Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications
Abstract
:1. Introduction
2. Antibacterial Activity and Antibiotic Resistance
3. Antiviral Applications
4. Agricultural Applications
5. Wound Healing Applications
6. Bone Repair Applications
7. Vaccine Adjuvant Applications
8. Diabetes Applications
9. Dental Applications
10. Anticancer Applications
11. Biosensor and Bioimaging Applications
12. Toxicity
13. Industrial Applications
14. Limitations and Challenges of Silver NP Applications
14.1. Toxicity Potential
14.2. Gaps in the Optimization
14.3. Future Resistance to Silver NPs
14.4. Stability and Degradation of Silver NPs during Treatments
14.5. Manufacturing and Cost Challenges
14.6. Potential Molecular Interactions of Silver NPs in Biological Systems
15. Conclusions and Future Trends
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barillo, D.J.; Marx, D.E. Silver in Medicine: A Brief History BC 335 to Present. Burns 2014, 40, S3–S8. [Google Scholar] [CrossRef]
- Xing, M.; Ge, L.; Wang, M.; Li, Q.; Li, X.; Ouyang, J. Nanosilver Particles in Medical Applications: Synthesis, Performance, and Toxicity. Int. J. Nanomed. 2014, 9, 2399–2407. [Google Scholar] [CrossRef]
- Eker, F.; Duman, H.; Akdaşçi, E.; Bolat, E.; Sarıtaş, S.; Karav, S.; Witkowska, A.M. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024, 29, 3482. [Google Scholar] [CrossRef]
- Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.-S.; Chen, G. Silver Nanoparticles: Synthesis, Properties, and Therapeutic Applications. Drug Discov. Today 2015, 20, 595–601. [Google Scholar] [CrossRef]
- Duman, H.; Eker, F.; Akdaşçi, E.; Witkowska, A.M.; Bechelany, M.; Karav, S. Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties. Nanomaterials 2024, 14, 1527. [Google Scholar] [CrossRef]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of Silver Nanoparticles with Different Shapes. Arab. J. Chem. 2019, 12, 1823–1838. [Google Scholar] [CrossRef]
- Zhu, K.; Tian, H.; Zheng, X.; Wang, L.; Wang, X. Triangular Silver Nanoparticles Loaded on Graphene Oxide Sheets as an Antibacterial Film. Mater. Lett. 2020, 275, 128162. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambaye, T.G. Synthesis Paradigm and Applications of Silver Nanoparticles (AgNPs), a Review. Sustain. Mater. Technol. 2017, 13, 18–23. [Google Scholar] [CrossRef]
- Shnoudeh, A.J.; Hamad, I.; Abdo, R.W.; Qadumii, L.; Jaber, A.Y.; Surchi, H.S.; Alkelany, S.Z. Synthesis, Characterization, and Applications of Metal Nanoparticles. In Biomaterials and Bionanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 527–612. ISBN 978-0-12-814427-5. [Google Scholar]
- Goel, M.; Sharma, A.; Sharma, B. Recent Advances in Biogenic Silver Nanoparticles for Their Biomedical Applications. Sustain. Chem. 2023, 4, 61–94. [Google Scholar] [CrossRef]
- Almatroudi, A. Silver Nanoparticles: Synthesis, Characterisation and Biomedical Applications. Open Life Sci. 2020, 15, 819–839. [Google Scholar] [CrossRef]
- Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 26 August 2024).
- Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Lukáčová Bujňáková, Z.; Balážová, Ľ.; Tkáčiková, Ľ. Green Synthesis of Silver Nanoparticles with Antibacterial Activity Using Various Medicinal Plant Extracts: Morphology and Antibacterial Efficacy. Nanomaterials 2021, 11, 1005. [Google Scholar] [CrossRef]
- Barabadi, H.; Mojab, F.; Vahidi, H.; Marashi, B.; Talank, N.; Hosseini, O.; Saravanan, M. Green Synthesis, Characterization, Antibacterial and Biofilm Inhibitory Activity of Silver Nanoparticles Compared to Commercial Silver Nanoparticles. Inorg. Chem. Commun. 2021, 129, 108647. [Google Scholar] [CrossRef]
- Said, A.; Abu-Elghait, M.; Atta, H.M.; Salem, S.S. Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia Inermis Against Common Pathogens from Urinary Tract Infection. Appl. Biochem. Biotechnol. 2024, 196, 85–98. [Google Scholar] [CrossRef]
