Enhanced Field Emission and Low-Pressure Hydrogen Sensing Properties from Al–N-Co-Doped ZnO Nanorods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ZnO Seed Films
2.2. Synthesis of ZnO Nanorods
2.3. Synthesis of Al, N-Doped, and Al–N-Co-Doped ZnO Nanorods
2.4. Sample Characterizations
2.5. Field Emission and Hydrogen Sensing Investigations
3. Results
3.1. Morphologic and Structural Characterizations of the Undoped and the Doped ZnO Samples
3.2. Field Emission Performance Test
3.3. Hydrogen Sensing Performance Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, J.A. Sustainable hydrogen production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef]
- Penner, R.M. A Nose for Hydrogen Gas: Fast, Sensitive H2 Sensors Using Electrodeposited Nanomaterials. Acc. Chem. Res. 2017, 50, 1902–1910. [Google Scholar] [CrossRef]
- Huang, X.M.H.; Manolidis, M.; Jun, S.C.; Hone, J. Nanomechanical hydrogen sensing. Appl. Phys. Lett. 2005, 86, 143104–143106. [Google Scholar] [CrossRef]
- Dong, C.; Luo, H.; Cai, J.; Wang, F.; Zhao, Y.; Li, D. Hydrogen sensing characteristics from carbon nanotube field emissions. Nanoscale 2016, 8, 5599–5604. [Google Scholar] [CrossRef]
- Gerdroodbary, M.B.; Anazadehsayed, A.; Hassanvand, A.; Moradi, R.J. Calibration of low-pressure MEMS gas sensor for detection of hydrogen gas. Int. J. Hydrogen Energy 2018, 43, 5770–5782. [Google Scholar] [CrossRef]
- Arora, K.; Sandil, D.; Sharma, G.; Srivastava, S.; Puri, N.K. Effect of low pressure hydrogen environment on crystallographic properties of PdO nanoparticles. Int. J. Hydrogen Energy 2016, 41, 22155–22161. [Google Scholar] [CrossRef]
- Wadell, C.; Nugroho, F.A.A.; Lidstrom, E.; Iandolo, B.; Wagner, J.B.; Langhammer, C. Hysteresis-free nanoplasmonic Pd–Au alloy hydrogen sensors. Nano. Lett. 2015, 15, 3563–3570. [Google Scholar] [CrossRef]
- Liu, X.; Qian, W.; Chen, Y.; Dong, M.; Yu, T.; Huang, W.; Dong, C. Construction of CNT-MgO-Ag-BaO Nanocomposite with Enhanced Field Emission and Hydrogen Sensing Performances. Nanomaterials 2023, 13, 885. [Google Scholar] [CrossRef] [PubMed]
- Vanalakar, S.A.; Gang, M.G.; Patil, V.L.; Dongale, T.D.; Patil, P.S.; Kim, J.H. Enhanced gas-sensing response of zinc oxide nanorods synthesized via hydrothermal route for nitrogen dioxide gas. J. Electron. Mater. 2019, 48, 589–595. [Google Scholar] [CrossRef]
- Skompska, M.; Zarębska, K. Electrodeposition of ZnO nanorod arrays on transparent conducting substrates–a review. Electrochim. Acta 2014, 127, 467–488. [Google Scholar] [CrossRef]
- Chien, F.S.; Wang, C.R.; Chan, Y.L.; Lin, H.L.; Chen, M.H.; Wu, R.J. Fast-response ozone sensor with ZnO nanorods grown by chemical vapor deposition. Sensor. Actuator. B-Chem. 2010, 144, 120–125. [Google Scholar] [CrossRef]
- Jamnani, S.R.; Moghaddam, H.M.; Leonardi, S.G.; Neri, G.; Ferlazzo, A. VOCs sensing properties of samarium oxide nanorods. Ceram. Int. 2024, 50, 403–411. [Google Scholar] [CrossRef]
- Bibi, H.; Mansoor, M.A.; Asghar, M.A.; Ahmad, Z.; Numan, A.; Haider, A. Facile hydrothermal synthesis of highly durable binary and ternary cobalt nickel copper oxides for high-performance oxygen evolution reaction. Int. J. Hydrogen Energy 2024, in press. [Google Scholar] [CrossRef]
- Shafiei, M.; Yu, J.; Arsat, R.; Kalantar-zadeh, K.; Comini, E.; Ferroni, M.; Sberveglieri, G.; Wlodarski, W. Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensing. Sensor. Actuat. B-Chem. 2010, 146, 507–512. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Z.; Liu, S.; Shi, Y.; Dong, Y.; Feng, W. Maize straw-templated hierarchical porous ZnO: Ni with enhanced acetone gas sensing properties. Sensor. Actuat. B-Chem. 2017, 243, 1224–1230. [Google Scholar] [CrossRef]
- Bhat, S.V.; Deepak, F. Tuning the bandgap of ZnO by substitution with Mn2+, Co2+ and Ni2+. Solid. State. Commun. 2005, 135, 345–347. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Ma, S.; Li, W.; Mao, Y. Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures. Sensor. Actuat. B-Chem. 2015, 213, 222–233. [Google Scholar] [CrossRef]
