Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,873)

Search Parameters:
Keywords = kinetic models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2705 KiB  
Article
A CFD Model for the Direct Coupling of the Combustion Process and Glass Melting Flow Simulation in Glass Furnaces
by Carlo Cravero, Davide Marsano and Gabriele Milanese
Energies 2025, 18(7), 1792; https://doi.org/10.3390/en18071792 (registering DOI) - 2 Apr 2025
Abstract
The objectives of reducing and increasing pollutant emissions during the glass production process also apply to the glass industry, meaning that the accurate modeling of a glass furnace is of critical strategic value. In the available literature, several CFD studies have proposed various [...] Read more.
The objectives of reducing and increasing pollutant emissions during the glass production process also apply to the glass industry, meaning that the accurate modeling of a glass furnace is of critical strategic value. In the available literature, several CFD studies have proposed various models with different levels of complexity. Two basic aspects are shared by the existing models, limiting their accuracy and their impact on furnace design: the combustion space is usually solved with reliance on simplified models (e.g., Flamelet and global kinetic mechanisms); and the glass tank is solved separately, using an iterative approach to couple two (or more) simulated domains. This work presents the development of an innovative CFD model to overcome these limitations and to perform accurate simulations of industrial glass furnaces. The reactive flow is solved using a reduced chemical kinetic mechanism and the EDC (eddy dissipation concept) turbulence–chemistry interaction model to properly reproduce the complex combustion development. The glass bath is solved as a laminar flow with the appropriate temperature-dependent glass properties. The two domains are simulated simultaneously and thermally coupled through an interface. This procedure allows for the more accurate calculation of the heat flow and the temperature distributions on the glass bath, accounting for their subsequent influence on the glass convective motions. The simulation of an existing glass furnace, along with selected comparisons with experimental data, are presented to demonstrate the validity of the proposed model. The developed model provides a contribution that allows us to advance the wider understanding of glass furnace dynamics. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
36 pages, 4875 KiB  
Article
Sustainable Removal of Basic Fuchsine and Methylene Blue Dyes Using Chicken Bone Biomass: Thermodynamics, Kinetics, and Insights from Experimental Studies and Decision Tree with Least Squares Boosting Predictive Modeling
by Assia Ouzani, Yamina Zouambia, Hamida Maachou, Mohamed Krea, Amine Aymen Assadi, Lotfi Khezami, Yacine Benguerba, Jie Zhang, Abdeltif Amrane, Walid Elfalleh and Hichem Tahraoui
Water 2025, 17(7), 1053; https://doi.org/10.3390/w17071053 (registering DOI) - 2 Apr 2025
Abstract
This study addresses the dual challenges of water pollution and waste management by exploring the valorization of chicken bone biomass in native (NBio) and calcined (CBio) forms as biosorbents for dye removal. Basic fuchsine (BF) and methylene blue (MB) were selected as model [...] Read more.
This study addresses the dual challenges of water pollution and waste management by exploring the valorization of chicken bone biomass in native (NBio) and calcined (CBio) forms as biosorbents for dye removal. Basic fuchsine (BF) and methylene blue (MB) were selected as model pollutants, and adsorption was assessed under varying operational conditions. Characterization using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) showed that calcination improved crystallinity, eliminated organic impurities, and increased surface area (247 m2/g for NBio vs. 370 m2/g for CBio). Adsorption tests revealed higher performance for CBio, with maximum adsorption capacities of 100 mg/g (BF) and 142.85 mg/g (MB) based on the Langmuir isotherm, while NBio with maximum adsorption capacities of 111 mg/g (BF) and 111.11 mg/g (MB) followed the Freundlich model. Adsorption kinetics indicated pseudo-second-order behavior, suggesting chemisorption. The possible interactions between dyes and the biosorbent are hydrogen bonding, electrostatic interactions, and Lewis acid–base interactions. Thermodynamic analysis highlighted exothermic behavior for NBio and endothermic, entropy-driven adsorption for CBio, with both processes being spontaneous. A decision tree with Least Squares Boosting (DT_LSBOOST) provided accurate predictions (R2 = 0.9999, RMSE < 0.003) by integrating key parameters. These findings promote chicken bone biomass as a cost-effective, sustainable biosorbent, offering promising potential in wastewater treatment and environmental remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 3242 KiB  
Article
Enhancing the Biosorption Capacity of Macrocystis pyrifera: Effects of Acid and Alkali Pretreatments on Recalcitrant Organic Pollutants Removal
by Magdalena Varas, Jorge Castro-Rojas, Loretto Contreras-Porcia, María Soledad Ureta-Zañartu, Elodie Blanco, Néstor Escalona, Edmundo Muñoz and Elizabeth Garrido-Ramírez
Int. J. Mol. Sci. 2025, 26(7), 3307; https://doi.org/10.3390/ijms26073307 (registering DOI) - 2 Apr 2025
Abstract
The effects of acid and alkali pretreatments on the physicochemical and textural properties of Macrocystis pyrifera were evaluated to assess its potential for removing recalcitrant organic pollutants from aquatic systems. Untreated (UB), acid-pretreated (ACPB), and alkali-pretreated (ALPB) seaweed biomass [...] Read more.
The effects of acid and alkali pretreatments on the physicochemical and textural properties of Macrocystis pyrifera were evaluated to assess its potential for removing recalcitrant organic pollutants from aquatic systems. Untreated (UB), acid-pretreated (ACPB), and alkali-pretreated (ALPB) seaweed biomass were characterized using SEM, FTIR-ATR, N2 adsorption–desorption, and potentiometric titrations. Adsorption isotherms and kinetic studies, using methylene blue (MB) as a model pollutant, were conducted to evaluate removal performance. All biosorbents exhibited Langmuir behavior, with maximum adsorption capacities of 333 mg g−1 (UB), 189 mg g−1 (ACPB), and 526 mg g−1 (ALPB). FTIR-ATR and SEM analyses revealed that alkali pretreatment increased the abundance of hydroxyl, carboxylate, and sulfonated functional groups on the seaweed cell walls, along with greater porosity and surface roughness, resulting in enhanced MB adsorption. In contrast, acid pretreatment increased the exposure of carboxylic, amine, and amide functional groups, reducing the electrostatic interactions. The adsorption energy values further supported this, while the intra-particle diffusion model indicated a two-step process involving MB diffusion onto the seaweed surface, followed by diffusion into internal pores. These findings highlight the potential application of Macrocystis pyrifera-based biosorbents in the treatment of wastewater containing recalcitrant organic pollutants. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

