In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of CIS
2.3. Synthesis of Co-Pi/CIS Composites
2.4. Materials Characterization
2.5. Photocatalytic Performance Evaluation
2.6. Photoelectrochemical (PEC) Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.Y.; Li, X.; Li, J.Z.; Zhou, Y.J.; Sun, L.L.; Wang, H.Q.; Huo, P.W.; Ma, C.C.; Yan, Y.S. Fabricated 2D/2D CdIn2S4/N-rGO muti-heterostructure photocatalyst for enhanced photocatalytic activity. Carbon 2019, 152, 565–574. [Google Scholar] [CrossRef]
- Ran, J.R.; Zhang, J.; Yu, J.G.; Jaroniec, M.; Qiao, S.Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812. [Google Scholar] [CrossRef] [PubMed]
- Bhoi, Y.P.; Nayak, A.K.; Gouda, S.K.; Mishra, B.G. Photocatalytic mineralization of carbendazim pesticide by a visible light active novel type-II Bi2S3/BiFeO3 heterojunction photocatalyst. Catal. Commun. 2018, 114, 114–119. [Google Scholar] [CrossRef]
- Li, Z.Z.; Wang, S.J.; Xie, Y.; Yang, W.T.; Tao, B.; Lu, J.; Wu, J.X.; Qu, Y.; Zhou, W. Surface defects induced charge imbalance for boosting charge separation and solar-driven photocatalytic hydrogen evolution. J. Colloid. Interf. Sci. 2021, 596, 12–21. [Google Scholar] [CrossRef]
- Jiao, X.C.; Chen, Z.W.; Li, X.D.; Sun, Y.F.; Gao, S.; Yan, W.S.; Wang, C.M.; Zhang, Q.; Lin, Y.; Luo, Y.; et al. Defect-Mediated Electron-Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ding, C.M.; Zhu, J.; Qin, W.; Tao, X.P.; Fan, F.T.; Li, R.G.; Li, C. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. Angew. Chem. Int. Edit. 2020, 59, 9653–9658. [Google Scholar] [CrossRef]
- Wang, X.D.; Xu, Y.F.; Rao, H.S.; Xu, W.J.; Chen, H.Y.; Zhang, W.X.; Kuang, D.B.; Su, C.Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energ. Environ. Sci. 2016, 9, 1468–1475. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Shi, X.W.; Mao, L.; Dai, C.; Yang, P.; Zhang, J.Y.; Dong, F.Y.; Zheng, L.X.; Fujitsuka, M.; Zheng, H.J. Inert basal plane activation of two-dimensional ZnIn2S4 via Ni atom doping for enhanced co-catalyst free photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 13376–13384. [Google Scholar] [CrossRef]
- Li, Y.X.; Hou, Y.L.; Fu, Q.Y.; Peng, S.Q.; Hu, Y.H. Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl. Catal. B-Environ. 2017, 206, 726–733. [Google Scholar] [CrossRef]
- Cai, X.Y.; Zhu, M.S.; Elbanna, O.A.; Fujitsuka, M.; Kim, S.; Mao, L.; Zhang, J.Y.; Majima, T. Au Nanorod Photosensitized La2Ti2O7 Nanosteps: Successive Surface Heterojunctions Boosting Visible to Near-Infrared Photocatalytic H2 Evolution. ACS Catal. 2018, 8, 122–131. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, R.F.; Li, H.T.; Xu, Z.L.; Dai, H.; Gao, H.; Yu, H.J.; Wang, Z.Y.; Wang, Y.; Liu, Y.; et al. Boosting visible light photocatalysis in an Au@TiO2 yolk-in-shell nanohybrid. Appl. Catal. B-Environ. 2022, 303, 120869. [Google Scholar] [CrossRef]
