Nanocurcumin-Based Sugar-Free Formulation: Development and Impact on Diabetes and Oxidative Stress Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Micronization of Curcumin
2.3. Fenugreek Mucilage Extraction
2.4. Formulation of Nanocurcumin Solutions
2.5. Physico-Chemical Characterization of the Different Formulations
2.5.1. Determination of the Particle Size and Zeta Potential of Nanocurcumin
2.5.2. Fourier Transform Infrared Spectroscopy
2.5.3. Characterization of Nanocurcumin-Based Formulations
Physicochemical and Rheological Analysis
- (a)
- The pH measurement:
- (b)
- Density measurement:
- (c)
- Brix degree measurement:
- (d)
- Determination of the particle size and zeta potential of the formulations:
- (e)
- Study of rheological behavior:
Encapsulation Rate and In Vitro Dissolution Kinetics Study
Evaluation of the Biological Activities of the Formulations
- (a)
- In vitro antioxidant activity
- (b)
- In vitro hemocompatibility activity
- (c)
- In vivo antidiabetic activity
- (d)
- Pancreatic histology
2.6. Statistical Analysis
3. Results and Discussion
3.1. Determination of the Particle Size and Zeta Potential of Nanocurcumin
3.2. Identification of Fenugreek Mucilage by Fourier Transform Infrared Spectroscopy (FTIR)
3.3. Characterization of Nanocurcumin-Based Formulations
Physicochemical and Rheological Analysis
- (a)
- pH measurement
- (b)
- Density measurement
- (c)
- Brix degree measurement
- (d)
- Determination of the particle size and zeta potential of the formulations
- (e)
- Study of rheological behavior
3.4. Encapsulation Rate and In Vitro Dissolution Kinetics Study
3.5. Evaluation of Biological Activities
3.5.1. Evaluation of Antioxidant Activity In Vitro
3.5.2. In Vitro Hemocompatibility Activity
3.5.3. In Vivo Antidiabetic Activity
- (a)
- Assessment of blood glucose levels:
- (b)
- Histological study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verma, S.; Pandey, A.K. Improving Bioavailability of Nutrients Through Nanotechnology. In Sustainable Agriculture Reviews 55: Micro and Nano Engineering in Food Science Vol 1; Maurya, V.K., Gothandam, K.M., Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2021; pp. 135–170. ISBN 978-3-030-76813-3. [Google Scholar]
- Gupta, S.C.; Kismali, G.; Aggarwal, B.B. Curcumin, a Component of Turmeric: From Farm to Pharmacy. BioFactors 2013, 39, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [PubMed]
- Chhouk, K.; Diono, W.; Kanda, H.; Goto, M. Micronization for Enhancement of Curcumin Dissolution via Electrospraying Technique. ChemEngineering 2018, 2, 60. [Google Scholar] [CrossRef]
- Chin, K.-Y. The Spice for Joint Inflammation: Anti-Inflammatory Role of Curcumin in Treating Osteoarthritis. Drug Des. Devel. Ther. 2016, 10, 3029–3042. [Google Scholar] [CrossRef] [PubMed]
- Elanthendral, G.; Shobana, N.; Meena, R.; Prakash, P.; Samrot, A.V. Utilizing Pharmacological Properties of Polyphenolic Curcumin in Nanotechnology. Biocatal. Agric. Biotechnol. 2021, 38, 102212. [Google Scholar] [CrossRef]
- Ren, B.-C.; Zhang, Y.-F.; Liu, S.-S.; Cheng, X.-J.; Yang, X.; Cui, X.-G.; Zhao, X.-R.; Zhao, H.; Hao, M.-F.; Li, M.-D.; et al. Curcumin Alleviates Oxidative Stress and Inhibits Apoptosis in Diabetic Cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt Signalling Pathways. J. Cell. Mol. Med. 2020, 24, 12355–12367. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.S.; Beevers, C.; Huang, S. The Targets of Curcumin. Available online: https://www.ingentaconnect.com/content/ben/cdt/2011/00000012/00000003/art00005 (accessed on 18 March 2023).