20 pages, 3420 KiB  
Article
The Effects of Chemically Modified Biochar on Biomethane Production from Glucose and Sugar Beet Pulp
by Julia K. Nowak, Joanna Rosik, Kacper Szadziński, Marvin T. Valentin, Katarzyna E. Kosiorowska, Andrzej Białowiec, Sylwia Stegenta-Dąbrowska and Kacper Świechowski
Materials 2025, 18(7), 1608; https://doi.org/10.3390/ma18071608 (registering DOI) - 2 Apr 2025
Abstract
The research aimed to study the effects of straw-derived biochar and two types of chemically modified biochar on biomethane production from glucose as a model substrate and sugar beet pulp as a real substrate. The biochar chemical modification with H3PO4 [...] Read more.
The research aimed to study the effects of straw-derived biochar and two types of chemically modified biochar on biomethane production from glucose as a model substrate and sugar beet pulp as a real substrate. The biochar chemical modification with H3PO4 acid and KOH base resulted in a change in biochar surface area properties and its functional group’s abundance and a decrease in biochar mass yield production. The anaerobic digestion process was performed in batch reactors kept at 37 °C for 20 days. The substrate-to-inoculum ratio by volatile solids was 0.5, while the mass of added biochar corresponded to 16 g·L−1. The results showed that neither the addition of biochar nor the chemically modified biochar had any positive effects on biomethane production or its kinetics in the case of both substrates. The highest methane production was found in reactors without biochar added, respectively, 385 and 324 mL·gVS−1 for glucose and sugar beet pulp. It is hypothesized that the anaerobic digestion process was performed under optimal conditions, and therefore, biochar could not enhance methane production. Additionally, biochar may have adsorbed some volatile fatty acids, making them less available to anaerobic microorganisms. Full article
Show Figures