- Aita, G.M.; Moon, Y.H. Green Synthesis of Silver Nanoparticles from Energy Cane Bagasse Hydrolysate: Antimicrobial and Antibiofilm Properties. Sugar Tech. 2024, 26, 1108–1123. [Google Scholar] [CrossRef]
- Chegini, P.; Salimi, F.; Zare, E.N.; Farrokh, P. Biogenic Synthesis of Antibacterial and Antioxidant Silver Nanoparticles Using Enterococcus Faecium DU.FS-Derived Exopolysaccharides: A Sustainable Approach for Green Nanotechnology. J. Polym. Environ. 2024, 1–16. [Google Scholar] [CrossRef]
- Mussin, J.; Giusiano, G. Synergistic Antimicrobial Activity of Biogenic Silver Nanoparticles and Acanthospermum Australe Essential Oil against Skin Infection Pathogens. Antibiotics 2024, 13, 674. [Google Scholar] [CrossRef]
- Ipe, D.S.; Kumar, P.T.S.; Love, R.M.; Hamlet, S.M. Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics. Front. Microbiol. 2020, 11, 1074. [Google Scholar] [CrossRef]
- Khalil, M.A.; El Maghraby, G.M.; Sonbol, F.I.; Allam, N.G.; Ateya, P.S.; Ali, S.S. Enhanced Efficacy of Some Antibiotics in Presence of Silver Nanoparticles Against Multidrug Resistant Pseudomonas Aeruginosa Recovered from Burn Wound Infections. Front. Microbiol. 2021, 12, 648560. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.; Shademani, A.; Dosanjh, M.; Dietrich, C.; Pryjma, M.; Lambert, D.M.; Thompson, C.J. Combinations of Cannabinoids with Silver Salts or Silver Nanoparticles for Synergistic Antibiotic Effects against Methicillin-Resistant Staphylococcus aureus. Antibiotics 2024, 13, 473. [Google Scholar] [CrossRef]
- Baselga, M.; Uranga-Murillo, I.; De Miguel, D.; Arias, M.; Sebastián, V.; Pardo, J.; Arruebo, M. Silver Nanoparticles–Polyethyleneimine-Based Coatings with Antiviral Activity against SARS-CoV-2: A New Method to Functionalize Filtration Media. Materials 2022, 15, 4742. [Google Scholar] [CrossRef]
- Ismail, G.A.; El-Sheekh, M.M.; Samy, R.M.; Gheda, S.F. Antimicrobial, Antioxidant, and Antiviral Activities of Biosynthesized Silver Nanoparticles by Phycobiliprotein Crude Extract of the Cyanobacteria Spirulina Platensis and Nostoc Linckia. BioNanoScience 2021, 11, 355–370. [Google Scholar] [CrossRef]
- Al-Askar, A.A.; Aseel, D.G.; El-Gendi, H.; Sobhy, S.; Samy, M.A.; Hamdy, E.; El-Messeiry, S.; Behiry, S.I.; Elbeaino, T.; Abdelkhalek, A. Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (Punica granatum L.) Peel Extract against Tobacco Mosaic Virus. Plants 2023, 12, 2103. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Yassin, Y.; Abdel-Megeed, A.; Abd-Elsalam, K.; Moawad, H.; Behiry, S. Rhizobium Leguminosarum Bv. Viciae-Mediated Silver Nanoparticles for Controlling Bean Yellow Mosaic Virus (BYMV) Infection in Faba Bean Plants. Plants 2022, 12, 45. [Google Scholar] [CrossRef]
- Wang, D.; Yin, C.; Bai, Y.; Zhou, M.; Wang, N.; Tong, C.; Yang, Y.; Liu, B. Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein. Biomolecules 2024, 14, 1152. [Google Scholar] [CrossRef]
- Hashem, A.H.; Saied, E.; Amin, B.H.; Alotibi, F.O.; Al-Askar, A.A.; Arishi, A.A.; Elkady, F.M.; Elbahnasawy, M.A. Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J. Funct. Biomater. 2022, 13, 242. [Google Scholar] [CrossRef]
- Mare, A.D.; Ciurea, C.N.; Man, A.; Mareș, M.; Toma, F.; Berța, L.; Tanase, C. In Vitro Antifungal Activity of Silver Nanoparticles Biosynthesized with Beech Bark Extract. Plants 2021, 10, 2153. [Google Scholar] [CrossRef]
- Li, L.; Pan, H.; Deng, L.; Qian, G.; Wang, Z.; Li, W.; Zhong, C. The Antifungal Activity and Mechanism of Silver Nanoparticles against Four Pathogens Causing Kiwifruit Post-Harvest Rot. Front. Microbiol. 2022, 13, 988633. [Google Scholar] [CrossRef]
- Liu, X.; Li, T.; Cui, X.; Tao, R.; Gao, Z. Antifungal Mechanism of Nanosilver Biosynthesized with Trichoderma Longibrachiatum and Its Potential to Control Muskmelon Fusarium Wilt. Sci. Rep. 2024, 14, 20242. [Google Scholar] [CrossRef]
