Emerging Mesoporous Polyacrylamide/Gelatin–Iron Lanthanum Oxide Nanohybrids towards the Antibiotic Drugs Removal from the Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Iron Lanthanum Oxide Nanoparticles
2.2. Synthesis of P-G-ILO Nanohybrid
2.3. Characterization
2.4. Design of Experiments for the Adsorption of DF
2.5. Isotherm Kinetic and Thermodynamic Study
3. Result and Discussion
3.1. Structural and Morphological Characterization
3.2. Variable Effects of the Adsorption Capacity of DF
3.3. Optimization of DF Adsorption Parameters
3.4. Mechanism of the Adsorption of DF Molecules onto the P-G-ILO Nanohybrid
3.5. Nonlinear Langmuir and Freundlich Isotherm Models
3.6. Nonlinear PFO Kinetic Models
3.7. Adsorption Thermodynamic of DF Removal
3.8. Regeneration and Reusability of the P-G-ILO Nanohybrid
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhary, P.; Bharagava, R.N.; Mishra, S.; Khan, N. Role of industries in water scarcity and its adverse effects on environment and human health. In Environmental Concerns and Sustainable Development; Springer: Singapore, 2020; pp. 235–256. [Google Scholar]
- Al-Khateeb, L.A.; Almοtiry, S.; Salama, M.A. Adsorption οf pharmaceutical pοllutants οntο grapheme nanοplatelets. Chem. Eng. J. 2014, 248, 191–199. [Google Scholar] [CrossRef]
- Yin, L.; Wang, B.; Yuan, H.; Deng, S.; Huang, J.; Wang, Y.; Yu, G. Pay special attention to the transformation products of PPCPs in environment. Emerg. Contam. 2017, 3, 69–75. [Google Scholar] [CrossRef]
- Patneedi, C.B.; Prasadu, K.D. Impact of pharmaceutical wastes on human life and environment. Rasayan J. Chem. 2015, 8, 67–70. [Google Scholar]
- Zhang, Y.; Geißen, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Akkouche, F.; Boudrahem, F.; Yahiaoui, I.; Vial, C.; Audonnet, F.; Aissani-Benissad, F. Cotton textile waste valorization for removal of tetracycline and paracetamol alone and in mixtures from aqueous solutions: Effects of H3PO4 as an oxidizing agent. Water Environ. Res. 2021, 93, 464–478. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed]
- Acero, J.L.; Benitez, F.J.; Real, F.J.; Teva, F. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chem. Eng. J. 2016, 289, 48–58. [Google Scholar] [CrossRef]
- Pan, B.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.; Zheng, S. Development of polymeric and polymer- based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 2009, 151, 19–29. [Google Scholar] [CrossRef]
- Samaddar, P.; Kumar, S.; Kim, K.H. Polymer hydrogels and their applications toward sorptive removal of potential aqueous pollutants. Polym. Rev. 2019, 59, 418–464. [Google Scholar] [CrossRef]
- Haraguchi, K.; Takehisa, T. Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 2002, 14, 1120–1124. [Google Scholar] [CrossRef]
- Binaeian, E.; Zadvarzi, S.B.; Yuan, D. Anionic dye uptake via composite using chitosan-polyacrylamide hydrogel as matrix containing TiO2 nanoparticles; comprehensive adsorption studies. Int. J. Biol. Macromol. 2020, 162, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Makhado, E.; Motshabi, B.R.; Allouss, D.; Ramohlola, K.E.; Modibane, K.D.; Hato, M.J.; Shaik, F.; Pandey, S. Development of a ghatti gum/poly (acrylic acid)/TiO2 hydrogel nanocomposite for malachite green adsorption from aqueous media: Statistical optimization using response surface methodology. Chemosphere 2022, 306, 135524. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.X.; Omer, A.M.; Hu, Z.H.; Wang, Y.G.; Yu, D.; Ouyang, X.K. Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan. Chemosphere 2019, 217, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Arotiba, O. Synthesis, characterization and adsorption studies of an acrylic acid-grafted sodium alginate-based TiO2 hydrogel nanocomposite. Adsorpt. Sci. Technol. 2018, 36, 458–477. [Google Scholar] [CrossRef]