Graphical abstract

15 pages, 2224 KiB  
Article
Fe3+ and Mn2+ Removal from Water Solutions by Clinoptilolite Zeolites as a Potential Treatment for Groundwater Wells
by William D. Arenhardt, Felipe Ketzer, João H. C. Wancura, Janaina Seraglio, Fabio L. Carasek, Guilherme Zin, Jean F. F. Calisto, Clovis A. Rodrigues, Alessandra C. de Meneses, José Vladimir Oliveira and Jacir Dal Magro
Processes 2025, 13(4), 1060; https://doi.org/10.3390/pr13041060 (registering DOI) - 2 Apr 2025
Viewed by 25
Abstract
This study presents data on the water quality of the Guarani Aquifer based on samples collected from distinct groundwater wells in the western region of Santa Catarina State, Brazil. Among the analyses performed, the results indicated the need for treatment to ensure suitability [...] Read more.
This study presents data on the water quality of the Guarani Aquifer based on samples collected from distinct groundwater wells in the western region of Santa Catarina State, Brazil. Among the analyses performed, the results indicated the need for treatment to ensure suitability for human consumption, particularly concerning Fe3+ and Mn2+ ions. Accordingly, natural (NCLIN) and activated clinoptilolite (ACLIN) zeolites were evaluated for ion removal from synthetic aqueous solutions through adsorption. NCLIN demonstrated excellent performance in adsorbing Fe3+ and Mn2+ ions, achieving removal efficiencies of over 98% and 95%, respectively, at a controlled pH of 6.0 (NCLIN) or 4.0 (ACLIN). A non-linear approach to modeling adsorption kinetics indicated that the pseudo-second-order model best represented the experimental data. This finding suggests that the interaction between the adsorbent and Fe3+ and Mn2+ ions occur through electron sharing and chemisorption. Equilibrium modeling analysis revealed that adsorption on NCLIN occurred in a monolayer, whereas adsorption on ACLIN followed a multilayer pattern. This behavior is attributed to the activation process with H2SO4, which led to dealumination and the formation of HSO3 groups on the adsorbent surface. Full article
(This article belongs to the Special Issue Advances in Wastewater and Solid Waste Treatment Processes)
Show Figures