- Vicencio-Salas Solís, C.; Zavaleta-Mancera, H.A.; García-Díaz, S.E.; García-Nava, R.; Trejo-Téllez, L.I.; Robledo-Paz, A. Green Synthesis of Silver Nanoparticles Using Cedrela Odorata and Their Fungicidal Activity against Fusarium Circinatum. J. Nanopart. Res. 2024, 26, 164. [Google Scholar] [CrossRef]
- Scandorieiro, S.; De Oliveira, N.R.; De Souza, M.; De Castro-Hoshino, L.V.; Baesso, M.L.; Nakazato, G.; Kobayashi, R.K.T.; Panagio, L.A.; Lonni, A.A.S.G. Nail Lacquer Containing Origanum Vulgare and Rosmarinus Officinalis Essential Oils and Biogenic Silver Nanoparticles for Onychomycosis: Development, Characterization, and Evaluation of Antifungal Efficacy. Antibiotics 2024, 13, 892. [Google Scholar] [CrossRef] [PubMed]
- Mouzahim, M.E.; Eddarai, E.M.; Eladaoui, S.; Guenbour, A.; Bellaouchou, A.; Zarrouk, A.; Boussen, R. Effect of Kaolin Clay and Ficus Carica Mediated Silver Nanoparticles on Chitosan Food Packaging Film for Fresh Apple Slice Preservation. Food Chem. 2023, 410, 135470. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, R.; Zhou, J.; Liu, Y. Multifunctional Chitosan/Grape Seed Extract/Silver Nanoparticle Composite for Food Packaging Application. Int. J. Biol. Macromol. 2022, 207, 152–160. [Google Scholar] [CrossRef]
- He, Y.; Li, H.; Fei, X.; Peng, L. Carboxymethyl Cellulose/Cellulose Nanocrystals Immobilized Silver Nanoparticles as an Effective Coating to Improve Barrier and Antibacterial Properties of Paper for Food Packaging Applications. Carbohydr. Polym. 2021, 252, 117156. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Almaghrabi, F.Q.; Alharbi, O.M.; Al-Harbi, A.D.M.; Alsulami, R.M.; Alhumairi, A.M. Antifungal Activities of Biogenic Silver Nanoparticles Mediated by Marine Algae: In Vitro and In Vivo Insights of Coating Tomato Fruit to Protect against Penicillium Italicum Blue Mold. Mar. Drugs 2024, 22, 225. [Google Scholar] [CrossRef]
- Lateef, A.; Adelere, I.A.; Gueguim-Kana, E.B.; Beukes, L.S.; Matyumza, N. Evaluation of Feather Hydrolysate-Mediated Silver Nanoparticles as Biofertilizers for the Enhancement of Vegetative Growth and Nutraceutical Properties of Vegetables. Nanotechnol. Environ. Eng. 2024, 9, 47–65. [Google Scholar] [CrossRef]
- Mosa, W.F.A.; El-Shehawi, A.M.; Mackled, M.I.; Salem, M.Z.M.; Ghareeb, R.Y.; Hafez, E.E.; Behiry, S.I.; Abdelsalam, N.R. Productivity Performance of Peach Trees, Insecticidal and Antibacterial Bioactivities of Leaf Extracts as Affected by Nanofertilizers Foliar Application. Sci. Rep. 2021, 11, 10205. [Google Scholar] [CrossRef]
- Pintos, B.; De Diego, H.; Gomez-Garay, A. Nanopriming-Induced Enhancement of Cucumber Seedling Development: Exploring Biochemical and Physiological Effects of Silver Nanoparticles. Agronomy 2024, 14, 1866. [Google Scholar] [CrossRef]
- Danish, M.; Shahid, M.; Ahamad, L.; Raees, K.; Atef Hatamleh, A.; Al-Dosary, M.A.; Mohamed, A.; Al-Wasel, Y.A.; Singh, U.B.; Danish, S. Nano-Pesticidal Potential of Cassia fistula (L.) Leaf Synthesized Silver Nanoparticles (Ag@CfL-NPs): Deciphering the Phytopathogenic Inhibition and Growth Augmentation in Solanum lycopersicum (L.). Front. Microbiol. 2022, 13, 985852. [Google Scholar] [CrossRef]
- Zavala-Zapata, V.; Ramírez-Barrón, S.N.; Sánchez-Borja, M.; Aguirre-Uribe, L.A.; Delgado-Ortiz, J.C.; Sánchez-Peña, S.R.; Mayo-Hernández, J.; García-López, J.I.; Vargas-Tovar, J.A.; Hernández-Juárez, A. Insecticide Efficacy of Green Synthesis Silver Nanoparticles on Diaphorina Citri Kuwayama (Hemiptera: Liviidae). Insects 2024, 15, 469. [Google Scholar] [CrossRef]
- Aldakheel, F.; Mohsen, D.; El Sayed, M.; Alawam, K.; Binshaya, A.; Alduraywish, S. Silver Nanoparticles Loaded on Chitosan-g-PVA Hydrogel for the Wound-Healing Applications. Molecules 2023, 28, 3241. [Google Scholar] [CrossRef]
