 331–337. [Google Scholar] [CrossRef]
- He, X.; Cai, Y.; Zhang, H.; Liang, C. Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem. 2011, 21, 475–480. [Google Scholar] [CrossRef]
- Forsythe, R.C.; Cox, C.P.; Wilsey, M.K.; Müller, A.M. Pulsed laser in liquids made nanomaterials for catalysis. Chem. Rev. 2021, 121, 7568–7637. [Google Scholar] [CrossRef] [PubMed]
- Theerthagiri, J.; Karuppasamy, K.; Lee, S.J.; Shwetharani, R.; Kim, H.S.; Pasha, S.K.K.; Ashokkumar, M.; Choi, M.Y. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light-Sci. Appl. 2022, 250, 11. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Tsuji, T.; Sakaki, S.; Koshizaki, N. Pulse laser melting in liquid for crystalline spherical submicrometer particle fabrication-Mechanism, progress control, and applications. Prog. Mater. Sci. 2023, 131, 101004. [Google Scholar] [CrossRef]
- Liu, N.; Sun, Z.; Zhang, H.; Klausen, L.H.; Moonhee, R.; Kang, S. Emerging high-ammonia-nitrogen wastewater remediation by biological treatment and photocatalysis techniques. Sci. Total. Environ. 2023, 875, 162603. [Google Scholar] [CrossRef]
- Zhao, Z.; Mao, J.; Lu, C.; Yang, S.; Qian, Q.; Chen, Q.; Xue, H.; Sun, X.; Yang, M. Design and fabrication of self-suspending aluminium-plastic/semiconductor photocatalyst devices for solar energy conversion. J. Environ. Sci. 2024, 136, 615–625. [Google Scholar] [CrossRef]
- Fazio, E.; Gökce, B.; Giacomo, A.D.; Meneghetti, M.; Compagnini, G.; Tommasini, M.; Waag, F.; Lucotti, A.; Zanchi, C.G.; Ossi, P.M.; et al. Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications. Nanomaterials 2020, 10, 2317. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Li, J.; Liu, K.; Tang, Y.; Li, X.; Zeng, X. Preparation of spherical silver and tin dioxide nanocomposites with the high photocatalytic performance by laser-induced deposition in liquid medium. J. Alloys Compd. 2022, 900, 163522. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, W.; Ren, L.; Wang, H.; Guo, P.; Yang, X.; Ye, Q.; Shchukin, D.; Du, Y.; Dou, S.; et al. Laser-generated supranano liquid metal as efficient electron mediator in hybrid perovskite solar cells. Adv. Mater. 2020, 2001571. [Google Scholar] [CrossRef]
- Takami, A.; Kurita, H.; Koda, S. Laser-induced size reduction of noble metal particles. J. Phys. Chem. B 1999, 103, 1226–1232. [Google Scholar] [CrossRef]
- Pyatenko, A.; Wang, H.; Koshizaki, N.; Tsuji, T. Mechanism of pulsed laser interaction with colloidal nanoparticles. Laser. Photonics. Rev. 2013, 7, 596–604. [Google Scholar] [CrossRef]
- Utami, M.; Wang, S.; Musawwa, M.M.; Purbaningtias, T.E.; Fitri, M.; Yuspita, I.; Abd-Elkader, O.H.; Yadav, K.K.; Ramanujam, G.M.; Bang, D.; et al. Simultaneous photocatalytic removal of organic dyes and heavy metals from textile wastewater over N-doped TiO2 on reduction graphene oxide. Chemosphere 2023, 332, 138882. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Zhou, R.; Li, G.; Li, X. Selective laser welding in liquid: A strategy for preparation of high-antibacterial activity nanozymes against Staphylococcus aureus. J. Adv. Res. 2023, 44, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zeshan, M.; Bhatti, I.A.; Mohsin, M.; Lqbal, M.; Amijed, N.; Nisar, J.; Almasoud, N.; Alomar, T.S. Remediation of pesticides using TiO2 based photocatalytic strategies: A review. Chemosphere 2022, 300, 134525. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, Y.; Zheng, H.; Li, H.; Zheng, Y.; Nan, J.; Ma, J.; Nagarajan, D.; Chang, J.S. Antibiotics degradation by advanced oxidations (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere 2023, 311, 136977. [Google Scholar] [CrossRef]
- Thanavel, M.; Bankole, P.O.; Selvam, R.; Govindwar, S.P.; Sadasivam, S.K. Synergistic effect of biological and advanced oxidation process treatment in the biodegradation of removal yellow RR dye. Sci. Rep. 2020, 10, 20234. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhu, Z.; Li, X.; Li, J.; Zhang, Q. Constructing a hybrid high-performance photocatalyst by selective laser precisely heating in nanoscale. Appl. Surf. Sci. 2022, 588, 152946. [Google Scholar] [CrossRef]