- Hasan, I.; Bhatia, D.; Walia, S.; Singh, P. Removal of malachite green by polyacrylamide-g-chitosan γ-Fe2O3 nanocomposite-an application of central composite design. Groundw. Sustain. Dev. 2020, 11, 100378. [Google Scholar] [CrossRef]
- Lian, Z.; Li, Y.; Xian, H.; Ouyang, X.K.; Lu, Y.; Peng, X.; Hu, D. EDTA-functionalized magnetic chitosan oligosaccharide and carboxymethyl cellulose nanocomposite: Synthesis, characterization, and Pb (II) adsorption performance. Int. J. Biol. Macromol. 2020, 165, 591–600. [Google Scholar] [CrossRef]
- Kulal, P.; Badalamoole, V. Evaluation of gum ghatti-g-poly (itaconic acid) magnetite nanocomposite as an adsorbent material for water purification. Int. J. Biol. Macromol. 2021, 193, 2232–2242. [Google Scholar] [CrossRef]
- Bandgar, D.K.; Navale, S.T.; Naushad, M.; Mane, R.S.; Stadler, F.J.; Patil, V.B. Ultra-sensitive polyaniline–iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 2015, 5, 68964–68971. [Google Scholar] [CrossRef]
- Malini, M.; Thirumavalavan, M.; Yang, W.Y.; Lee, J.F.; Annadurai, G. A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. Int. J. Biol. Macromol. 2015, 80, 121–129. [Google Scholar] [CrossRef]
- Adithya, G.T.; Rangabhashiyam, S.; Sivasankari, C. Lanthanum iron binary oxide nanoparticles: As cost-effective fluoride adsorbent and oxygen gas sensor. Microchem. J. 2019, 148, 364–373. [Google Scholar] [CrossRef]
- Sharma, N.; Kushwaha, H.S.; Sharma, S.K.; Sachdev, K. Fabrication of LaFeO3 and rGO-LaFeO3 microspheres based gas sensors for detection of NO2 and CO. RSC Adv. 2020, 10, 1297–1308. [Google Scholar] [CrossRef]
- Tanwar, A.; Date, P.; Ottoor, D. ZnO NPs incorporated gelatin grafted polyacrylamide hydrogel nanocomposite for controlled release of ciprofloxacin. Colloid Interface Sci. Commun. 2021, 42, 100413. [Google Scholar] [CrossRef]
- Pandey, M.; Singh, M.; Wasnik, K.; Gupta, S.; Patra, S.; Gupta, P.S.; Pareek, D.; Chaitanya, N.S.N.; Maity, S.; Reddy, A.B.M.; et al. Targeted and enhanced antimicrobial inhibition of mesoporous ZnO–Ag2O/Ag, ZnO–CuO, and ZnO–SnO2 composite nanoparticles. ACS Omega 2021, 6, 31615–31631. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, E.; Ramukutty, S. Growth, morphology, spectral and thermal studies of gel grown diclofenac acid crystals. J. Cryst. Growth 2014, 389, 78–82. [Google Scholar] [CrossRef]
- Chang, S.S.; Clair, B.; Ruelle, J.; Beauchêne, J.; Di Renzo, F.; Quignard, F.; Zhao, G.-J.; Yamamoto, H.; Gril, J. Mesoporosity as a new parameter for understanding tension stress generation in trees. J. Exp. Bot. 2009, 60, 3023–3030. [Google Scholar] [CrossRef]
- Ahmad, K.; Shah, I.A.; Ali, S.; Khan, M.T.; Qureshi, M.B.A.; Shah, S.H.A.; Ali, A.; Rashid, W.; Gul, H.N. Synthesis and evaluation of Ca-doped ferrihydrite as a novel adsorbent for the efficient removal of fluoride. Environ. Sci. Pollut. Res. 2022, 29, 6375–6388. [Google Scholar] [CrossRef]
- Lv, Y.; Liang, Z.; Li, Y.; Chen, Y.; Liu, K.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Shi, Y.; et al. Efficient adsorption of diclofenac sodium in water by a novel functionalized cellulose aerogel. Environ. Res. 2021, 194, 110652. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Khan, S.A.; Siddiqui, M.F.; Khan, T.A. Ultrasonic-assisted synthesis of polyacrylamide/bentonite hydrogel nanocomposite for the sequestration of lead and cadmium from aqueous phase: Equilibrium, kinetics and thermodynamic studies. Ultrason. Sonchem. 2020, 60, 104761. [Google Scholar] [CrossRef]
- Phasuphan, W.; Praphairaksit, N.; Imyim, A. Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. J. Mol. Liq. 2019, 294, 111554. [Google Scholar] [CrossRef]