- Jaballah, S.; Dahman, H.; Ghiloufi, I.; Neri, G.; El Mir, L. Facile synthesis of Al–Mg co-doped ZnO nanoparticles and their high hydrogen sensing performances. Int. J. Hydrogen Energy 2020, 45, 34268–34280. [Google Scholar] [CrossRef]
- Al-Asedy, H.J.; Bidin, N.; Al-khafaji, S.A.; Bakhtiar, H. Sol-gel grown aluminum/gallium co-doped ZnO nanostructures: Hydrogen gas sensing attributes. Mat. Sci. Semicon. Proc. 2018, 77, 50–57. [Google Scholar] [CrossRef]
- Li, M.; Huang, W.; Qian, W.; Liu, B.; Lin, H.; Li, W.; Wan, L.; Dong, C. Controllable Ag nanoparticle coated ZnO nanorod arrays on an alloy substrate with enhanced field emission performance. RSC Adv. 2017, 7, 46760–46766. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Li, Y.-L.; Gong, F.-L.; Xie, K.-F.; Liu, M.; Zhang, H.-L.; Fang, S.-M. Al doped narcissus-like ZnO for enhanced NO2 sensing performance: An experimental and DFT investigation. Sensor. Actuat. B-Chem. 2020, 305, 127489. [Google Scholar] [CrossRef]
- Zhang, R.; Yin, P.-G.; Wang, N.; Guo, L. Photoluminescence and Raman scattering of ZnO nanorods. Solid. State. Sci. 2009, 11, 865–869. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc 2003, 125, 4430–4431. [Google Scholar] [CrossRef] [PubMed]
- Lavand, A.B.; Malghe, Y.S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. J. Asian. Ceram. Soc. 2015, 3, 305–310. [Google Scholar] [CrossRef]
- Baek, S.-H.; Noh, B.-Y.; Park, I.-K.; Kim, J.H. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer. Nanoscale. Res. Lett. 2012, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Senadim Tuzemen, E.; Kara, K.; Takci, D.; Esen, R. Comparison of N-doped ZnO and N–Al co-doped ZnO thin films deposited by pulsed filtered cathodic vacuum arc deposition. Indian J. Phys. 2015, 89, 337–345. [Google Scholar] [CrossRef]
- Wen, W.; Wu, J.-M.; Wang, Y.-D. Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis. Sensor. Actuat. B-Chem. 2013, 184, 78–84. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zheng, S.; Xue, H.; Pang, H. N-Doped mesoporous ZnO with oxygen vacancies for stable hydrazine electrocatalysis. ChemNanoMat 2019, 5, 79–84. [Google Scholar] [CrossRef]
- Ievtushenko, A.; Khyzhun, O.; Shtepliuk, I.; Bykov, O.; Jakieła, R.; Tkach, S.; Kuzmenko, E.; Baturin, V.; Karpenko, O.; Olifan, O. Compounds X-ray photoelectron spectroscopy study of highly-doped ZnO: Al, N films grown at O-rich conditions. J. Alloy. Compd. 2017, 722, 683–689. [Google Scholar] [CrossRef]
- Shifu, C.; Wei, Z.; Sujuan, Z.; Wei, L. Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem. Eng. J 2009, 148, 263–269. [Google Scholar] [CrossRef]
- Yuan, G.; Ye, Z.; Huang, J.; Zhu, Z.; Perkins, C.; Zhang, S. X-ray photoelectron spectroscopy study of Al-and N-co-doped p-type ZnO thin films. J. Cryst. Growth. 2009, 311, 2341–2344. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Yu, Y.; Pei, Z.; Bai, X.; Sun, C.; Huang, R.; Wen, L. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134–140. [Google Scholar] [CrossRef]
- Wang, P.W.; Sui, S.; Wang, W.; Durrer, W. Aluminum nitride and alumina composite film fabricated by DC plasma processes. Thin Solid Film. 1997, 295, 142–146. [Google Scholar] [CrossRef]
- Maldonado, F.; Stashans, A. Al-doped ZnO: Electronic, electrical and structural properties. J. Phys. Chem. Solids 2010, 71, 784–787. [Google Scholar] [CrossRef]
- Mahmood, K.; Park, S.B. Growth and conductivity enhancement of N-doped ZnO nanorod arrays. J. Cryst. Growth 2012, 347, 104–112. [Google Scholar] [CrossRef]
- Pathak, T.; Kumar, V.; Purohit, L.P. Sputtered Al-N codoped p-type transparent ZnO thin films suitable for optoelectronic devices. Optik 2016, 127, 603–607. [Google Scholar] [CrossRef]