- Huang, Y.; Bai, L.; Yang, Y.; Yin, Z.; Guo, B. Biodegradable Gelatin/Silver Nanoparticle Composite Cryogel with Excellent Antibacterial and Antibiofilm Activity and Hemostasis for Pseudomonas Aeruginosa-Infected Burn Wound Healing. J. Colloid Interface Sci. 2022, 608, 2278–2289. [Google Scholar] [CrossRef]
- Zhang, K.; Lui, V.C.H.; Chen, Y.; Lok, C.N.; Wong, K.K.Y. Delayed Application of Silver Nanoparticles Reveals the Role of Early Inflammation in Burn Wound Healing. Sci. Rep. 2020, 10, 6338. [Google Scholar] [CrossRef] [PubMed]
- Bîrcă, A.C.; Gherasim, O.; Niculescu, A.-G.; Grumezescu, A.M.; Vasile, B.Ș.; Mihaiescu, D.E.; Neacșu, I.A.; Andronescu, E.; Trușcă, R.; Holban, A.M.; et al. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int. J. Mol. Sci. 2024, 25, 5196. [Google Scholar] [CrossRef]
- Guo, L.; Xu, Y.; Xu, Q.; Jin, L. Nanocellulose-Lignin Films Incorporating AgNPs for Potential Wound Dressing: Green Synthesis, Antioxidant Ability, Antibacterial Capability and Biocompatibility. Cellulose 2024, 31, 7569–7585. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.; Deng, F.; Shen, L.; Zhao, Z.; Peng, S.; Shuai, C. A Bifunctional Bone Scaffold Combines Osteogenesis and Antibacterial Activity via in Situ Grown Hydroxyapatite and Silver Nanoparticles. Bio-Des. Manuf. 2021, 4, 452–468. [Google Scholar] [CrossRef]
- Sadan, M.; Naem, M.; Tawfeek, H.; Khodier, M.; Zeitoun, M.; Khodery, S.; Alkhamiss, A.; Hassan, Y.; Abdellatif, A. Can Silver Nanoparticles Stabilized by Fenugreek (Trigonella Foenm-Graecum) Improve Tibial Bone Defects Repair in Rabbits? A Preliminary Study. Open Vet. J. 2024, 14, 1281. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Zhang, M.; He, J.; Zheng, B.; Liu, F.; Zhao, Z.; Liu, Y. Use of Silver Nanoparticle–Gelatin/Alginate Scaffold to Repair Skull Defects. Coatings 2020, 10, 948. [Google Scholar] [CrossRef]
- Abdelmoneim, D.; Coates, D.; Porter, G.; Schmidlin, P.; Li, K.C.; Botter, S.; Lim, K.; Duncan, W. In Vitro and in Vivo Investigation of Antibacterial Silver Nanoparticles Functionalized Bone Grafting Substitutes. J. Biomed. Mater. Res. A 2024. [Google Scholar] [CrossRef]
- Buchhorn De Freitas, S.; Clair Pinto Seixas Neto, A.; Aparecido Panagio, L.; Pereira Soares, M.; Drawanz Hartwig, D. Hypothetical Adhesin CAM87009.1 Formulated in Alum or Biogenic Silver Nanoparticles Protects Mice from Lethal Infection by Multidrug-Resistant Acinetobacter Baumannii. Vaccine 2024, 42, 3802–3810. [Google Scholar] [CrossRef]
- Sekhi, J.; AL-Samarraae, A.A. Propolis Silver Nanoparticles as an Adjuvant in Immunization of Rats with Citrobactor Freundii Antigens. Arch. Razi Inst. 2023, 78, 973–979. [Google Scholar]
- Martín-Faivre, L.; Prince, L.; Cornu, C.; Villeret, B.; Sanchez-Guzman, D.; Rouzet, F.; Sallenave, J.-M.; Garcia-Verdugo, I. Pulmonary Delivery of Silver Nanoparticles Prevents Influenza Infection by Recruiting and Activating Lymphoid Cells. Biomaterials 2025, 312, 122721. [Google Scholar] [CrossRef]
- Jini, D.; Sharmila, S. Green Synthesis of Silver Nanoparticles from Allium Cepa and Its in Vitro Antidiabetic Activity. Mater. Today Proc. 2020, 22, 432–438. [Google Scholar] [CrossRef]
- Nagaraja, S.; Ahmed, S.S.; D. R., B.; Goudanavar, P.; M., R.K.; Fattepur, S.; Meravanige, G.; Shariff, A.; Shiroorkar, P.N.; Habeebuddin, M.; et al. Green Synthesis and Characterization of Silver Nanoparticles of Psidium Guajava Leaf Extract and Evaluation for Its Antidiabetic Activity. Molecules 2022, 27, 4336. [Google Scholar] [CrossRef]
- Jini, D.; Sharmila, S.; Anitha, A.; Pandian, M.; Rajapaksha, R.M.H. In Vitro and in Silico Studies of Silver Nanoparticles (AgNPs) from Allium Sativum against Diabetes. Sci. Rep. 2022, 12, 22109. [Google Scholar] [CrossRef]
- Younis, N.S.; Mohamed, M.E.; El Semary, N.A. Green Synthesis of Silver Nanoparticles by the Cyanobacteria Synechocystis Sp.: Characterization, Antimicrobial and Diabetic Wound-Healing Actions. Mar. Drugs 2022, 20, 56. [Google Scholar] [CrossRef]