- Du, R.F.; Li, B.Y.; Han, X.; Xiao, K.; Wang, X.; Zhang, C.Q.; Arbiol, J.; Cabot, A. 2D/2D Heterojunction of TiO2 Nanoparticles and Ultrathin G-C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials 2022, 12, 1557. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Q.; Huang, S.L.; Long, Y.J.; Wu, J.H.; Li, H.; Li, Z.; Zeng, Y.J.; Ruan, S.C. Fabrication of ZnO/Red Phosphorus Heterostructure for Effective Photocatalytic H2 Evolution from Water Splitting. Nanomaterials 2018, 8, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.Y.; Zeng, Z.T.; Liu, Y.D.; Li, Z.H.; Gu, X.Q.; Zhao, Y.L.; Mao, L.; Zhang, J.Y. Visible-light-driven water splitting by yolk-shelled ZnIn2S4-based heterostructure without noble-metal co-catalyst and sacrificial agent. Appl. Catal. B-Environ. 2021, 297, 120391. [Google Scholar] [CrossRef]
- Mao, L.; Cai, X.Y.; Zhu, M.S. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Metals 2021, 40, 1067–1076. [Google Scholar] [CrossRef]
- Ran, J.R.; Zhang, H.P.; Fu, S.J.; Jaroniec, M.; Shan, J.Q.; Xia, B.Q.; Qu, Y.; Qu, J.T.; Chen, S.M.; Song, L.; et al. NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nat. Commun. 2022, 13, 4600. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. PbS nanostructures: A Review of recent advances. Mater. Today Sustain. 2023, 100305. [Google Scholar] [CrossRef]
- Zhao, D.M.; Wang, Y.Q.; Dong, C.L.; Huang, Y.C.; Chen, J.; Xue, F.; Shen, S.H.; Guo, L.J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397. [Google Scholar] [CrossRef]
- Yang, S.B.; Gong, Y.J.; Zhang, J.S.; Zhan, L.; Ma, L.L.; Fang, Z.Y.; Vajtai, R.; Wang, X.C.; Ajayan, P.M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Adv. Mater. 2013, 25, 2452–2456. [Google Scholar] [CrossRef]
- Meng, A.Y.; Zhang, L.Y.; Cheng, B.; Yu, J.G. Dual Cocatalysts in TiO2 Photocatalysis. Adv. Mater. 2019, 31, 1807660. [Google Scholar] [CrossRef] [PubMed]
- Reli, M.; Svoboda, L.; Sihor, M.; Troppova, I.; Pavlovsky, J.; Praus, P.; Koci, K. Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. R 2018, 25, 34839–34850. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Huang, T.; Hua, Y.X.; Liu, T.Y.; Liu, X.H.; Chen, S.M. Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity. J. Hazard Mater. 2016, 320, 529–538. [Google Scholar] [CrossRef]
- Pei, C.Y.; Chen, Y.G.; Wang, L.; Chen, W.; Huang, G.B. Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation. Appl. Surf. Sci. 2021, 535, 147682. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, R.T.; Zhang, Z.W.; Hong, L.F.; Ji, X.Y.; Lin, Z.D.; Pan, W.G. Cd0.5Zn0.5S Quantum Dot-Modified CdIn2S4 Nano-octahedron as the 0D/3D Hybrid Heterojunction for CO2 Photoreduction. Energy Fuel 2021, 35, 13291–13303. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts 2022, 12, 1316. [Google Scholar] [CrossRef]
- Li, Q.; Xia, Y.; Yang, C.; Lv, K.L.; Lei, M.; Li, M. Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis. Chem. Eng. J. 2018, 349, 287–296. [Google Scholar] [CrossRef]
- Lu, C.; You, D.; Li, J.; Wen, L.; Li, B.; Guo, T.; Lou, Z. Full-spectrum nonmetallic plasmonic carriers for efficient isopropanol dehydration. Nat. Commun. 2022, 13, 6984. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Danish, M.; Alam, U.; Zafar, S.; Muneer, M. Facile Synthesis of a Z-Scheme ZnIn2S4/MoO3 Heterojunction with Enhanced Photocatalytic Activity under Visible Light Irradiation. ACS Omega 2020, 5, 8188–8199. [Google Scholar] [CrossRef]
