Selective Area Epitaxy of Quasi-1-Dimensional Topological Nanostructures and Networks
Abstract
1. Introduction
2. Fabrication of Patterned Substrates and Growth Optimization of Planar Films
3. Selective Area Epitaxy
Challenges at Nanoscale
4. Growth Model
5. Optimization of Nanostructures
5.1. Multi-Dimensional Structures
5.2. Structural Characterization
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, L.; Kane, C.L.; Mele, E.J. Topological insulators in three dimensions. Phys. Rev. Lett. 2007, 98, 106803. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302. [Google Scholar] [CrossRef]
- Chen, Y.; Analytis, J.G.; Chu, J.-H.; Liu, Z.; Mo, S.-K.; Qi, X.-L.; Zhang, H.; Lu, D.; Dai, X.; Fang, Z. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Moore, J.E. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys. 2011, 2, 55–78. [Google Scholar] [CrossRef]
- Eschbach, M.; Młyńczak, E.; Kellner, J.; Kampmeier, J.; Lanius, M.; Neumann, E.; Weyrich, C.; Gehlmann, M.; Gospodarič, P.; Döring, S.; et al. Realization of a vertical topological p–n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures. Nat. Commun. 2015, 6, 8816. [Google Scholar] [CrossRef]
- Kellner, J.; Eschbach, M.; Kampmeier, J.; Lanius, M.; Młyńczak, E.; Mussler, G.; Holländer, B.; Plucinski, L.; Liebmann, M.; Grützmacher, D.; et al. Tuning the dirac point to the fermi level in the ternary topological insulator (Bi1−xSbx)2Te3. Appl. Phys. Lett. 2015, 107, 251603. [Google Scholar] [CrossRef]
- Plucinski, L.; Herdt, A.; Fahrendorf, S.; Bihlmayer, G.; Mussler, G.; Döring, S.; Kampmeier, J.; Matthes, F.; Bürgler, D.E.; Grützmacher, D.; et al. Electronic structure, surface morphology, and topologically protected surface states of Sb2Te3 thin films grown on si(111). J. Appl. Phys. 2013, 113, 053706. [Google Scholar] [CrossRef]
- Lüpke, F.; Eschbach, M.; Heider, T.; Lanius, M.; Schüffelgen, P.; Rosenbach, D.; von den Driesch, N.; Cherepanov, V.; Mussler, G.; Plucinski, L.; et al. Electrical resistance of individual defects at a topological insulator surface. Nat. Commun. 2017, 8, 15704. [Google Scholar] [CrossRef]
- Kong, D.; Randel, J.C.; Peng, H.; Cha, J.J.; Meister, S.; Lai, K.; Chen, Y.; Shen, Z.-X.; Manoharan, H.C.; Cui, Y. Topological insulator nanowires and nanoribbons. Nano Lett. 2010, 10, 329–333. [Google Scholar] [CrossRef]
- Saha, K.; Das, S.; Sengupta, K.; Sen, D. Spin-polarized stm spectra of dirac electrons on the surface of a topological insulator. Phys. Rev. B 2011, 84, 165439. [Google Scholar] [CrossRef]
- Borisova, S.; Krumrain, J.; Luysberg, M.; Mussler, G.; Grützmacher, D. Mode of growth of ultrathin topological insulator Bi2Te3 films on Si (111) substrates. Cryst. Growth Des. 2012, 12, 6098–6103. [Google Scholar] [CrossRef]
- Taskin, A.A.; Legg, H.F.; Yang, F.; Sasaki, S.; Kanai, Y.; Matsumoto, K.; Rosch, A.; Ando, Y. Planar hall effect from the surface of topological insulators. Nat. Commun. 2017, 8, 1340. [Google Scholar] [CrossRef]
- Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn. 2013, 82, 102001. [Google Scholar] [CrossRef]
- Breunig, O.; Ando, Y. Opportunities in topological insulator devices. Nat. Rev. Phys. 2022, 4, 184–193. [Google Scholar] [CrossRef]
- Kölzer, J.; Moors, K.; Jalil, A.R.; Zimmermann, E.; Rosenbach, D.; Kibkalo, L.; Schüffelgen, P.; Mussler, G.; Grützmacher, D.; Schmidt, T.L. In-plane magnetic field-driven symmetry breaking in topological insulator-based three-terminal junctions. Arxiv Prepr. 2020, arXiv:2012.15118. [Google Scholar] [CrossRef]