- Hassan, M.; Gondal, M.A.; Cevik, E.; Dastageer, M.A.; Baig, U.; Moqbel, R.A.; Qahtan, T.F.; Bozkurt, A.; Abass, N.A. Laser assisted authoring of cadmium sulfide nanospheres into tungsten oxide nanosheets for enhanced photocatalytic and electrochemical energy storage applications. Colloids. Surf. A 2021, 617, 126318. [Google Scholar] [CrossRef]
- Llyas, A.M.; Gondal, M.A.; Yamani, Z.H.; Baig, U. Facile synthesis of titanium dioxide-cadmium sulfide nanocomposite using pulsed laser ablation in liquid and its performance in photovoltaic and photocatalytic applications. Int. J. Energy Res. 2017, 41, 1435–1442. [Google Scholar]
- Lee, S.J.; Jung, H.J.; Koutavarapu, R.; Lee, S.H.; Arumugam, M.; Kim, J.H.; Choi, M.Y. ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Appl. Surf. Sci. 2019, 496, 143665. [Google Scholar] [CrossRef]
- Naik, S.S.; Lee, S.J.; Yeon, S.; Yu, Y.; Choi, M.Y. Pulsed laser-assisted synthesis of metal and nonmetal-codoped ZnO for efficient photocatalytic degradation of Rhodamine B under solar light irradiation. Chemosphere 2021, 274, 129782. [Google Scholar] [CrossRef]
- Balati, A.; Tek, S.; Nash, K.; Shipley, H. Nanoarchitecture of TiO2 microspheres with expanded lattice interlayers and its heterojunction to the laser modified black TiO2 using pulsed laser ablation in liquid with improved photocatalytic performance under visible light irradiation. J. Colloid. Interf. Sci. 2019, 541, 234–248. [Google Scholar] [CrossRef]
- Segura-Zavala, J.; Depablos-Rivera, O.; García-Fernández, T.; Bizarro, M.; García-Morales, R.E.; Sánche-Aké, C. Pulsed laser-induced dewetting to fabricate Au-Pd nanoparticles supported on ZnO films and its application for the photocatalytic degradation of indigo carmine. Thin. Solid. Films. 2023, 776, 139884. [Google Scholar] [CrossRef]
- Guo, J.; Chiou, Y.; Liang, W.; Liu, H.; Chen, Y.; Kuo, W.; Tsai, C.; Tsai, K.; Kuo, H.; Hsieh, W.; et al. Complex oxide-noble metal conjugated nanoparticles. Adv. Mater. 2013, 25, 2040–2044. [Google Scholar] [CrossRef] [PubMed]
- Revathy, T.A.; Dhanavel, S.; Sivaranjani, T.; Narayanan, V.; Maiyalagan, T.; Stephen, A. Highly active graphene-supported palladium-nickel alloy nanoparticles for catalytic reduction of 4-nitrophenol. Appl. Surf. Sci. 2018, 449, 764–771. [Google Scholar] [CrossRef]
- Kim, Y.; Ma, R.; Reddy, D.A.; Kim, T.K. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline. Appl. Surf. Sci. 2015, 357, 2112–2120. [Google Scholar] [CrossRef]
- Park, H.; Reddy, D.A.; Kim, Y.; Lee, S.; Ma, R.; Lim, M.; Kim, T.K. Hydrogeneration of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation. Appl. Surf. Sci. 2017, 401, 314–322. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, H.J.; Lee, S.J.; Theerthagiri, J.; Kim, T.H.; Choi, M.Y. Selective synthesis of Au and graphitic carbon-encapsulated Au (Au@GC) nanoparticles by pulsed laser ablation in solvent: Catalytic Au and acid-resistant Au@GC nanoparticles. Appl. Surf. Sci. 2020, 506, 145006. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Mwafy, E.A. Synthesis of ZnO and Au/ZnO core/shell nano-catalysts by pulsed laser ablation in different liquid media. J. Mater. Res. Technol. 2020, 9, 3241–3248. [Google Scholar] [CrossRef]
- Deng, C.; Shi, Z.; Yang, L.; Zhang, W.; Chen, C.; Miao, L.; Yang, X.; Wang, C.; Chen, L.; Peng, C. In situ lift-off InAs quantum dots by pulsed laser irradiation. Appl. Phys. Lett. 2018, 113, 083111. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Shimizu, Y.; Sasaki, T.; Koshizaki, N. Boron carbide spherical particles encapsulated in graphite prepared by pulsed laser irradiation of boron in liquid medium. Appl. Phys. Lett. 2007, 91, 161110. [Google Scholar] [CrossRef]
- Jasbi, N.E.; Solati, E.; Dorranian, D. Role of laser fluence in decoration of graphene nanosheets with TiO2 nanoparticles by pulsed laser ablation. J. Alloys Compd. 2021, 861, 157956. [Google Scholar] [CrossRef]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Liu, K.; Chen, M.; Peng, W.; Yang, Y.; Li, X. Laser fabricated carbon quantum dots in anti-solvent for highly efficient carbon-based perovskite solar cells. J. Colloid. Interf. Sci. 2021, 600, 691–700. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Y.; Li, Y.; Zhao, L.; Yang, C.; Cheng, D. Rapid analysis of content and particle sizes of aluminium inclusions in low and middle alloys steel by laser-induced breakdown spectroscopy. Spectrochim. Acta B 2020, 171, 105927. [Google Scholar] [CrossRef]