- Capanema, N.S.V.; Mansur, A.A.P.; Carvalho, S.M.; Martins, T.; Gonçalves, M.S.; Andrade, R.S.; Dorneles, E.M.S.; Lima, L.C.D.; de Alvarenga, É.L.F.C.; Da Fonseca, E.V.B.; et al. Nanosilver-Functionalized Hybrid Hydrogels of Carboxymethyl Cellulose/Poly(Vinyl Alcohol) with Antibacterial Activity for Prevention and Therapy of Infections of Diabetic Chronic Wounds. Polymers 2023, 15, 4542. [Google Scholar] [CrossRef] [PubMed]
- Geremew, A.; Gonzalles, J.; Peace, E.; Woldesenbet, S.; Reeves, S.; Brooks, N.; Carson, L. Green Synthesis of Novel Silver Nanoparticles Using Salvia Blepharophylla and Salvia Greggii: Antioxidant and Antidiabetic Potential and Effect on Foodborne Bacterial Pathogens. Int. J. Mol. Sci. 2024, 25, 904. [Google Scholar] [CrossRef]
- Rehman, G.; Umar, M.; Shah, N.; Hamayun, M.; Ali, A.; Khan, W.; Khan, A.; Ahmad, S.; Alrefaei, A.F.; Almutairi, M.H.; et al. Green Synthesis and Characterization of Silver Nanoparticles Using Azadirachta Indica Seeds Extract: In Vitro and In Vivo Evaluation of Anti-Diabetic Activity. Pharmaceuticals 2023, 16, 1677. [Google Scholar] [CrossRef]
- Rani, P.; Kumar, N.; Perinmbam, K.; Devanesan, S.; AlSalhi, M.S.; Asemi, N.; Nicoletti, M. Synthesis of Silver Nanoparticles by Leaf Extract of Cucumis melo L. and Their In Vitro Antidiabetic and Anticoccidial Activities. Molecules 2023, 28, 4995. [Google Scholar] [CrossRef]
- Jiménez-Ramírez, A.J.; Martínez-Martínez, R.E.; Ayala-Herrera, J.L.; Zaragoza-Contreras, E.A.; Domínguez-Pérez, R.A.; Reyes-López, S.Y.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Silva-Benítez, E.L.; Espinosa-Cristóbal, L.F. Antimicrobial Activity of Silver Nanoparticles against Clinical Biofilms from Patients with and without Dental Caries. J. Nanomater. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Takamiya, A.S.; Monteiro, D.R.; Gorup, L.F.; Silva, E.A.; De Camargo, E.R.; Gomes-Filho, J.E.; De Oliveira, S.H.P.; Barbosa, D.B. Biocompatible Silver Nanoparticles Incorporated in Acrylic Resin for Dental Application Inhibit Candida Albicans Biofilm. Mater. Sci. Eng. C 2021, 118, 111341. [Google Scholar] [CrossRef]
- Gu, J.; An, Q.; Huang, M.; Ge, P.; Xue, C. Self-Cleaning Antibacterial Composite Coating of Fluorinated Acrylic Resin and Ag/SiO2 Nanoparticles with Quaternary Ammonium. Polymers 2024, 16, 1885. [Google Scholar] [CrossRef] [PubMed]
- Arif, W.; Rana, N.; Saleem, I.; Tanweer, T.; Khan, M.; Alshareef, S.; Sheikh, H.; Alaryani, F.; AL-Kattan, M.; Alatawi, H.; et al. Antibacterial Activity of Dental Composite with Ciprofloxacin Loaded Silver Nanoparticles. Molecules 2022, 27, 7182. [Google Scholar] [CrossRef]
- Garibay-Alvarado, J.A.; Garcia-Zamarron, D.J.; Silva-Holguín, P.N.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Espinosa-Cristóbal, L.F.; Ruíz-Baltazar, Á.D.J.; Reyes-López, S.Y. Polymer-Based Hydroxyapatite–Silver Composite Resin with Enhanced Antibacterial Activity for Dental Applications. Polymers 2024, 16, 2017. [Google Scholar] [CrossRef]
- Takallu, S.; Kakian, F.; Bazargani, A.; Khorshidi, H.; Mirzaei, E. Development of Antibacterial Collagen Membranes with Optimal Silver Nanoparticle Content for Periodontal Regeneration. Sci. Rep. 2024, 14, 7262. [Google Scholar] [CrossRef]
- Holguín-Meráz, C.; Martínez-Martínez, R.E.; Zaragoza-Contreras, E.A.; Domínguez-Pérez, R.A.; Reyes-López, S.Y.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Silva-Benítez, E.D.L.; Molina-Frechero, N.; Espinosa-Cristóbal, L.F. Antibacterial Effect of Silver Nanoparticles against Oral Biofilms in Subjects with Motor and Intellectual Disabilities. J. Funct. Biomater. 2024, 15, 191. [Google Scholar] [CrossRef]
- Navarrete-Olvera, K.; Niño-Martínez, N.; De Alba-Montero, I.; Patiño-Marín, N.; Ruiz, F.; Bach, H.; Martínez-Castañón, G.-A. The Push-Out Bond Strength, Surface Roughness, and Antimicrobial Properties of Endodontic Bioceramic Sealers Supplemented with Silver Nanoparticles. Molecules 2024, 29, 4422. [Google Scholar] [CrossRef]