Figure 1

12 pages, 234 KiB  
Review
Ultrafast Breast MRI: A Narrative Review
by Ottavia Battaglia, Filippo Pesapane, Silvia Penco, Giulia Signorelli, Valeria Dominelli, Luca Nicosia, Anna Carla Bozzini, Anna Rotili and Enrico Cassano
J. Pers. Med. 2025, 15(4), 142; https://doi.org/10.3390/jpm15040142 (registering DOI) - 2 Apr 2025
Viewed by 27
Abstract
Breast magnetic resonance imaging (MRI) is considered the most effective method for detecting breast cancer due to its high sensitivity. Yet multiple factors limit its widespread use, including high direct and indirect costs, a prolonged acquisition time with consequent patient discomfort, and a [...] Read more.
Breast magnetic resonance imaging (MRI) is considered the most effective method for detecting breast cancer due to its high sensitivity. Yet multiple factors limit its widespread use, including high direct and indirect costs, a prolonged acquisition time with consequent patient discomfort, and a lack of trained radiologists. During the last decade, new strategies have been followed to increase the availability of breast MRI, including the omission of non-essential sequences to generate abbreviated MRI protocols (AB-MRIs) aimed at reducing the acquisition time with the potential of improving the patient’s experience and accommodating a higher number of MRI examinations per day. An alternative method is ultrafast MRI (UF-MRI), a novel technique that gathers kinetic data within the first minute after contrast injection, offering high temporal resolution. This enables the analysis of early contrast wash-in curves, showing promising outcomes. In this study, we reviewed the role of UF-MRI in breast imaging and detailed how the integration of this new approach with radiomics and mathematical models might further improve diagnostic accuracy and even have a prognostic role, a fundamental characteristic in the modern scenarios of personalized medicine. In addition, possible clinical applications and advantages of UF-MRI will be discussed. Full article
15 pages, 2349 KiB  
Article
Novel mRNA-Engineered Fully Human CAR-T Cells Targeting AXL in Solid Tumors
by Bo Zou, Mengge Wang, Shimeng Bai, Ning Li, Zhongyi Fan, Yuanzheng Peng, Mingshu Han, Chen Zeng, Hongzhou Lu, Lin Qi, Xingding Zhang, Xiaohua Tan and Qibin Liao
Biomedicines 2025, 13(4), 844; https://doi.org/10.3390/biomedicines13040844 (registering DOI) - 1 Apr 2025
Viewed by 56
Abstract
Background/Objectives: The AXL receptor tyrosine kinase is a promising therapeutic target in solid tumors, yet conventional viral vector-engineered CAR-T cells face critical limitations, including risks of insertional mutagenesis and immunogenicity from murine-derived single-chain variable fragments (scFvs). This study aimed to develop and evaluate [...] Read more.
Background/Objectives: The AXL receptor tyrosine kinase is a promising therapeutic target in solid tumors, yet conventional viral vector-engineered CAR-T cells face critical limitations, including risks of insertional mutagenesis and immunogenicity from murine-derived single-chain variable fragments (scFvs). This study aimed to develop and evaluate mRNA-engineered fully human AXL CAR-T (mfhAXL CAR-T) cells as a safer, scalable alternative for solid tumor immunotherapy. Methods:mfhAXL CAR-T cells were generated via electroporation-mediated delivery of in vitro transcribed mRNA encoding a fully human AXL-specific CAR. CAR expression kinetics and T-cell viability were quantified by flow cytometry. Antitumor activity was assessed through in vitro co-cultures with AXL-positive lung and pancreatic cancer cells, measuring cytotoxicity, cytokine secretion, and specificity. In vivo efficacy was evaluated in a lung cancer xenograft mouse model, with tumor volume and body weight monitored over 14 days. Results: Flow cytometry confirmed transient but high CAR expression (>90% at 24 h) with preserved T-cell viability (>90%). In vitro, mfhAXL CAR-T cells exhibited dose-dependent cytotoxicity and antigen-specific cytokine secretion. In vivo, four administrations of mfhAXL CAR-T cells suppressed tumor growth without body weight loss. Conclusions: The mRNA-electroporated mfhAXL CAR-T platform enables cost-effective, large-scale production, offering a safer alternative to viral vector-based approaches by eliminating risks of insertional mutagenesis and immunogenicity. Full article
(This article belongs to the Special Issue Advances in CAR-T Cell Therapy)
Show Figures

Figure 1

25 pages, 5651 KiB  
Article
Kinetic and Thermodynamic Analysis of Fried Tilapia Fish Waste Pyrolysis for Biofuel Production
by Mohamed Koraiem M. Handawy, Ik-Tae Im, Gyo Woo Lee and Hamada Mohamed Abdelmotalib
Recycling 2025, 10(2), 61; https://doi.org/10.3390/recycling10020061 (registering DOI) - 1 Apr 2025
Viewed by 32
Abstract
Converting food waste into biofuel resources is considered a promising approach to address the rapid increase in energy demand, reduce dependence on fossil fuels, and decrease environmental hazards. In Egypt, large quantities of fried tilapia fish waste are produced in restaurants and households, [...] Read more.
Converting food waste into biofuel resources is considered a promising approach to address the rapid increase in energy demand, reduce dependence on fossil fuels, and decrease environmental hazards. In Egypt, large quantities of fried tilapia fish waste are produced in restaurants and households, posing challenges for proper waste management due to its decaying nature. The current study investigates the kinetic triplet and thermodynamic parameters of fried tilapia fish waste (FTFW) pyrolysis. Kinetic analysis was carried out using four iso-conversional models, Friedman, Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Starink, at heating rates of 10, 15, and 20 °C/min. The study findings indicate that FTFW decomposes within the temperature range of 382–407 °C. The estimated activation energy using the Friedman, FWO, KAS, and Starink methods ranged from 43.2 to 208.2, 31.3 to 148.3, 22.3 to 179.3, and 24.1 to 181.3 kJ/mol, respectively, with average values of 118.4, 96.7, 109.7, and 100.5 kJ/mol, respectively. The average enthalpy change determined using the Friedman, FWO, KAS, and Starink methods was 113.45, 91.78, 95.58, and 104.73 kJ/mol, respectively. The average values of Gibbs free energy change for the Friedman, KAS, FWO, and Starink, methods were 192.71, 171.04, 174.83, and 183.99 kJ/mol, respectively. Full article
Show Figures