- Nagli, L.; Gaf, M. Combining laser-induced breakdown spectroscopy with molecular laser-induced fluorescence. Appl. Spectrosc. 2016, 70, 585–592. [Google Scholar] [CrossRef]
- Zhong, S.; Lu, Y.; Kong, W.; Cheng, K.; Zheng, R. Quantitative analysis of lead in aqueous solution by ultrasonic nebulizer assisted laser-induced breakdown spectroscopy. Front. Phys. 2016, 11, 114202. [Google Scholar] [CrossRef]
- Liu, K.; He, C.; Zhu, C.; Chen, J.; Zhan, K.; Li, X. A review of laser-induced breakdown spectroscopy for coal analysis. Trac-Trend. Anal. Chem. 2021, 143, 116357. [Google Scholar] [CrossRef]
- Yang, X.; Yi, R.; Li, X.; Cui, Z.; Lu, Y.; Hao, Z.; Huang, J.; Zhou, Z.; Yao, G.; Huang, W. Spreading a water droplet through filter paper on the metal substrate for surface-enhanced laser-induced breakdown spectroscopy. Opt. Express 2018, 26, 30456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, R.; Liu, K.; Li, Q.; Tang, Z.; Zhu, C.; Li, X.; Zeng, X.; He, C. Silicon determination in steel with radical emission using laser-induced breakdown spectroscopy combined with laser-induced radical fluorescence. J. Anal. Atom. Spectrom. 2021, 36, 375–379. [Google Scholar] [CrossRef]
Nanocomposite | Synthesis Method | Photocatalytic System | Performance | Reference |
---|---|---|---|---|
ZrS4-Znln2S4 | Hydrothermal | Tetracycline | 3-fold enhancement | [18] |
Ag/ZnO | Pulsed laser melting | Methylene blue dyes | 2-fold enhancement | [19] |
graphene/CoO@Co | Impregnation–calcination | Chlortetracycline hydrochloride | 100% removal ratio within 12 min | [20] |
TiO2/BP/g-C3N4 | Pulsed laser ablation | Water splitting | 5.4-fold enhancement | [21] |
WO3/BP/g-C3N4 | Pulsed laser ablation | Water splitting | 5.3-fold enhancement | [22] |
NLDH-NOG | Chemical approach | Hydrogen productionSA degradation | 4.5-fold enhancement1.9-fold enhancement | [23] |
DBS-ZnCuCo LDH | Hydrothermal method | Hydrogen production | 1.5-fold enhancement | [24] |
NM-WO3−x@MC | self-assembly | Hydrogen production | 5.2-fold enhancement | [25] |
Nanocomposite | Degradation System | Light Source | Performance | Reference |
---|---|---|---|---|
Ag/TiO2 | MB solution | λ ~ 200–600 nm | 2.53-fold enhancement | [46] |
WO3-nCdS | MB dyes | λ > 420 nm | 5.9-fold enhancement | [47] |
TiO2-nCdS | MO dyes | 500 W xenon lamp | 1.45-fold enhancement | [48] |
ZnO/Au@/Pd5 | MB dyes | 200 W xenon lamp | 5.4-fold enhancement | [49] |
ZnO: N/Ag | RhB dyes | 350–1000 nm | 6-fold enhancement | [50] |
LMB@-TiO2 | MB dyes | λ ~ 410–620 nm | 99% removal rate in 60 min | [51] |
Au/Pd/ZnO | IC dyes | 150 W solar lamp | 6.1-fold enhancement | [52] |
Au-SrTiO3 | RhB/MO dyes | λ > 420 nm | With superiority | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xiao, L.; Zheng, Z.; Yan, J.; Sun, L.; Huang, Z.; Li, X. A Review on Pulsed Laser Fabrication of Nanomaterials in Liquids for (Photo)catalytic Degradation of Organic Pollutants in the Water System. Nanomaterials 2023, 13, 2628. https://doi.org/10.3390/nano13192628
Li Y, Xiao L, Zheng Z, Yan J, Sun L, Huang Z, Li X. A Review on Pulsed Laser Fabrication of Nanomaterials in Liquids for (Photo)catalytic Degradation of Organic Pollutants in the Water System. Nanomaterials. 2023; 13(19):2628. https://doi.org/10.3390/nano13192628
Chicago/Turabian StyleLi, Yang, Liangfen Xiao, Zhong Zheng, Jiujiang Yan, Liang Sun, Zhijie Huang, and Xiangyou Li. 2023. "A Review on Pulsed Laser Fabrication of Nanomaterials in Liquids for (Photo)catalytic Degradation of Organic Pollutants in the Water System" Nanomaterials 13, no. 19: 2628. https://doi.org/10.3390/nano13192628
APA StyleLi, Y., Xiao, L., Zheng, Z., Yan, J., Sun, L., Huang, Z., & Li, X. (2023). A Review on Pulsed Laser Fabrication of Nanomaterials in Liquids for (Photo)catalytic Degradation of Organic Pollutants in the Water System. Nanomaterials, 13(19), 2628. https://doi.org/10.3390/nano13192628