- Krajišnik, D.; Daković, A.; Malenović, A.; Milojević-Rakić, M.; Dondur, V.; Radulović, Ž.; Milić, J. Investigation of adsorption and release of diclofenac sodium by modified zeolites composites. Appl. Clay Sci. 2013, 83, 322–326. [Google Scholar] [CrossRef]
- Wei, H.; Deng, S.; Huang, Q.; Nie, Y.; Wang, B.; Huang, J.; Yu, G. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 2013, 47, 4139–4147. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, M.; Suresh, S.; Garg, A. Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: Adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics. Environ. Sci. Pollut. Res. 2018, 25, 32210–32220. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.; Esteves, V.I.; Guégan, R.; Crespo, J.S.; Fernandes, A.N.; Giovanela, M. Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem. Eng. J. 2012, 192, 114–121. [Google Scholar] [CrossRef]
- Jauris, I.M.; Matos, C.F.; Saucier, C.; Lima, E.C.; Zarbin, A.J.G.; Fagan, S.B.; Machado, F.M.; Zanella, I. Adsorption of sodium diclofenac on graphene: A combined experimental and theoretical study. Phys. Chem. Chem. Phys. 2016, 18, 1526–1536. [Google Scholar] [CrossRef]
- Dos Santos, J.M.; Pereira, C.R.; Foletto, E.L.; Dotto, G.L. Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption. Int. J. Biol. Macromol. 2019, 131, 301–308. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Upadhyay, S.N.; Weng, C.H. Studies on an economically viable remediation of chromium rich waters and wastewaters by PTPS fly ash. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 222–228. [Google Scholar] [CrossRef]
- Khan, T.A.; Khan, E.A. Adsorptive uptake of basic dyes from aqueous solution by novel brown linseed deoiled cake activated carbon: Equilibrium isotherms and dynamics. J. Environ. Chem. Eng. 2016, 4, 3084–3095. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J. Environ. Sci. Health A 1999, 34, 1179–1204. [Google Scholar] [CrossRef]
- Macías-García, A.; Corzo, M.G.; Domínguez, M.A.; Franco, M.A.; Naharro, J.M. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon. J. Hazard. Mater. 2017, 328, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 2020, 10, 15928. [Google Scholar] [CrossRef]
- Potgieter, J.H.; Pardesi, C.; Pearson, S. A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations. Environ. Geochem. Health 2021, 43, 2539–2550. [Google Scholar] [CrossRef]
- Geremew, B.; Zewde, D. Hagenia abyssinica leaf powder as a novel low-cost adsorbent for removal of methyl violet from aqueous solution: Optimization, isotherms, kinetics, and thermodynamic studies. Environ. Technol. Innov. 2022, 28, 102577. [Google Scholar] [CrossRef]
Variables | Unit | Factor | Range | ||
---|---|---|---|---|---|
−1 | 0 | +1 | |||
Concentration | (mg/L) | A | 50 | 75 | 100 |
pH | B | 2 | 6 | 10 | |
Time | (min) | C | 10 | 35 | 60 |
Dose | (g/L) | D | 0.4 | 0.9 | 1.4 |
Source | Adjusted Standard Dev. | Adjusted R-Squared | Predicted R-Squared | R-Squared | PRESS | Column4 |
---|---|---|---|---|---|---|
Linear | 22.608 | 0.864 | 0.842 | 0.782 | 20,471.64 | |
2FI | 16.83 | 0.942 | 0.912 | 0.850 | 14,024.17 | |
Quadratic | 6.169 | 0.993 | 0.988 | 0.961 | 3594.69 | Suggested |
Cubic | 2.56 | 0.999 | 0.997 | 0.879 | 11,353.64 | Aliased |
Sum of | Mean | F | p-Value | |||
---|---|---|---|---|---|---|
Source | Squares | df | Square | Value | Prob > F | |
Model | 93,485.03 | 14 | 6677.50 | 175.46 | <0.0001 | significant |
A—Concentration | 20,115.36 | 1 | 20,115.36 | 528.56 | <0.0001 | |
B—pH | 3289.14 | 1 | 3289.14 | 86.43 | <0.0001 | |
C—Time | 7.92 | 1 | 7.92 | 0.21 | 0.6548 | |
D—Dose | 57,864.89 | 1 | 57,864.89 | 1520.48 | <0.0001 | |