Figure 1

21 pages, 6049 KiB  
Article
Sustainable Treatment of Amoxicillin-Contaminated Wastewater Using Fe2+/H2O2/AC: Performance, Stability, and Environmental Impact
by Sumita, Jibran Ali Ghumro, Jingzhen Su, Cong Li, Zhengming He and Jieming Yuan
Processes 2025, 13(4), 1054; https://doi.org/10.3390/pr13041054 - 1 Apr 2025
Viewed by 61
Abstract
This study investigates the activation mechanisms of hydrogen peroxide (H2O2) using iron-activated carbon (Fe2+/H2O2/AC) for the efficient degradation of amoxicillin (AM) in wastewater. The system achieved a high degradation efficiency of 90% under [...] Read more.
This study investigates the activation mechanisms of hydrogen peroxide (H2O2) using iron-activated carbon (Fe2+/H2O2/AC) for the efficient degradation of amoxicillin (AM) in wastewater. The system achieved a high degradation efficiency of 90% under alkaline conditions (pH 9), with singlet oxygen (1O2) and hydroxyl radicals (OH) identified as the dominant reactive species through scavenger experiments. High-performance liquid chromatography–mass spectrometry (HPLC-MS) analysis revealed degradation by-products and proposed reaction pathways, including the loss of amine groups, ring-opening oxidation, and bond cleavage. The structural and morphological properties of Fe2+/H2O2/AC were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) analysis. The BET surface area of Fe2+/H2O2/AC was determined to be 128.36 m2/g, with a mesoporous structure facilitating efficient mass transfer and adsorption. The system was systematically evaluated under varying conditions, including H2O2 concentration (25–250 mg/L), catalyst dosage (0.05–1.0 mg/L), and pH (3–10). Kinetic analysis revealed that the degradation process follows pseudo-second-order kinetics (R2 = 0.966), while adsorption isotherms were best described by the Langmuir model (R2 = 0.98). Ecotoxicity tests indicated that the degradation products are less harmful to aquatic organisms. The system demonstrated excellent stability over three consecutive cycles, highlighting its potential for long-term application in treating pharmaceutical-contaminated wastewater. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