- Chhouk, K.; Wahyudiono; Kanda, H.; Kawasaki, S.-I.; Goto, M. Micronization of Curcumin with Biodegradable Polymer by Supercritical Anti-Solvent Using Micro Swirl Mixer. Front. Chem. Sci. Eng. 2018, 12, 184–193. [Google Scholar] [CrossRef]
- Kharat, M.; Zhang, G.; McClements, D.J. Stability of Curcumin in Oil-in-Water Emulsions: Impact of Emulsifier Type and Concentration on Chemical Degradation. Food Res. Int. 2018, 111, 178–186. [Google Scholar] [CrossRef]
- Hu, L.; Jia, Y.; Niu, F.; Jia, Z.; Yang, X.; Jiao, K. Preparation and Enhancement of Oral Bioavailability of Curcumin Using Microemulsions Vehicle. J. Agric. Food Chem. 2012, 60, 7137–7141. [Google Scholar] [CrossRef]
- Ramshankar, Y.V.; Suresh, S.; Devi, K. Novel Self-Emulsifying Formulation of Curcumin with Improved Dissolution, Antiangiogenic and Anti-Inflammatory Activity. Clin. Res. Regul. Aff. 2008, 25, 213–234. [Google Scholar] [CrossRef]
- Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric Nanoparticle-Encapsulated Curcumin (“nanocurcumin”): A Novel Strategy for Human Cancer Therapy. J. Nanobiotechnol. 2007, 5, 3. [Google Scholar] [CrossRef]
- Verma, K.; Tarafdar, A.; Kumar, D.; Kumar, Y.; Rana, J.S.; Badgujar, P.C. Formulation and Characterization of Nano-Curcumin Fortified Milk Cream Powder through Microfluidization and Spray Drying. Food Res. Int. 2022, 160, 111705. [Google Scholar] [CrossRef] [PubMed]
- Ghalandarlaki, N.; Alizadeh, A.M.; Ashkani-Esfahani, S. Nanotechnology-Applied Curcumin for Different Diseases Therapy. BioMed Res. Int. 2014, 2014, e394264. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shin, G.H.; Lee, I.W.; Chen, X.; Park, H.J. Soluble Starch Formulated Nanocomposite Increases Water Solubility and Stability of Curcumin. Food Hydrocoll. 2016, 56, 41–49. [Google Scholar] [CrossRef]
- Bhawana; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin Nanoparticles: Preparation, Characterization, and Antimicrobial Study. J. Agric. Food Chem. 2011, 59, 2056–2061. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Kumar, N. Nanonization of Curcumin by Antisolvent Precipitation: Process Development, Characterization, Freeze Drying and Stability Performance. Int. J. Pharm. 2014, 477, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.M.; Elaal, F.; Zaki, S. Effect of Curcumin and Nano-Curcumin on Reduce Aluminum Toxicity in Rats. Int. J. Food Sci. Bioechnol. 2019, 4, 64. [Google Scholar]
- Kakran, M.; Sahoo, N.G.; Tan, I.-L.; Li, L. Preparation of Nanoparticles of Poorly Water-Soluble Antioxidant Curcumin by Antisolvent Precipitation Methods. J. Nanopart. Res. 2012, 14, 757. [Google Scholar] [CrossRef]
- Basniwal, R.K.; Khosla, R.; Jain, N. Improving the Anticancer Activity of Curcumin Using Nanocurcumin Dispersion in Water. Nutr. Cancer 2014, 66, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Gera, M.; Kumar, R.; Jain, V.K. Suman Preparation of a Novel Nanocurcumin Loaded Drug Releasing Medicated Patch with Enhanced Bioactivity against Microbes. Available online: https://www.ingentaconnect.com/contentone/asp/asem/2015/00000007/00000006/art00008 (accessed on 20 February 2024).