- Jasso-Ruiz, I.; Velazquez-Enriquez, U.; Scougall-Vilchis, R.J.; Morales-Luckie, R.A.; Sawada, T.; Yamaguchi, R. Silver Nanoparticles in Orthodontics, a New Alternative in Bacterial Inhibition: In Vitro Study. Prog. Orthod. 2020, 21, 24. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Muhammad, N.; Ali, A.; Mutahir, Z.; Khan, A.S.; Sharif, F.; Shah, A.T.; Haq, Z.U.; Liaqat, S.; Khan, M.A. Effect of Augmentin-Coated Silver Nanoparticles on Biological and Mechanical Properties of Orthodontic Bracket Cement. Mater. Technol. 2022, 37, 2983–2994. [Google Scholar] [CrossRef]
- Guo, C.; Cui, W.; Wang, X.; Lu, X.; Zhang, L.; Li, X.; Li, W.; Zhang, W.; Chen, J. Poly-L-Lysine/Sodium Alginate Coating Loading Nanosilver for Improving the Antibacterial Effect and Inducing Mineralization of Dental Implants. ACS Omega 2020, 5, 10562–10571. [Google Scholar] [CrossRef]
- Wypij, M.; Jędrzejewski, T.; Trzcińska-Wencel, J.; Ostrowski, M.; Rai, M.; Golińska, P. Green Synthesized Silver Nanoparticles: Antibacterial and Anticancer Activities, Biocompatibility, and Analyses of Surface-Attached Proteins. Front. Microbiol. 2021, 12, 632505. [Google Scholar] [CrossRef]
- Pavan, S.R.; Venkatesan, J.; Prabhu, A. Anticancer Activity of Silver Nanoparticles from the Aqueous Extract of Dictyota Ciliolata on Non-Small Cell Lung Cancer Cells. J. Drug Deliv. Sci. Technol. 2022, 74, 103525. [Google Scholar] [CrossRef]
- Naik, J.; David, M. ROS Mediated Apoptosis and Cell Cycle Arrest in Human Lung Adenocarcinoma Cell Line by Silver Nanoparticles Synthesized Using Swietenia Macrophylla Seed Extract. J. Drug Deliv. Sci. Technol. 2023, 80, 104084. [Google Scholar] [CrossRef]
- Datkhile, K.D.; Durgawale, P.P.; Jagdale, N.J.; More, A.L.; Patil, S.R. Biosynthesized Silver Nanoparticles of Cissus Woodrowii Inhibit Proliferation of Cancer Cells through Induction of Apoptosis Pathway. Cancer Nanotechnol. 2024, 15, 43. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Shweqa, N.S.; Abdelmigid, H.M.; Alyamani, A.A.; Elshafey, N.; Soliman, H.M.; Heikal, Y.M. Myco-Biosynthesis of Silver Nanoparticles, Optimization, Characterization, and In Silico Anticancer Activities by Molecular Docking Approach against Hepatic and Breast Cancer. Biomolecules 2024, 14, 1170. [Google Scholar] [CrossRef] [PubMed]
- Marcu Spinu, S.; Dragoi Cudalbeanu, M.; Avram, I.; Fierascu, R.C.; Rosu, P.M.; Morosanu, A.-M.; Cimpeanu, C.L.; Babeanu, N.; Ortan, A. Antibacterial and Antitumoral Potentials of Phytosynthesized Silver/Silver Oxide Nanoparticles Using Tomato Flower Waste. Int. J. Mol. Sci. 2024, 25, 9871. [Google Scholar] [CrossRef]
- Meireles, L.M.; Silva, R.M.; Da Silva, R.C.; Okumura, L.L.; Moreira, R.P.L.; Silva, T.A. Low-Cost Electrochemical Sensor for Ciprofloxacin Antibiotic Based on Green-Synthesized Silver Nanoparticles and Carbon Black. J. Solid State Electrochem. 2024, 1–12. [Google Scholar] [CrossRef]
- Juma, M.W.; Birech, Z.; Mwenze, N.M.; Ondieki, A.M.; Maaza, M.; Mokhotjwa, S.D. Localized Surface Plasmon Resonance Sensing of Trenbolone Acetate Dopant Using Silver Nanoparticles. Sci. Rep. 2024, 14, 5721. [Google Scholar] [CrossRef]
- Fu, C.; Jiang, S.; Zhuo, S.; Qiu, J.; Luo, H.; Wu, Y.; Li, Y.; Jung, Y.M. Covalent Organic Framework–Hybridized Ag Nanoparticles as SERS Substrate for Highly Sensitive Detection of DNA Bases. Anal. Bioanal. Chem. 2024, 416, 5295–5302. [Google Scholar] [CrossRef]
- Arun Kumar, K.M.; Ashok Kumar, E.; Wang, T.-J.; Kokulnathan, T.; Chang, Y.-H. Ultrasensitive and Reusable SERS Substrates Based on Ag-Photodecorated Mn2O3 Microspheres for Nitrofurazone Detection. ACS Sustain. Chem. Eng. 2023, 11, 15808–15817. [Google Scholar] [CrossRef]