33 pages, 4777 KiB  
Review
Biomass-Derived Syngas Chemical Looping Combustion Using Fluidizable Oxygen Carriers: A Review
by Hugo de Lasa and Nicolas Torres Brauer
Processes 2025, 13(4), 1053; https://doi.org/10.3390/pr13041053 - 1 Apr 2025
Viewed by 95
Abstract
This critical review evaluates chemical looping combustion using a syngas derived from gasified biomass (BMD Syngas). It is anticipated that establishing such a process will open new opportunities for CO2 sequestration and the use of highly concentrated CO2 in the manufacturing [...] Read more.
This critical review evaluates chemical looping combustion using a syngas derived from gasified biomass (BMD Syngas). It is anticipated that establishing such a process will open new opportunities for CO2 sequestration and the use of highly concentrated CO2 in the manufacturing and synthesis of fuels from entirely renewable feedstocks. This review focuses on the process conducted through using two interconnected fluidized bed units: a nickel oxide reduction unit (an endothermic Fuel Reactor) and a nickel oxidation unit (an exothermic Air Reactor). In this respect, a high-performance OC (HPOC) with Ni on a γ-Al2O3 fluidizable support (20wt% Ni, 1wt% Co, 5wt% La/γ-Al2O3) was developed at the CREC (Chemical Reactor Engineering Centre) of the University of Western Ontario, Canada. The HPOC was studied in a CREC Riser Simulator. The benefits of this mini-fluidized unit are that it can be operated at 2–40 s reaction times, 550–650 °C temperatures, 1.3–2.5 H2/CO ratios, and 0.5–1 biomass/syngas stoichiometric ratios, mimicking the conditions of industrial-scale CLC units. When using a syngas derived from biomass and the HPOC under these operating conditions, 90% CO, 92% H2, and 88% CH4 conversions, together with a 91% CO2 yield, were obtained. These results allowed the prediction of a 1.84–3.0 wt% (gO2 /gOC) oxygen transport capacity, with a 40–70% nickel oxide conversion. The experimental data acquired with the CREC Riser Simulator permitted the development of realistic kinetic models. The resulting kinetics were used in combination with Computational Particle Fluid Dynamics (CPFD) to demonstrate the operability of a large-scale industrial syngas CLC process in a downer fuel unit. In addition, these CPFD simulations were employed to corroborate that high CO2 yields are achievable in 12–15 m length downer fuel units. Full article
(This article belongs to the Special Issue Bioenergy Production from Biomass Feedstocks)
Show Figures

Graphical abstract

19 pages, 1891 KiB  
Article
Mathematical Modeling for Fermentation Systems: A Case Study in Probiotic Beer Production
by Pablo Javier Ruarte, Maria Jose Leiva Alaniz, Silvia Cristina Vergara, Maria Carla Groff, María Nadia Pantano, María Victoria Mestre, Gustavo Juan Eduardo Scaglia and Yolanda Paola Maturano
Fermentation 2025, 11(4), 184; https://doi.org/10.3390/fermentation11040184 - 1 Apr 2025
Viewed by 33
Abstract
The use of autochthonous yeast strains from viticultural environments represents a novel approach in the brewing industry. Probiotic-fermented beers have generated growing interest as they combine traditional brewing with the increasing demand for health-oriented functional beverages. The application of mathematical modeling to fermentation [...] Read more.
The use of autochthonous yeast strains from viticultural environments represents a novel approach in the brewing industry. Probiotic-fermented beers have generated growing interest as they combine traditional brewing with the increasing demand for health-oriented functional beverages. The application of mathematical modeling to fermentation kinetics becomes a crucial tool to adequately describe and subsequently improve the performance of functional beer fermentation. The Saccharomyces cerevisiae PB101 autochthonous yeast from San Juan (Argentina) was previously selected for its probiotic potential and its exceptional technological traits in beer wort production. It was subsequently used to ferment a Kölsch-style brewer’s wort in order to evaluate both its probiotic potential and its resistance to the human digestive system. The results showed a survival percentage of 73.49 ± 0.54 and 80.17 ± 3.73 in fermentations conducted in 2024 and 2025, respectively. These fermentation assays were used to explore kinetic microbial growth, ethanol production, and critical fermentation parameters. Traditional modeling approaches often fail to adequately capture the intricacies of probiotic fermentations, particularly lag phases associated with microbial adaptation and metabolite biosynthesis. To address these limitations, this study develops an innovative and simple modeling system for modeling probiotic beer fermentation by incorporating two state variables: total and dead cells. The dynamics of these two variables were modeled using either a First Order Plus Dead Time model or a logistic growth model. Furthermore, the modified Luedeking–Piret model was used to study the delay time that exists between the production of viable cells and ethanol. The proposed models demonstrate enhanced predictive accuracy and dependability, providing a solid foundation for optimizing fermentation processes and advancing the development of functional beverages with exceptional probiotic properties. Full article
Show Figures