- Kumar, V.; Kumar, R.; Jain, V.K.; Nagpal, S. Preparation and Characterization of Nanocurcumin Based Hybrid Virosomes as a Drug Delivery Vehicle with Enhanced Anticancerous Activity and Reduced Toxicity. Sci. Rep. 2021, 11, 368. [Google Scholar] [CrossRef] [PubMed]
- Al-Shammari, B.B.; Al-Ali, R.M.; Al-Sahi, A.A. The Effect of Fenugreek Gum on The Rheological and Qualitative Properties of Pan Bread. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 761, p. 012118. [Google Scholar]
- Niknam, R.; Mousavi, M.; Kiani, H. New Studies on the Galactomannan Extracted from Trigonella Foenum-Graecum (Fenugreek) Seed: Effect of Subsequent Use of Ultrasound and Microwave on the Physicochemical and Rheological Properties. Food Bioprocess Technol. 2020, 13, 882–900. [Google Scholar] [CrossRef]
- Gorakhnath, M.G.S.; Hingane, L.D. Characterization of Fenugreek Seeds Mucilage and Its Evaluation as Suspending Agent. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 4382–4386. [Google Scholar] [CrossRef]
- Xu, T.; Yang, J.; Hua, S.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Characteristics of Starch-Based Pickering Emulsions from the Interface Perspective. Trends Food Sci. Technol. 2020, 105, 334–346. [Google Scholar] [CrossRef]
- Gélinas, P. Inventions on Keeping Properties and Non-Reactive Ingredients in Chemical Leavening. Int. J. Food Sci. Technol. 2023, 58, 2801–2810. [Google Scholar] [CrossRef]
- Yu, J.-K.; Moon, Y.-S. Corn Starch: Quality and Quantity Improvement for Industrial Uses. Plants 2022, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, P.; Li, Y.; Ji, N.; Dai, L.; Xiong, L.; Sun, Q. Rapid Production of Corn Starch Gels with High Mechanical Properties through Alcohol Soaking. Int. J. Biol. Macromol. 2020, 163, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Banthia, A.K.; Majumdar, D.K. Characterization of Prepared Corn Starch-Based Hydrogel Membranes. J. Appl. Biomater. Biomech. 2006, 4, 38–44. [Google Scholar] [PubMed]
- Carrera-Lanestosa, A.; Moguel-Ordóñez, Y.; Segura-Campos, M. Stevia rebaudiana Bertoni: A Natural Alternative for Treating Diseases Associated with Metabolic Syndrome. J. Med. Food 2017, 20, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.K.; Pal, D.; Santra, K. Screening of Polysaccharides from Tamarind, Fenugreek and Jackfruit Seeds as Pharmaceutical Excipients. Int. J. Biol. Macromol. 2015, 79, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Miskeen, S.; An, Y.S.; Kim, J.-Y. Application of Starch Nanoparticles as Host Materials for Encapsulation of Curcumin: Effect of Citric Acid Modification. Int. J. Biol. Macromol. 2021, 183, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Suryanarayana, P.; Saraswat, M.; Mrudula, T.; Krishna, T.P.; Krishnaswamy, K.; Reddy, G.B. Curcumin and Turmeric Delay Streptozotocin-Induced Diabetic Cataract in Rats. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Pandit, R.; Phadke, A.; Jagtap, A. Effet Antidiabétique de l’extrait de Ficus Religiosa Chez Des Rats Diabétiques Induits Par La Streptozotocine. J. Ethnopharmacol. 2010, 128, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.U.; Zia, K.M.; Akash, M.S.H.; Nazir, A.; Zuber, M.; Ibrahim, M. In-Vivo Anti-Diabetic and Wound Healing Potential of Chitosan/Alginate/Maltodextrin/Pluronic-Based Mixed Polymeric Micelles: Curcumin Therapeutic Potential. Int. J. Biol. Macromol. 2018, 120, 2418–2430. [Google Scholar] [CrossRef] [PubMed]