- Rosenbach, D.; Oellers, N.; Jalil, A.R.; Mikulics, M.; Kölzer, J.; Zimmermann, E.; Mussler, G.; Bunte, S.; Grützmacher, D.; Lüth, H.; et al. Quantum transport in topological surface states of selectively grown Bi2Te3 nanoribbons. Adv. Electron. Mater. 2020, 6, 2000205. [Google Scholar] [CrossRef]
- Frolov, S.M.; Manfra, M.J.; Sau, J.D. Topological superconductivity in hybrid devices. Nat. Phys. 2020, 16, 718–724. [Google Scholar] [CrossRef]
- Roushan, P.; Seo, J.; Parker, C.V.; Hor, Y.S.; Hsieh, D.; Qian, D.; Richardella, A.; Hasan, M.Z.; Cava, R.J.; Yazdani, A. Topological surface states protected from backscattering by chiral spin texture. Nature 2009, 460, 1106–1109. [Google Scholar] [CrossRef]
- Hyart, T.; van Heck, B.; Fulga, I.C.; Burrello, M.; Akhmerov, A.R.; Beenakker, C.W.J. Flux-controlled quantum computation with majorana fermions. Phys. Rev. B 2013, 88, 035121. [Google Scholar] [CrossRef]
- Alicea, J.; Oreg, Y.; Refael, G.; von Oppen, F.; Fisher, M.P.A. Non-abelian statistics and topological quantum information processing in 1d wire networks. Nat. Phys. 2011, 7, 412–417. [Google Scholar] [CrossRef]
- Oreg, Y.; von Oppen, F. Majorana zero modes in networks of cooper-pair boxes: Topologically ordered states and topological quantum computation. Annu. Rev. Condens. Matter Phys. 2020, 11, 397–420. [Google Scholar] [CrossRef]
- Karzig, T.; Knapp, C.; Lutchyn, R.M.; Bonderson, P.; Hastings, M.B.; Nayak, C.; Alicea, J.; Flensberg, K.; Plugge, S.; Oreg, Y.; et al. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with majorana zero modes. Phys. Rev. B 2017, 95, 235305. [Google Scholar] [CrossRef]
- Veldhorst, M.; Snelder, M.; Hoek, M.; Gang, T.; Guduru, V.K.; Wang, X.L.; Zeitler, U.; van der Wiel, W.G.; Golubov, A.A.; Hilgenkamp, H.; et al. Josephson supercurrent through a topological insulator surface state. Nat. Mater. 2012, 11, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Kurter, C.; Finck, A.D.K.; Hor, Y.S.; Van Harlingen, D.J. Evidence for an anomalous current–phase relation in topological insulator josephson junctions. Nat. Commun. 2015, 6, 7130. [Google Scholar] [CrossRef] [PubMed]
- Schüffelgen, P.; Rosenbach, D.; Li, C.; Schmitt, T.W.; Schleenvoigt, M.; Jalil, A.R.; Schmitt, S.; Kölzer, J.; Wang, M.; Bennemann, B.; et al. Selective area growth and stencil lithography for in situ fabricated quantum devices. Nat. Nanotechnol. 2019, 14, 825–831. [Google Scholar] [CrossRef]
- Williams, J.R.; Bestwick, A.J.; Gallagher, P.; Hong, S.S.; Cui, Y.; Bleich, A.S.; Analytis, J.G.; Fisher, I.R.; Goldhaber-Gordon, D. Unconventional josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 2012, 109, 056803. [Google Scholar] [CrossRef]
- Wiedenmann, J.; Bocquillon, E.; Deacon, R.S.; Hartinger, S.; Herrmann, O.; Klapwijk, T.M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C.; et al. 4π-periodic josephson supercurrent in hgte-based topological josephson junctions. Nat. Commun. 2016, 7, 10303. [Google Scholar] [CrossRef]
- Cha, J.J.; Koski, K.J.; Cui, Y. Topological insulator nanostructures. Phys. Status Solidi (RRL) Rapid Res. Lett. 2013, 7, 15–25. [Google Scholar] [CrossRef]
- Peng, H.; Lai, K.; Kong, D.; Meister, S.; Chen, Y.; Qi, X.-L.; Zhang, S.-C.; Shen, Z.-X.; Cui, Y. Aharonov–bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229. [Google Scholar] [CrossRef]
- Tang, H.; Liang, D.; Qiu, R.L.J.; Gao, X.P.A. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 2011, 5, 7510–7516. [Google Scholar] [CrossRef] [PubMed]