Figure 1

24 pages, 1747 KiB  
Review
Application of Density Functional Theory to Molecular Engineering of Pharmaceutical Formulations
by Haoyue Guan, Huimin Sun and Xia Zhao
Int. J. Mol. Sci. 2025, 26(7), 3262; https://doi.org/10.3390/ijms26073262 - 1 Apr 2025
Viewed by 25
Abstract
This review systematically examines the pivotal applications of the Density Functional Theory (DFT) in drug formulation design, emphasizing its capability to elucidate molecular interaction mechanisms through quantum mechanical calculations. By solving the Kohn–Sham equations with precision up to 0.1 kcal/mol, DFT enables accurate [...] Read more.
This review systematically examines the pivotal applications of the Density Functional Theory (DFT) in drug formulation design, emphasizing its capability to elucidate molecular interaction mechanisms through quantum mechanical calculations. By solving the Kohn–Sham equations with precision up to 0.1 kcal/mol, DFT enables accurate electronic structure reconstruction, providing theoretical guidance for optimizing drug–excipient composite systems. In solid dosage forms, DFT clarifies the electronic driving forces governing active pharmaceutical ingredient (API)–excipient co-crystallization, predicting reactive sites and guiding stability-oriented co-crystal design. For nanodelivery systems, DFT optimizes carrier surface charge distribution through van der Waals interactions and π-π stacking energy calculations, thereby enhancing targeting efficiency. Furthermore, DFT combined with solvation models (e.g., COSMO) quantitatively evaluates polar environmental effects on drug release kinetics, delivering critical thermodynamic parameters (e.g., ΔG) for controlled-release formulation development. Notably, DFT-driven co-crystal thermodynamic analysis and pH-responsive release mechanism modeling substantially reduce experimental validation cycles. While DFT faces challenges in dynamic simulations of complex solvent environments, its integration with molecular mechanics and multiscale frameworks has achieved computational breakthroughs. This work offers interdisciplinary methodology support for accelerating data-driven formulation design. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

19 pages, 3736 KiB  
Article
Radiation and Combustion Effects of Hydrogen Enrichment on Biomethane Flames
by Francisco Elmo Lima Uchoa Filho, Helton Carlos Marques Sampaio, Claudecir Fernandes de Freitas Moura Júnior, Mona Lisa Moura de Oliveira, Jesse Van Griensven Thé, Paulo Alexandre Costa Rocha and André Valente Bueno
Processes 2025, 13(4), 1048; https://doi.org/10.3390/pr13041048 - 1 Apr 2025
Viewed by 91
Abstract
Hydrogen has been presented as a promising energy vector in decarbonized economies. Its singular properties can affect important aspects of industrial flames, such as the temperature, emissions, and radiative/convective energy transfer balance, thus requiring in-depth studies to optimize combustion processes using this fuel [...] Read more.
Hydrogen has been presented as a promising energy vector in decarbonized economies. Its singular properties can affect important aspects of industrial flames, such as the temperature, emissions, and radiative/convective energy transfer balance, thus requiring in-depth studies to optimize combustion processes using this fuel isolate or in combination with other renewable alternatives. This work aims to conduct a detailed numerical analysis of temperatures and gas emissions in the combustion of biomethane enriched with different proportions of hydrogen, with the intent to contribute to the understanding of the impacts of this natural gas surrogate on practical combustion applications. RANS k-ω and k-ϵ turbulence models were combined with the GRI Mech 3.0, San Diego, and USC mechanisms using the ANSYS-Fluent 2024-R2 softwareto evaluate its performance regarding flame prediction. The Moss–Brookes model was adopted to predict soot formation for the methane flames by solving transport equations for normalized radical nuclei concentration and the soot mass fraction. The Discrete Ordinates (DOs) method with gray band model was applied to solve the Radiation Transfer Equation (RTE). The results of the experiments and numerical simulations highlight the importance of carefully selecting turbulence and chemical kinetics models for an accurate representation of real-scale industrial burners. Relative mean errors of 1.5% and 6.0% were registered for temperature and pollutants predictions, respectively, with the USD kinetics scheme and k-omega turbulence model presenting the most accurate results. The operational impacts of hydrogen enrichment of biomethane flames were accessed for a practical combustion system. With 15% of hydrogen blending, the obtained results indicate a 73% penalty in CO emissions, an increase of 6% in NO emissions, and a 34 K flame temperature increase. Also, a reduction in flame radiation due to hydrogen enrichment was observed for hydrogen concentrations above 20%, a behavior that can affect practical combustion systems such as those in glass and other ceramics industries. Full article
(This article belongs to the Special Issue Biomass to Renewable Energy Processes, 2nd Edition)
Show Figures