- Irshaid, F.; Mansi, K.; Aburjai, T. Antidiabetic Effect of Essential Oil from Artemisia Sieberi Growing in Jordan in Normal and Alloxan Induced Diabetic Rats. Pak. J. Biol. Sci. 2010, 13, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, R.; Vengatash Babu, K.; Ramachandran, V. Effect of Rebaudioside A, a Diterpenoid on Glucose Homeostasis in STZ-Induced Diabetic Rats. J. Physiol. Biochem. 2012, 68, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Perumal, V.; Manickam, T.; Bang, K.-S.; Velmurugan, P.; Oh, B.-T. Antidiabetic Potential of Bioactive Molecules Coated Chitosan Nanoparticles in Experimental Rats. Int. J. Biol. Macromol. 2016, 92, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Flora, G.; Gupta, D.; Tiwari, A. Nanocurcumin: A Promising Therapeutic Advancement over Native Curcumin. Crit. Rev. Ther. Drug Carr. Syst. 2013, 30, 331–368. [Google Scholar] [CrossRef] [PubMed]
- Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. J. Agric. Food Chem. 2017, 65, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, O.; Lipkovska, N.; Barvinchenko, V. Keto-Enol Tautomerism of Curcumin in the Preparation of Nanobiocomposites with Fumed Silica. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 277, 121287. [Google Scholar] [CrossRef] [PubMed]
- Tønnesen, H.H.; Karlsen, J. Studies on Curcumin and Curcuminoids. VI. Kinetics of Curcumin Degradation in Aqueous Solution. Z. Lebensm. Unters. Forsch. 1985, 180, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, A.; Beristain, C.I. Co-crystallization of cucumber concentrate (Cucumis sativa L.). Arch. Latinoam. Nutr. 1998, 48, 247–249. [Google Scholar] [PubMed]
- Ajami, M.; Seyfi, M.; Abdollah Pouri Hosseini, F.; Naseri, P.; Velayati, A.; Mahmoudnia, F.; Zahedirad, M.; Hajifaraji, M. Effects of Stevia on Glycemic and Lipid Profile of Type 2 Diabetic Patients: A Randomized Controlled Trial. Avicenna J. Phytomed. 2020, 10, 118–127. [Google Scholar]
- Orellana-Paucar, A.M. Steviol Glycosides from Stevia rebaudiana: An Updated Overview of Their Sweetening Activity, Pharmacological Properties, and Safety Aspects. Molecules 2023, 28, 1258. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J. Stevia: It’s Not Just About Calories. Open Obes. J. 2010, 2, 101–109. [Google Scholar] [CrossRef]
- Biswas, A.K.; Islam, M.R.; Choudhury, Z.S.; Mostafa, A.; Kadir, M.F. Nanotechnology Based Approaches in Cancer Therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 043001. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release Off. J. Control. Release Soc. 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.H.; Keck, C.M. Challenges and Solutions for the Delivery of Biotech Drugs—A Review of Drug Nanocrystal Technology and Lipid Nanoparticles. J. Biotechnol. 2004, 113, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Yallapu, M.M.; Nagesh, P.K.B.; Jaggi, M.; Chauhan, S.C. Therapeutic Applications of Curcumin Nanoformulations. AAPS J. 2015, 17, 1341–1356. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Lin, Y.; Xie, R.; Xu, Y.; Yao, J.; Zhang, J. The Flow Behavior, Thixotropy and Dynamical Viscoelasticity of Fenugreek Gum. J. Food Eng. 2015, 166, 21–28. [Google Scholar] [CrossRef]