- Dang, W.; Peng, H.; Li, H.; Wang, P.; Liu, Z. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Venkatasubramanian, R.; Liu, C.; Pierce, J.; Yang, H.; Hasan, M.Z.; Wu, Y.; Chen, Y.P. Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition. Appl. Phys. Lett. 2012, 101, 162104. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, M.; Man, B.Y.; Jiang, S.Z.; Yang, C.; Chen, C.S.; Feng, D.J.; Bi, D.; Liu, F.Y.; Qiu, H.W.; et al. Facile fabrication of graphene-topological insulator Bi2Se3 hybrid dirac materials via chemical vapor deposition in se-rich conditions. CrystEngComm 2014, 16, 8941–8945. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Zheng, W.; Chen, Y.; Wu, D.; Dang, W.; Wang, K.; Peng, H.; Liu, Z. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Z.; Peng, H. A roadmap for controlled production of topological insulator nanostructures and thin films. Small 2015, 11, 3290. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Jiang, S.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Device applications of synthetic topological insulator nanostructures. Electronics 2018, 7, 225. [Google Scholar] [CrossRef]
- Ginley, T.; Wang, Y.; Law, S. Topological insulator film growth by molecular beam epitaxy: A review. Crystals 2016, 6, 154. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.-C.; He, K.; Jia, J.-F.; Xue, Q.-K. Molecular beam epitaxial growth of topological insulators. Adv. Mater. 2011, 23, 1162–1165. [Google Scholar] [CrossRef]
- He, L.; Kou, X.; Wang, K.L. Review of 3d topological insulator thin-film growth by molecular beam epitaxy and potential applications. Phys. Status Solidi (RRL) Rapid Res. Lett. 2013, 7, 50–63. [Google Scholar] [CrossRef]
- Mussler, G. Molecular-beam epitaxy of 3d topological insulator thin films and devices on si substrates. Phys. Status Solidi (B) 2021, 258, 2000007. [Google Scholar] [CrossRef]
- Volykhov, A.A.; Sánchez-Barriga, J.; Sirotina, A.P.; Neudachina, V.S.; Frolov, A.S.; Gerber, E.A.; Kataev, E.Y.; Senkovsky, B.; Khmelevsky, N.O.; Aksenenko, A.Y.; et al. Rapid surface oxidation of Sb2Te3 as indication for a universal trend in the chemical reactivity of tetradymite topological insulators. Chem. Mater. 2016, 28, 8916–8923. [Google Scholar] [CrossRef]
- Kong, D.; Cha, J.J.; Lai, K.; Peng, H.; Analytis, J.G.; Meister, S.; Chen, Y.; Zhang, H.-J.; Fisher, I.R.; Shen, Z.-X.; et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 2011, 5, 4698–4703. [Google Scholar] [CrossRef]
- Green, A.J.; Dey, S.; An, Y.Q.; O’Brien, B.; O’Mullane, S.; Thiel, B.; Diebold, A.C. Surface oxidation of the topological insulator Bi2Se3. J. Vac. Sci. Technol. A 2016, 34, 061403. [Google Scholar] [CrossRef]
- Thomas, C.R.; Vallon, M.K.; Frith, M.G.; Sezen, H.; Kushwaha, S.K.; Cava, R.J.; Schwartz, J.; Bernasek, S.L. Surface oxidation of Bi2(Te,Se)3 topological insulators depends on cleavage accuracy. Chem. Mater. 2016, 28, 35–39. [Google Scholar] [CrossRef]
- Ngabonziza, P.; Heimbuch, R.; de Jong, N.; Klaassen, R.A.; Stehno, M.P.; Snelder, M.; Solmaz, A.; Ramankutty, S.V.; Frantzeskakis, E.; van Heumen, E.; et al. In situ spectroscopy of intrinsic Bi2Te3 topological insulator thin films and impact of extrinsic defects. Phys. Rev. B 2015, 92, 035405. [Google Scholar] [CrossRef]
- Hwang, J.H.; Park, J.; Kwon, S.; Kim, J.S.; Park, J.Y. Role of oxidation on surface conductance of the topological insulator Bi2Te2Se. Surf. Sci. 2014, 630, 153–157. [Google Scholar] [CrossRef]