- Liu, N.; Fang, G.; Zeng, W.; Long, H.; Zhao, X. Giant enhancement of field emission from selectively edge grown ZnO–carbon nanotube heterostructure arrays via diminishing the screen effect. J. Phys. Chem. C 2011, 115, 14377–14385. [Google Scholar] [CrossRef]
- Ghosh, A.; Guha, P.; Thapa, R.; Selvaraj, S.; Kumar, M.; Rakshit, B.; Dash, T.; Bar, R.; Ray, S.K.; Satyam, P.V. Tuning the work function of randomly oriented ZnO nanostructures by capping with faceted Au nanostructure and oxygen defects: Enhanced field emission experiments and DFT studies. Nanotechnology 2016, 27, 125701. [Google Scholar] [CrossRef]
- Qian, W.; Zhang, Y.; Wu, Q.; He, C.; Zhao, Y.; Wang, X.; Hu, Z. Construction of AlN-based core–shell nanocone arrays for enhancing field emission. J. Phys. Chem. C 2011, 115, 11461–11465. [Google Scholar] [CrossRef]
- Ramgir, N.S.; Late, D.J.; Bhise, A.B.; Mulla, I.S.; More, M.A.; Joag, D.S.; Pillai, V.K. Field emission studies of novel ZnO nanostructures in high and low field regions. Nanotechnology 2006, 17, 2730. [Google Scholar] [CrossRef]
- Xu, C.; Sun, X.; Fang, S.; Yang, X.; Yu, M.; Zhu, G.; Cui, Y. Electrochemically deposited zinc oxide arrays for field emission. Appl. Phys. Lett. 2006, 88, 161921. [Google Scholar] [CrossRef]
- Dong, C.; Gupta, M.C. Influences of the surface reactions on the field emission from multiwall carbon nanotubes. Appl. Phys. Lett. 2003, 83, 159–161. [Google Scholar] [CrossRef]
- Liu, J.; Xu, C.; Zhu, G.; Li, X.; Cui, Y.; Yang, Y.; Sun, X. Hydrothermally grown ZnO nanorods on self-source substrate and their field emission. J. Phys. D Appl. Phys. 2007, 40, 1906. [Google Scholar] [CrossRef]
- Huang, W.; Qian, W.; Luo, H.; Dong, M.; Shao, H.; Chen, Y.; Liu, X.; Dong, C. Field emission enhancement from directly grown N-doped carbon nanotubes on stainless steel substrates. Vacuum 2022, 198, 110900. [Google Scholar] [CrossRef]
- Kang, S.; Qian, W.; Liu, R.; Yu, H.; Zhu, W.; Liao, X.; Wang, F.; Huang, W.; Dong, C. Miniature vacuum sensor based on gas adsorptions from carbon nanotube field emitters. Vacuum 2023, 207, 111663. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, J.; Luo, H.; Kang, S.; Qian, W.; Dong, C. Low pressure hydrogen sensing based on carbon nanotube field emission: Mechanism of atomic adsorption induced work function effects. Carbon 2017, 124, 669–674. [Google Scholar] [CrossRef]
- Schwartz, G.; Tee, B.C.; Mei, J.; Appleton, A.L.; Kim, D.H.; Wang, H.; Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859. [Google Scholar] [CrossRef]
- Merces, L.; de Oliveira, R.F.; Bof Bufon, C.C. Nanoscale Variable-Area Electronic Devices: Contact Mechanics and Hypersensitive Pressure Application. ACS Appl. Mate. Interfaces 2018, 10, 39168–39176. [Google Scholar] [CrossRef]
Sample | Turn-On Field (V/µm) | Threshold Field (V/µm) |
---|---|---|
Undoped ZnO | 9.9 | / |
N doped ZnO | 6.9 | 12.5 |
Al doped ZnO | 7.8 | 13.5 |
Al–N-co-doped ZnO | 5.0 | 11.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Y.; Qian, W.; Dong, M.; Chen, G.; Quan, Y.; Huang, W.; Dong, C. Enhanced Field Emission and Low-Pressure Hydrogen Sensing Properties from Al–N-Co-Doped ZnO Nanorods. Nanomaterials 2024, 14, 863. https://doi.org/10.3390/nano14100863
Tu Y, Qian W, Dong M, Chen G, Quan Y, Huang W, Dong C. Enhanced Field Emission and Low-Pressure Hydrogen Sensing Properties from Al–N-Co-Doped ZnO Nanorods. Nanomaterials. 2024; 14(10):863. https://doi.org/10.3390/nano14100863
Chicago/Turabian StyleTu, Youqing, Weijin Qian, Mingliang Dong, Guitao Chen, Youlong Quan, Weijun Huang, and Changkun Dong. 2024. "Enhanced Field Emission and Low-Pressure Hydrogen Sensing Properties from Al–N-Co-Doped ZnO Nanorods" Nanomaterials 14, no. 10: 863. https://doi.org/10.3390/nano14100863
APA StyleTu, Y., Qian, W., Dong, M., Chen, G., Quan, Y., Huang, W., & Dong, C. (2024). Enhanced Field Emission and Low-Pressure Hydrogen Sensing Properties from Al–N-Co-Doped ZnO Nanorods. Nanomaterials, 14(10), 863. https://doi.org/10.3390/nano14100863