- Khudhur, H.R.; Al-Hasnawy, R.S.; Rostaminia, A.; Abed, S.H.; Kadhim, S.A.; Khojasteh, H.; Eskandari, V. Detection of Molecular Vibrations of Shigella Pathogenic Gram-Negative Bacterium with Surface Enhanced Raman Spectroscopy (SERS) Biosensors and Investigation of Its Antibacterial Activity with Silver Nanoparticles Prepared by the Tollens Method in a Laboratory Environment. BioNanoScience 2024, 14, 2750–2761. [Google Scholar] [CrossRef]
- Sharma, P.; Hasan, M.R.; Naikoo, U.M.; Khatoon, S.; Pilloton, R.; Narang, J. Aptamer Based on Silver Nanoparticle-Modified Flexible Carbon Ink Printed Electrode for the Electrochemical Detection of Chikungunya Virus. Biosensors 2024, 14, 344. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Matijević, T.; Juzbašić, M.; Antolović-Požgain, A.; Škrlec, I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms 2020, 8, 1400. [Google Scholar] [CrossRef]
- Anees Ahmad, S.; Sachi Das, S.; Khatoon, A.; Tahir Ansari, M.; Afzal, M.; Saquib Hasnain, M.; Kumar Nayak, A. Bactericidal Activity of Silver Nanoparticles: A Mechanistic Review. Mater. Sci. Energy Technol. 2020, 3, 756–769. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018, 7, 1701503. [Google Scholar] [CrossRef]
- Duval, R.E.; Gouyau, J.; Lamouroux, E. Limitations of Recent Studies Dealing with the Antibacterial Properties of Silver Nanoparticles: Fact and Opinion. Nanomaterials 2019, 9, 1775. [Google Scholar] [CrossRef]
- Kuang, T.; Deng, L.; Shen, S.; Deng, H.; Shen, Z.; Liu, Z.; Zhao, Z.; Chen, F.; Zhong, M. Nano-Silver-Modified Polyphosphazene Nanoparticles with Different Morphologies: Design, Synthesis, and Evaluation of Antibacterial Activity. Chin. Chem. Lett. 2023, 34, 108584. [Google Scholar] [CrossRef]
- Acharya, D.; Pandey, P.; Mohanta, B. A Comparative Study on the Antibacterial Activity of Different Shaped Silver Nanoparticles. Chem. Pap. 2021, 75, 4907–4915. [Google Scholar] [CrossRef]
- Hong, X.; Wen, J.; Xiong, X.; Hu, Y. Shape Effect on the Antibacterial Activity of Silver Nanoparticles Synthesized via a Microwave-Assisted Method. Environ. Sci. Pollut. Res. 2016, 23, 4489–4497. [Google Scholar] [CrossRef]
- Shafiq, A.; Deshmukh, A.R.; AbouAitah, K.; Kim, B.-S. Green Synthesis of Controlled Shape Silver Nanostructures and Their Peroxidase, Catalytic Degradation, and Antibacterial Activity. J. Funct. Biomater. 2023, 14, 325. [Google Scholar] [CrossRef]
- Burdușel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. RSC Adv. 2019, 9, 2673–2702. [Google Scholar] [CrossRef]
- Mirghani, R.; Saba, T.; Khaliq, H.; Mitchell, J.; Do, L.; Chambi, L.; Diaz, K.; Kennedy, T.; Alkassab, K.; Huynh, T.; et al. Biofilms: Formation, Drug Resistance and Alternatives to Conventional Approaches. AIMS Microbiol. 2022, 8, 239–277. [Google Scholar] [CrossRef] [PubMed]
- More, P.R.; Pandit, S.; Filippis, A.D.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Jung, H.; Baek, Y.; Kim, B.; Lee, M.; Kim, H.; Kim, S. Antibacterial Activity of Green-Synthesized Silver Nanoparticles Using Areca Catechu Extract against Antibiotic-Resistant Bacteria. Nanomaterials 2021, 11, 205. [Google Scholar] [CrossRef]
- Chopade, B.A.; Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J. Synthesis, Optimization, and Characterization of Silver Nanoparticles from Acinetobacter Calcoaceticus and Their Enhanced Antibacterial Activity When Combined with Antibiotics. Int. J. Nanomed. 2013, 8, 4277–4290. [Google Scholar] [CrossRef]
- Wan, G.; Ruan, L.; Yin, Y.; Yang, T.; Ge, M.; Cheng, X. Effects of Silver Nanoparticles in Combination with Antibiotics on the Resistant Bacteria Acinetobacter Baumannii. Int. J. Nanomed. 2016, 11, 3789–3800. [Google Scholar] [CrossRef]
- Dove, A.S.; Dzurny, D.I.; Dees, W.R.; Qin, N.; Nunez Rodriguez, C.C.; Alt, L.A.; Ellward, G.L.; Best, J.A.; Rudawski, N.G.; Fujii, K.; et al. Silver Nanoparticles Enhance the Efficacy of Aminoglycosides against Antibiotic-Resistant Bacteria. Front. Microbiol. 2023, 13, 1064095. [Google Scholar] [CrossRef]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular Mechanisms of Antibiotic Resistance Revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef]