- Kölzer, J.; Rosenbach, D.; Weyrich, C.; Schmitt, T.W.; Schleenvoigt, M.; Jalil, A.R.; Schüffelgen, P.; Mussler, G.; Sacksteder Iv, V.E.; Grützmacher, D.; et al. Phase-coherent loops in selectively-grown topological insulator nanoribbons. Nanotechnology 2020, 31, 325001. [Google Scholar] [CrossRef]
- Kölzer, J.; Jalil, A.R.; Rosenbach, D.; Arndt, L.; Mussler, G.; Schüffelgen, P.; Grützmacher, D.; Lüth, H.; Schäpers, T. Supercurrent in bi4te3 topological material-based three-terminal junctions. Nanomaterials 2023, 13, 293. [Google Scholar] [CrossRef]
- Schmitt, T.W.; Connolly, M.R.; Schleenvoigt, M.; Liu, C.; Kennedy, O.; Chávez-Garcia, J.M.; Jalil, A.R.; Bennemann, B.; Trellenkamp, S.; Lentz, F.; et al. Integration of topological insulator josephson junctions in superconducting qubit circuits. Nano Lett. 2022, 22, 2595–2602. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, S.; Pendharkar, M.; Pennachio, D.J.; Markman, B.; Seas, M.; Koelling, S.; Verheijen, M.A.; Casparis, L.; Petersson, K.D.; et al. Selective-area chemical beam epitaxy of in-plane inas one-dimensional channels grown on inp(001), inp(111)b, and inp(011) surfaces. Phys. Rev. Mater. 2019, 3, 084606. [Google Scholar] [CrossRef]
- Seidl, J.; Gluschke, J.G.; Yuan, X.; Naureen, S.; Shahid, N.; Tan, H.H.; Jagadish, C.; Micolich, A.P.; Caroff, P. Regaining a spatial dimension: Mechanically transferrable two-dimensional inas nanofins grown by selective area epitaxy. Nano Lett. 2019, 19, 4666–4677. [Google Scholar] [CrossRef]
- Rieger, T.; Schäpers, T.; Grützmacher, D.; Lepsa, M.I. Crystal phase selective growth in gaas/inas core–shell nanowires. Cryst. Growth Des. 2014, 14, 1167–1174. [Google Scholar] [CrossRef]
- Aseev, P.; Wang, G.; Binci, L.; Singh, A.; Martí-Sánchez, S.; Botifoll, M.; Stek, L.J.; Bordin, A.; Watson, J.D.; Boekhout, F.; et al. Ballistic insb nanowires and networks via metal-sown selective area growth. Nano Lett. 2019, 19, 9102–9111. [Google Scholar] [CrossRef]
- Sedgwick, T.O.; Berkenblit, M.; Kuan, T.S. Low-temperature selective epitaxial growth of silicon at atmospheric pressure. Appl. Phys. Lett. 1989, 54, 2689–2691. [Google Scholar] [CrossRef]
- Goulding, M.R. The selective epitaxial growth of silicon. Mater. Sci. Eng. B 1993, 17, 47–67. [Google Scholar] [CrossRef]
- Claussen, S.; Balram, K.; Fei, E.; Kamins, T.; Harris, J.; Miller, D. Selective area growth of germanium and germanium/silicon-germanium quantum wells in silicon waveguides for on-chip optical interconnect applications. Opt. Mater. Express 2012, 2, 1336–1342. [Google Scholar] [CrossRef]
- Jung, Y.J.; Wei, B.; Vajtai, R.; Ajayan, P.M.; Homma, Y.; Prabhakaran, K.; Ogino, T. Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns. Nano Lett. 2003, 3, 561–564. [Google Scholar] [CrossRef]
- Gil-Lafon, E.; Napierala, J.; Castelluci, D.; Pimpinelli, A.; Cadoret, R.; Gérard, B. Selective growth of gaas by hvpe: Keys for accurate control of the growth morphologies. J. Cryst. Growth 2001, 222, 482–496. [Google Scholar] [CrossRef]
- Huo, Q.; Zhao, D.; Feng, J.; Weston, K.; Buratto, S.K.; Stucky, G.D.; Schacht, S.; Schüth, F. Room temperature growth of mesoporous silica fibers: A new high-surface-area optical waveguide. Adv. Mater. 1997, 9, 974–978. [Google Scholar] [CrossRef]
- Cereda, S.; Zipoli, F.; Bernasconi, M.; Miglio, L.; Montalenti, F. Thermal-hydrogen promoted selective desorption and enhanced mobility of adsorbed radicals in silicon film growth. Phys. Rev. Lett. 2008, 100, 046105. [Google Scholar] [CrossRef] [PubMed]