- Yin, H.F.; Yuan, C.Y.; Lv, H.J.; He, X.L.; Liao, C.; Liu, X.H.; Zhang, Y.Z. Construction of Electrostatic Self-Assembled 2D/2D CdIn2S4/g-C3N4 Heterojunctions for Efficient Visible-Light-Responsive Molecular Oxygen Activation. Nanomaterials 2021, 11, 2342. [Google Scholar] [CrossRef] [PubMed]
- Kale, S.B.; Kalubarme, R.S.; Mahadadalkar, M.A.; Jadhav, H.S.; Bhirud, A.P.; Ambekar, J.D.; Park, C.J.; Kale, B.B. Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: Their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 31850–31861. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.T.; Ye, Z.J.; Wei, L.; Yuan, J.; Xiao, L.H. Shining at the Tips: Anisotropic Deposition of Pt Nanoparticles Boosting Hot Carrier Utilization for Plasmon-Driven Photocatalysis. J. Am. Chem. Soc. 2022, 144, 12842–12849. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.B.; Fu, X.B.; You, X.M.; Zhao, E.; Li, F.F.; Chen, Z.P.; Li, Y.X.; Wang, X.L.; Yao, Y.F. Synergistic Promotion of Single-Atom Co Surrounding a PtCo Alloy Based On a g-C3N4 Nanosheet for Overall Water Splitting. ACS Catal. 2022, 12, 6958–6967. [Google Scholar] [CrossRef]
- Qin, Y.; Wen, J.; Zheng, L.R.; Yan, H.Y.; Jiao, L.; Wang, X.S.; Cai, X.L.; Wu, Y.; Chen, G.J.; Chen, L.J.; et al. Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Lett. 2021, 21, 1879–1887. [Google Scholar] [CrossRef]
- Ma, X.; Li, W.; Ren, C.; Dong, M.; Geng, L.; Fan, H.; Li, Y.; Qiu, H.; Wang, T. Construction of novel noble-metal-free MoP/CdIn2S4 heterojunction photocatalysts: Effective carrier separation, accelerating dynamically H2 release and increased active sites for enhanced photocatalytic H2 evolution. J. Colloid. Interface Sci. 2022, 628, 368–377. [Google Scholar] [CrossRef]
- Li, C.X.; Zhao, Y.D.; Liu, X.T.; Huo, P.W.; Yan, Y.S.; Wang, L.L.; Liao, G.F.; Liu, C.B. Interface engineering of Co9S8/CdIn2S4 ohmic junction for efficient photocatalytic H2 evolution under visible light. J. Colloid. Interf. Sci. 2021, 600, 794–803. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Bu, Y.Y.; Wang, L.; Ao, J.P. Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting: A review. Green Energy Environ. 2021, 6, 479–495. [Google Scholar] [CrossRef]
- Chu, W.B.; Saidi, W.A.; Zheng, Q.J.; Xie, Y.; Lan, Z.G.; Prezhdo, O.V.; Petek, H.; Zhao, J. Ultrafast Dynamics of Photongenerated Holes at a CH3OH/TiO2 Rutile Interface. J. Am. Chem. Soc. 2016, 138, 13740–13749. [Google Scholar] [CrossRef]
- Kanan, M.W.; Nocera, D.G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075. [Google Scholar] [CrossRef]
- Surendranath, Y.; Kanan, M.W.; Nocera, D.G. Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Han, C.C.; Xiao, X.L.; Guo, L.L. In situ synthesis of cobalt-phosphate (Co-Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities. Appl. Catal. B-Environ. 2013, 142, 414–422. [Google Scholar] [CrossRef]
- Jiang, R.Q.; Mao, L.; Zhao, Y.L.; Zhang, J.Y.; Cai, X.Y.; Gu, X.Q. Spatial carrier separation in cobalt phosphate deposited ZnIn2S4 nanosheets for efficient photocatalytic hydrogen evolution. J. Colloid. Interf. Sci. 2022, 606, 317–327. [Google Scholar] [CrossRef]