- Salarbashi, D.; Bazeli, J.; Fahmideh-Rad, E. Fenugreek Seed Gum: Biological Properties, Chemical Modifications, and Structural Analysis—A Review. Int. J. Biol. Macromol. 2019, 138, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.-L.; Lin, X.-J.; Zhang, W.-A.; Zhang, W.-M.; Sun, D.-F.; Jiang, J.-X. Characterization of Fractional Precipitation Behavior of Galactomannan Gums with Ethanol and Isopropanol. Food Hydrocoll. 2014, 40, 115–121. [Google Scholar] [CrossRef]
- Dhull, S.B.; Sandhu, K.S.; Punia, S.; Kaur, M.; Chawla, P.; Malik, A. Comportement Fonctionnel, Thermique et Rhéologique Des Gommes de Fenugrec (Trigonella Foenum–Graecum L.) de Différents Cultivars: Une Étude Comparative. Int. J. Biol. Macromol. 2020, 159, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Kučka, M.; Ražná, K.; Harenčár, Ľ.; Kolarovičová, T. Plant Seed Mucilage—Great Potential for Sticky Matter. Nutraceuticals 2022, 2, 253–269. [Google Scholar] [CrossRef]
- Garcia, M.A.V.T.; Garcia, C.F.; Faraco, A.A.G. Pharmaceutical and Biomedical Applications of Native and Modified Starch: A Review. Starch-Stärke 2020, 72, 1900270. [Google Scholar] [CrossRef]
- Bourret, E. Mucilages et Galactomannanes de Fenugrec et Leurs Applications. France Patent Application No. FR2807324A1, 20 September 2002. [Google Scholar]
- Pothakamury, U.R.; Barbosa-Cánovas, G.V. Fundamental Aspects of Controlled Release in Foods. Trends Food Sci. Technol. 1995, 6, 397–406. [Google Scholar] [CrossRef]
- Mohanty, C.; Sahoo, S.K. The in Vitro Stability and in Vivo Pharmacokinetics of Curcumin Prepared as an Aqueous Nanoparticulate Formulation. Biomaterials 2010, 31, 6597–6611. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, Y.; Lee, R.J.; Xiang, G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int. J. Nanomed. 2020, 15, 3099–3120. [Google Scholar] [CrossRef] [PubMed]
- Papaefthimiou, M.; Kontou, P.I.; Bagos, P.G.; Braliou, G.G. Antioxidant Activity of Leaf Extracts from Stevia rebaudiana Bertoni Exerts Attenuating Effect on Diseased Experimental Rats: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3325. [Google Scholar] [CrossRef] [PubMed]
- Shahu, R.; Jobby, R.; Patil, S.; Bhori, M.; Tungare, K.; Jha, P. Phytochemical Content and Antioxidant Activity of Different Varieties of Stevia rebaudiana. Hortic. Environ. Biotechnol. 2022, 63, 935–948. [Google Scholar] [CrossRef]
- Sindhu, G.; Ratheesh, M.; Shyni, G.L.; Nambisan, B.; Helen, A. Anti-Inflammatory and Antioxidative Effects of Mucilage of Trigonella Foenum Graecum (Fenugreek) on Adjuvant Induced Arthritic Rats. Int. Immunopharmacol. 2012, 12, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Jahan, I.A.; Mostafa, M.; Hossain, H.; Nimmi, I.; Sattar, A.; Alim, A.; Moeiz, S.M.I. Antioxidant Activity of Stevia rebaudiana Bert. Leaves from Bangladesh. Bangladesh Pharm. J. 2010, 13, 67–75. [Google Scholar]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T.; Samini, F. Anti-Oxidative Effects of Curcumin on Immobilization-Induced Oxidative Stress in Rat Brain, Liver and Kidney. Biomed. Pharmacother. Biomedecine Pharmacother. 2017, 87, 223–229. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-4; Biological Evaluation of Medical Devices—Part 4: Selection of Tests for Interactions with Blood. Third Edition. Technical Committee ISO/TC 194. International Organization for Standardization: Geneva, Switzerland, 2017.