- Hersee, S.D.; Sun, X.; Wang, X. The controlled growth of gan nanowires. Nano Lett. 2006, 6, 1808–1811. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Kitamura, S.; Hiramatsu, K.; Sawaki, N. Selective growth of wurtzite gan and alxga1−xn on gan/sapphire substrates by metalorganic vapor phase epitaxy. J. Cryst. Growth 1994, 144, 133–140. [Google Scholar] [CrossRef]
- Lanius, M. Topological Insulating Tellurides: How to Tune Doping, Topology, and Dimensionality. Ph.D. Thesis, Universitätsbibliothek der RWTH Aachen, Aachen, Germany, 2018. [Google Scholar]
- Sinha, A.K.; Levinstein, H.J.; Smith, T.E. Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on si substrates. J. Appl. Phys. 1978, 49, 2423–2426. [Google Scholar] [CrossRef]
- Yoshioka, T.; Ando, T.; Shikida, M.; Sato, K. Tensile testing of SiO2 and Si3N4 films carried out on a silicon chip. Sens. Actuators A Phys. 2000, 82, 291–296. [Google Scholar] [CrossRef]
- Park, N.-M.; Kim, S.H.; Sung, G.Y.; Park, S.-J. Growth and size control of amorphous silicon quantum dots using SiH4/N2 plasma. Chem. Vap. Depos. 2002, 8, 254–256. [Google Scholar] [CrossRef]
- Liu, L.-H.; Michalak, D.J.; Chopra, T.P.; Pujari, S.P.; Cabrera, W.; Dick, D.; Veyan, J.-F.; Hourani, R.; Halls, M.D.; Zuilhof, H.; et al. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide—Selective functionalization of Si3N4 and SiO2. J. Phys. Condens. Matter 2016, 28, 094014. [Google Scholar] [CrossRef] [PubMed]
- Cartier, E.; Stathis, J.H.; Buchanan, D.A. Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen. Appl. Phys. Lett. 1993, 63, 1510–1512. [Google Scholar] [CrossRef]
- Jalil, A.R. Engineering Topological Superlattices and Their Epitaxial Integration in Selectively Grown HYBRID Nanostructures via Mbe; Halbleiter-Nanoelektronik, RWTH Aachen University: Aachen, Germany, 2022; p. 309. [Google Scholar]
- Luysberg, M.; Heggen, M.; Tillmann, K. Fei tecnai g2 f20. J. Large-Scale Res. Facil. JLSRF 2016, 2, A77. [Google Scholar] [CrossRef]
- Kovács, A.; Schierholz, R.; Tillmann, K. Fei titan g2 80-200 crewley. J. Large-Scale Res. Facil. JLSRF 2016, 2, A43. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalil, A.R.; Schüffelgen, P.; Valencia, H.; Schleenvoigt, M.; Ringkamp, C.; Mussler, G.; Luysberg, M.; Mayer, J.; Grützmacher, D. Selective Area Epitaxy of Quasi-1-Dimensional Topological Nanostructures and Networks. Nanomaterials 2023, 13, 354. https://doi.org/10.3390/nano13020354
Jalil AR, Schüffelgen P, Valencia H, Schleenvoigt M, Ringkamp C, Mussler G, Luysberg M, Mayer J, Grützmacher D. Selective Area Epitaxy of Quasi-1-Dimensional Topological Nanostructures and Networks. Nanomaterials. 2023; 13(2):354. https://doi.org/10.3390/nano13020354
Chicago/Turabian StyleJalil, Abdur Rehman, Peter Schüffelgen, Helen Valencia, Michael Schleenvoigt, Christoph Ringkamp, Gregor Mussler, Martina Luysberg, Joachim Mayer, and Detlev Grützmacher. 2023. "Selective Area Epitaxy of Quasi-1-Dimensional Topological Nanostructures and Networks" Nanomaterials 13, no. 2: 354. https://doi.org/10.3390/nano13020354
APA StyleJalil, A. R., Schüffelgen, P., Valencia, H., Schleenvoigt, M., Ringkamp, C., Mussler, G., Luysberg, M., Mayer, J., & Grützmacher, D. (2023). Selective Area Epitaxy of Quasi-1-Dimensional Topological Nanostructures and Networks. Nanomaterials, 13(2), 354. https://doi.org/10.3390/nano13020354