- Bariki, R.; Majhi, D.; Das, K.; Behera, A.; Mishra, B.G. Facile synthesis and photocatalytic efficacy of UiO-66/CdIn2S4 nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution. Appl. Catal. B-Environ. 2020, 270, 118882. [Google Scholar] [CrossRef]
- Liang, M.X.; Zhang, Z.S.; Long, R.; Wang, Y.; Yu, Y.J.; Pei, Y.S. Design of a Z-scheme g-C3N4/CQDs/CdIn2S4 composite for efficient visible-light-driven photocatalytic degradation of ibuprofen. Environ. Pollut. 2020, 259, 113770. [Google Scholar] [CrossRef]
- Liu, C.Y.; Li, X.; Li, J.Z.; Sun, L.L.; Zhou, Y.J.; Guan, J.R.; Wang, H.Q.; Huo, P.W.; Ma, C.C.; Yan, Y.S. Carbon dots modifying sphere-flower CdIn2S4 on N-rGO sheet muti-dimensional photocatalyst for efficient visible degradation of 2,4-dichlorophenol. J. Taiwan Inst. Chem. E 2019, 99, 142–153. [Google Scholar] [CrossRef]
- Fu, R.; Gong, Y.Y.; Li, C.; Niu, L.Y.; Liu, X.J. CdIn2S4/In(OH)3/NiCr-LDH Multi-Interface Heterostructure Photocatalyst for Enhanced Photocatalytic H2 Evolution and Cr(VI) Reduction. Nanomaterials 2021, 11, 3112. [Google Scholar] [CrossRef]
- Meng, A.; Yuan, X.C.; Shen, T.; Zhao, J.; Song, G.Y.; Lin, Y.S.; Li, Z.J. Amorphous nickel sulfide nanoparticles anchored on N-doped graphene nanotubes with superior properties for high-performance supercapacitors and efficient oxygen evolution reaction. Nanoscale 2020, 12, 4655–4666. [Google Scholar] [CrossRef]
- Reddy, D.A.; Kim, Y.; Shim, H.S.; Reddy, K.A.J.; Gopannagari, M.; Kumar, D.P.; Song, J.K.; Kim, T.K. Significant Improvements on BiVO4@CoPi Photoanode Solar Water Splitting Performance by Extending Visible-Light Harvesting Capacity and Charge Carrier Transportation. ACS Appl. Energ. Mater. 2020, 3, 4474–4483. [Google Scholar] [CrossRef]
- Tian, Q.Y.; Wu, W.; Liu, J.; Wu, Z.H.; Yao, W.J.; Ding, J.; Jiang, C.Z. Dimensional heterostructures of 1D CdS/2D ZnIn2S4 composited with 2D graphene: Designed synthesis and superior photocatalytic performance. Dalton Trans. 2017, 46, 2770–2777. [Google Scholar] [CrossRef]
- Di, T.M.; Zhu, B.C.; Zhang, J.; Cheng, B.; Yu, J.G. Enhanced photocatalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst. Appl. Surf. Sci. 2016, 389, 775–782. [Google Scholar] [CrossRef]
- Lei, W.; Wang, F.; Pan, X.; Ye, Z.; Lu, B. Z-scheme MoO3-2D SnS nanosheets heterojunction assisted g-C3N4 composite for enhanced photocatalytic hydrogen evolutions. Int. J. Hydrogen Energy 2022, 47, 10877–10890. [Google Scholar] [CrossRef]
- Fang, H.; Cai, J.; Li, H.; Wang, J.; Li, Y.; Zhou, W.; Mao, K.; Xu, Q. Fabrication of Ultrathin Two-Dimensional/Two-Dimensional MoS2/ZnIn2S4 Hybrid Nanosheets for Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2022, 5, 8232–8240. [Google Scholar] [CrossRef]
- Yendrapati, T.P.; Soumya, J.; Bojja, S.; Pal, U. Robust Co9S8@CdIn2S4 Cage for Efficient Photocatalytic H2 Evolution. J. Phys. Chem. C 2021, 125, 5099–5109. [Google Scholar] [CrossRef]
- Wang, T.; Chai, Y.; Ma, D.; Chen, W.; Zheng, W.; Huang, S. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699–2711. [Google Scholar] [CrossRef]