AB | 379.96 | 1 | 379.96 | 9.98 | 0.0065 | |
AC | 30.21 | 1 | 30.21 | 0.79 | 0.3870 | |
AD | 5689.98 | 1 | 5689.98 | 149.51 | <0.0001 | |
BC | 7.73 | 1 | 7.73 | 0.20 | 0.6586 | |
BD | 1275.51 | 1 | 1275.51 | 33.52 | <0.0001 | |
CD | 9.98 | 1 | 9.98 | 0.26 | 0.6161 | |
A2 | 0.068 | 1 | 0.068 | 1.774 × 10−3 | 0.9670 | |
B2 | 421.87 | 1 | 421.87 | 11.09 | 0.0046 | |
C2 | 32.34 | 1 | 32.34 | 0.85 | 0.3712 | |
D2 | 3296.04 | 1 | 3296.04 | 86.61 | <0.0001 | |
Residual | 570.85 | 15 | 38.06 | |||
Lack of Fit | 570.85 | 10 | 57.09 | |||
Pure Error | 0.000 | 5 | 0.000 | |||
Cor Total | 94,055.88 | 29 |
Adsorbent | qm | Isotherm/Kinetics | References |
---|---|---|---|
Chitosan-modified waste tire crumb rubber | 70 mg/g | Freundlich/pseudo second | [32] |
Chloride-modified zeolite | 31 mg/g | ---- | [33] |
Hexadecyltrimethylammonium bromide-modified zeolite | 43 mg/g | ---- | [33] |
Granular carbon nanotubes/alumina | 106.5 μmol/g | Langmuir | [34] |
Tea waste-derived activated carbon | 91 | Langmuir/pseudo second | [35] |
Commercial activated carbon | 76.98 mg/g | Freundlich/pseudo second | [36] |
Reduced graphene oxide | 59.67 mg/g | Liu isotherm | [37] |
ZnFe2O4/chitosan magnetic | 10 mg/g | BET multilayer model/pseudo second | [38] |
Temperature (K) | Langmuir | Freundlich | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Parameters | ||||||||
qm (mg/g) | B (L/mg) | RL | R2 | SEE | Kf (mg/g)(L/mg)1/n | 1/n | R2 | SEE | |
308 | 258 | 2.05 | 0.0048 | 0.977 | 7.25 | 165 | 0.268 | 0.981 | 6.52 |
303 | 256 | 1.78 | 0.0055 | 0.948 | 10.95 | 161 | 0.285 | 0.991 | 4.42 |
298 | 254 | 1.70 | 0.0058 | 0.928 | 12.84 | 153 | 0.289 | 0.982 | 6.30 |
Conc (mg/L) | k1 (1/min) | Pseudo First Order | Pseudo Second Order | |||||
---|---|---|---|---|---|---|---|---|
qe (cal) (mg/g) | SEE | R2 | k2 × 10−2 (g/mg min−1) | qe (cal) (mg/g) | SEE | R2 | ||
80 | 0.42 | 197 | 0.59 | 0.822 | 2.4 | 198 | 0.153 | 0.988 |
90 | 0.44 | 221 | 0.44 | 0.882 | 2.6 | 222 | 0.170 | 0.982 |
100 | 0.43 | 246 | 0.62 | 0.842 | 2.1 | 247 | 0.092 | 0.996 |
Adsorbate | Conc (mg/L) | ∆H° (kJ/mol) | ∆S° (kJ/mol K) | −∆G° (kJ/mol) | ||
---|---|---|---|---|---|---|
298 K | 303 K | 308 K | ||||
DCF | 80 | 14.2 | 0.085 | 11.2 | 11.6 | 12.0 |
90 | 21.8 | 0.107 | 10.2 | 10.7 | 11.3 | |
100 | 2.1 | 0.041 | 10.2 | 10.4 | 10.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parveen, N.; Alqahtani, F.O.; Alsulaim, G.M.; Alsharif, S.A.; Alnahdi, K.M.; Alali, H.A.; Ahmad, M.M.; Ansari, S.A. Emerging Mesoporous Polyacrylamide/Gelatin–Iron Lanthanum Oxide Nanohybrids towards the Antibiotic Drugs Removal from the Wastewater. Nanomaterials 2023, 13, 2835. https://doi.org/10.3390/nano13212835
Parveen N, Alqahtani FO, Alsulaim GM, Alsharif SA, Alnahdi KM, Alali HA, Ahmad MM, Ansari SA. Emerging Mesoporous Polyacrylamide/Gelatin–Iron Lanthanum Oxide Nanohybrids towards the Antibiotic Drugs Removal from the Wastewater. Nanomaterials. 2023; 13(21):2835. https://doi.org/10.3390/nano13212835
Chicago/Turabian StyleParveen, Nazish, Fatimah Othman Alqahtani, Ghayah M. Alsulaim, Shada A. Alsharif, Kholoud M. Alnahdi, Hasna Abdullah Alali, Mohamad M. Ahmad, and Sajid Ali Ansari. 2023. "Emerging Mesoporous Polyacrylamide/Gelatin–Iron Lanthanum Oxide Nanohybrids towards the Antibiotic Drugs Removal from the Wastewater" Nanomaterials 13, no. 21: 2835. https://doi.org/10.3390/nano13212835
APA StyleParveen, N., Alqahtani, F. O., Alsulaim, G. M., Alsharif, S. A., Alnahdi, K. M., Alali, H. A., Ahmad, M. M., & Ansari, S. A. (2023). Emerging Mesoporous Polyacrylamide/Gelatin–Iron Lanthanum Oxide Nanohybrids towards the Antibiotic Drugs Removal from the Wastewater. Nanomaterials, 13(21), 2835. https://doi.org/10.3390/nano13212835