Figure 1

20 pages, 3178 KiB  
Article
Progressive Conversion Model Applied to the Physical Activation of Activated Carbon from Palm Kernel Shells at the Pilot Scale in a Nichols Furnace and at the Industrial Scale in a Rotary Kiln
by Ernesto de la Torre, Alex S. Redrovan and Carlos F. Aragón-Tobar
Molecules 2025, 30(7), 1573; https://doi.org/10.3390/molecules30071573 - 31 Mar 2025
Viewed by 35
Abstract
Palm kernel shells, an abundant agro-industrial residue in countries like Ecuador, can be valorized through their conversion into activated carbon for industrial applications. This study investigates the physical activation of carbonized palm kernel shells using both a Nichols furnace at the pilot scale [...] Read more.
Palm kernel shells, an abundant agro-industrial residue in countries like Ecuador, can be valorized through their conversion into activated carbon for industrial applications. This study investigates the physical activation of carbonized palm kernel shells using both a Nichols furnace at the pilot scale and a rotary kiln at the industrial scale. The progressive conversion model was used to explain how the activation process works and to calculate the reaction rate constants for CO2 (krCO2) and H2O (krH2O). The experimental results demonstrated that activation in an H2O-rich atmosphere significantly enhanced porosity development and iodine index compared to CO2 alone. Additionally, the study confirmed that activation kinetics are primarily controlled by the chemical reaction rather than mass transport limitations, as indicated by the negligible effect of particle size on gasification rates. At 850 °C, the reaction rate constants were calculated to be krCO2 = 0.75 (mol·cm−3·s)−1 and krH2O = 8.91 (mol·cm−3·s)−1. The model’s predictions closely matched the experimental data, validating its applicability for process optimization at both the pilot and industrial scales. These findings provide valuable insights for improving the efficiency of activated carbon production from palm kernel shells in large-scale operations. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Figure 1

16 pages, 5931 KiB  
Article
Investigation and Determination of Kinetic Parameters of Sweeteners Based on Steviol Glycosides by Isoconversional Methods
by Naienne da Silva Santana, Sergio Neves Monteiro, Tatiana Carestiato da Silva and Michelle Gonçalves Mothé
Foods 2025, 14(7), 1233; https://doi.org/10.3390/foods14071233 - 31 Mar 2025
Viewed by 44
Abstract
In this study, the decomposition processes of tabletop sweeteners based on steviol glycosides were investigated to determine the kinetic parameters of activation energy (Ea) and the logarithm of the pre-exponential factor (ln A) based on the converted fraction (α). These parameters [...] Read more.
In this study, the decomposition processes of tabletop sweeteners based on steviol glycosides were investigated to determine the kinetic parameters of activation energy (Ea) and the logarithm of the pre-exponential factor (ln A) based on the converted fraction (α). These parameters were assessed using the Friedman and Ozawa–Flynn–Wall isoconversion methods with the NETZSCH Kinetics Neo software and the Model Free package. This study also aimed to explore the probable mechanism of the thermal decomposition of these materials. The thermal degradation of the samples was carried out in a temperature range of 150 to 400 °C under nitrogen flow, with heating rates of 5, 10, and 20 °C min−1. The results indicated that both stevioside and steviol glycoside (E3) samples require higher energy to initiate their decomposition. Furthermore, the samples based on steviol glycosides exhibited distinct probable decomposition mechanisms: a model of two consecutive reactions followed by two competitive reactions for stevioside (FnFnFnFn model), three consecutive stages for the steviol glycoside sample (FnCnFn model), two consecutive stages for the steviol glycoside + erythritol sample (FnCn model), and three consecutive stages for the steviol glycoside + xylitol sample (FnFnFn model). Full article
Show Figures

Figure 1

Back to TopTop