- Ding, J.J.; Li, X.Y.; Chen, L.; Zhang, X.; Sun, S.; Bao, J.; Gao, C.; Tian, X.Y. Au-Pt alloy nanoparticles site-selectively deposited on CaIn2S4 nanosteps as efficient photocatalysts for hydrogen production. J. Mater. Chem. A 2016, 4, 12630–12637. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Zhao, Q.; Song, Z.K.; Ma, L.; Chen, X.B.; Ding, S.J.; Zhou, L. WO3–x/PbS/Au Ternary Heterojunction Nanostructures for Visible-Light-Driven Photocatalytic Hydrogen Generation. ACS Appl. Nano Mater. 2022, 5, 16440–16450. [Google Scholar] [CrossRef]
- Wu, K.; Mao, L.; Gu, X.; Cai, X.; Zhao, Y. Efficient charge separation in hierarchical NiS@ZnIn2S4 hollow nanospheres for photocatalytic water splitting. Chin. Chem. Lett. 2022, 33, 926–929. [Google Scholar] [CrossRef]
- Guo, J.L.; Liang, Y.H.; Liu, L.; Hu, J.S.; Wang, H.; An, W.J.; Cui, W.Q. Core-shell structure of sulphur vacancies-CdS@CuS: Enhanced photocatalytic hydrogen generation activity based on photoinduced interfacial charge transfer. J. Colloid. Interf. Sci. 2021, 600, 138–149. [Google Scholar] [CrossRef]
- Shi, X.W.; Mao, L.; Yang, P.; Zheng, H.J.; Fujitsuka, M.; Zhang, J.Y.; Majima, T. Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2020, 265, 118616. [Google Scholar] [CrossRef]
Photocatalyst | Condition | Rate (mmol g−1 h−1) | AQE (%) | Ref. |
---|---|---|---|---|
Co-Pi/CIS | Methanol (λ > 420 nm) | 7.28 | 14.08 | this work |
SnS/g-C3N4 | lactic acid (Solar-simulator) | 0.82 | 0.55 | [52] |
MoS2/ZnIn2S4 | TEOA (λ > 420 nm) | 0.22 | 11.8 | [53] |
Co9S8@CdIn2S4 | Na2S and Na2SO3 (Solar-simulator) | 4.64 | 13.59 | [54] |
CdS/CdIn2S4 | Na2S and Na2SO3 (λ > 420 nm) | 0.82 | / | [55] |
Au@CaIn2S4 | Na2S and Na2SO3 (λ > 420 nm) | 4.54 | / | [56] |
MoP/CdIn2S4 | lactic acid (λ > 420 nm) | 0.29 | 0.32 | [36] |
WO3−x/PbS | Na2S and Na2SO3 (λ > 420 nm) | 0.64 | 1.5 | [57] |
NiS/ZnIn2S4 | Na2S and Na2SO3 (λ > 420 nm) | 3.65 | 0.65 | [58] |
CdS-SV@CuS | Lactic acid (λ > 420 nm) | 1.65 | 6.51 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, Q.; Sui, D.; Jiang, W.; Liu, F.; Gu, X.; Zhao, Y.; Ying, P.; Mao, L.; Cai, X.; et al. In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution. Nanomaterials 2023, 13, 420. https://doi.org/10.3390/nano13030420
Xu J, Li Q, Sui D, Jiang W, Liu F, Gu X, Zhao Y, Ying P, Mao L, Cai X, et al. In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution. Nanomaterials. 2023; 13(3):420. https://doi.org/10.3390/nano13030420
Chicago/Turabian StyleXu, Jiachen, Qinran Li, Dejian Sui, Wei Jiang, Fengqi Liu, Xiuquan Gu, Yulong Zhao, Pengzhan Ying, Liang Mao, Xiaoyan Cai, and et al. 2023. "In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution" Nanomaterials 13, no. 3: 420. https://doi.org/10.3390/nano13030420
APA StyleXu, J., Li, Q., Sui, D., Jiang, W., Liu, F., Gu, X., Zhao, Y., Ying, P., Mao, L., Cai, X., & Zhang, J. (2023). In Situ Photodeposition of Cobalt Phosphate (CoHxPOy) on CdIn2S4 Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution. Nanomaterials, 13(3), 420. https://doi.org/10.3390/nano13030420