- Ionescu, O.M.; Iacob, A.-T.; Mignon, A.; Van Vlierberghe, S.; Baican, M.; Danu, M.; Ibănescu, C.; Simionescu, N.; Profire, L. Design, Preparation and in Vitro Characterization of Biomimetic and Bioactive Chitosan/Polyethylene Oxide Based Nanofibers as Wound Dressings. Int. J. Biol. Macromol. 2021, 193, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.; Soni, M.; Silawat, N.; Mehta, D.; Mehta, B.K.; Jain, D.C. Antidiabetic Activity of Medium-Polar Extract from the Leaves of Stevia rebaudiana Bert. (Bertoni) on Alloxan-Induced Diabetic Rats. J. Pharm. Bioallied Sci. 2011, 3, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, S. Formulation of Glipizide Tablets Using Fenugreek Seed Mucilage: Optimization by Factorial Design. Asian J. Pharm. AJP 2016, 10. [Google Scholar] [CrossRef]
- Kaur, G.; Invally, M.; Chintamaneni, M. Influence of Piperine and Quercetin on Antidiabetic Potential of Curcumin. J. Complement. Integr. Med. 2016, 13, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Arcaro, C.A.; Gutierres, V.O.; Assis, R.P.; Moreira, T.F.; Costa, P.I.; Baviera, A.M.; Brunetti, I.L. Piperine, a Natural Bioenhancer, Nullifies the Antidiabetic and Antioxidant Activities of Curcumin in Streptozotocin-Diabetic Rats. PLoS ONE 2014, 9, e113993. [Google Scholar] [CrossRef] [PubMed]
- Na, L.-X.; Li, Y.; Pan, H.-Z.; Zhou, X.-L.; Sun, D.-J.; Meng, M.; Li, X.-X.; Sun, C.-H. Curcuminoids Exert Glucose-lowering Effect in Type 2 Diabetes by Decreasing Serum Free Fatty Acids: A Double-Blind, Placebo-Controlled Trial—Na—2013—Molecular Nutrition & Food Research. Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/mnfr.201200131 (accessed on 8 March 2023).
- Kelany, M.E.; Hakami, T.M.; Omar, A.H. Curcumin Improves the Metabolic Syndrome in High-Fructose-Diet-Fed Rats: Role of TNF-α, NF-κB, and Oxidative Stress. Can. J. Physiol. Pharmacol. 2017, 95, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Mancía, S.; Trujillo, J.; Chaverri, J.P. Utility of Curcumin for the Treatment of Diabetes Mellitus: Evidence from Preclinical and Clinical Studies. J. Nutr. Intermed. Metab. 2018, 14, 29–41. [Google Scholar] [CrossRef]
- Ar’Rajab, A.; AhréN, B. Long-Term Diabetogenic Effect of Streptozotocin in Rats. Pancreas 1993, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Metawea, M.R.; Abdelrazek, H.M.A.; El-Hak, H.N.G.; Moghazee, M.M.; Marie, O.M. Comparative Effects of Curcumin versus Nano-Curcumin on Histological, Immunohistochemical Expression, Histomorphometric, and Biochemical Changes to Pancreatic Beta Cells and Lipid Profile of Streptozocin Induced Diabetes in Male Sprague–Dawley Rats. Environ. Sci. Pollut. Res. 2023, 30, 62067–62079. [Google Scholar] [CrossRef] [PubMed]
Group | Designation |
---|---|
Group 1 | Negative control (normal rats) |
Group 2 | Positive control (diabetic rats) |
Group 3 | Diabetic rats force-fed with fenugreek mucilage formulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferradj, S.; Yahoum, M.M.; Rebiha, M.; Nabi, I.; Toumi, S.; Lefnaoui, S.; Hadj-Ziane-Zafour, A.; Touzout, N.; Tahraoui, H.; Mihoub, A.; et al. Nanocurcumin-Based Sugar-Free Formulation: Development and Impact on Diabetes and Oxidative Stress Reduction. Nanomaterials 2024, 14, 1105. https://doi.org/10.3390/nano14131105
Ferradj S, Yahoum MM, Rebiha M, Nabi I, Toumi S, Lefnaoui S, Hadj-Ziane-Zafour A, Touzout N, Tahraoui H, Mihoub A, et al. Nanocurcumin-Based Sugar-Free Formulation: Development and Impact on Diabetes and Oxidative Stress Reduction. Nanomaterials. 2024; 14(13):1105. https://doi.org/10.3390/nano14131105
Chicago/Turabian StyleFerradj, Safa, Madiha Melha Yahoum, Mounia Rebiha, Ikram Nabi, Selma Toumi, Sonia Lefnaoui, Amel Hadj-Ziane-Zafour, Nabil Touzout, Hichem Tahraoui, Adil Mihoub, and et al. 2024. "Nanocurcumin-Based Sugar-Free Formulation: Development and Impact on Diabetes and Oxidative Stress Reduction" Nanomaterials 14, no. 13: 1105. https://doi.org/10.3390/nano14131105