- Kaiser, K.G.; Delattre, V.; Frost, V.J.; Buck, G.W.; Phu, J.V.; Fernandez, T.G.; Pavel, I.E. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics 2023, 12, 1264. [Google Scholar] [CrossRef]
- Behdad, R.; Pargol, M.; Mirzaie, A.; Karizi, S.Z.; Noorbazargan, H.; Akbarzadeh, I. Efflux Pump Inhibitory Activity of Biologically Synthesized Silver Nanoparticles against Multidrug-resistant Acinetobacter Baumannii Clinical Isolates. J. Basic Microbiol. 2020, 60, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, M.; Xu, X.; Gao, P.; Xu, Z.; Zhang, Q.; Li, H.; Yan, A.; Kao, R.Y.-T.; Sun, H. Multi-Target Mode of Action of Silver against Staphylococcus Aureus Endows It with Capability to Combat Antibiotic Resistance. Nat. Commun. 2021, 12, 3331. [Google Scholar] [CrossRef]
- Jain, N.; Jain, P.; Rajput, D.; Patil, U.K. Green Synthesized Plant-Based Silver Nanoparticles: Therapeutic Prospective for Anticancer and Antiviral Activity. Micro Nano Syst. Lett. 2021, 9, 5. [Google Scholar] [CrossRef]
- Bekele, A.Z.; Gokulan, K.; Williams, K.M.; Khare, S. Dose and Size-Dependent Antiviral Effects of Silver Nanoparticles on Feline Calicivirus, a Human Norovirus Surrogate. Foodborne Pathog. Dis. 2016, 13, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver Nanoparticles as Potential Antiviral Agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.; Ansar, M.; Speshock, J.; Ivanciuc, T.; Qu, Y.; Casola, A.; Garofalo, R. Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses 2019, 11, 732. [Google Scholar] [CrossRef]
- Jeremiah, S.S.; Miyakawa, K.; Morita, T.; Yamaoka, Y.; Ryo, A. Potent Antiviral Effect of Silver Nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun. 2020, 533, 195–200. [Google Scholar] [CrossRef]
- Galdiero, S.; Rai, M.; Gade, A.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, M.; Gaikwad, S.; Ingle, A. Antiviral Activity of Mycosynthesized Silver Nanoparticles against Herpes Simplex Virus and Human Parainfluenza Virus Type 3. Int. J. Nanomed. 2013, 8, 4303–4314. [Google Scholar] [CrossRef]
- Orlowski, P.; Tomaszewska, E.; Gniadek, M.; Baska, P.; Nowakowska, J.; Sokolowska, J.; Nowak, Z.; Donten, M.; Celichowski, G.; Grobelny, J.; et al. Tannic Acid Modified Silver Nanoparticles Show Antiviral Activity in Herpes Simplex Virus Type 2 Infection. PLoS ONE 2014, 9, e104113. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Park, T.-J.; Rohit, J.V.; Koduru, J.R. Antimicrobial Activity of Silver Nanoparticles. In Nanoparticles in Pharmacotherapy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 461–484. ISBN 978-0-12-816504-1. [Google Scholar]
- Osonga, F.J.; Akgul, A.; Yazgan, I.; Akgul, A.; Eshun, G.B.; Sakhaee, L.; Sadik, O.A. Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides. Molecules 2020, 25, 2682. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, A.K. Introduction to Foodborne Pathogens. In Foodborne Microbial Pathogens; Food Science Text Series; Springer: New York, NY, USA, 2018; pp. 1–23. ISBN 978-1-4939-7347-7. [Google Scholar]
- Anvar, A.A.; Ahari, H.; Ataee, M. Antimicrobial Properties of Food Nanopackaging: A New Focus on Foodborne Pathogens. Front. Microbiol. 2021, 12, 690706. [Google Scholar] [CrossRef]
- Pradhan, N.; Singh, S.; Ojha, N.; Shrivastava, A.; Barla, A.; Rai, V.; Bose, S. Facets of Nanotechnology as Seen in Food Processing, Packaging, and Preservation Industry. BioMed Res. Int. 2015, 2015, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Realini, C.E.; Marcos, B. Active and Intelligent Packaging Systems for a Modern Society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Dash, K.; Deka, P.; Bangar, S.; Chaudhary, V.; Trif, M.; Rusu, A. Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers 2022, 14, 521. [Google Scholar] [CrossRef] [PubMed]
- Istiqola, A.; Syafiuddin, A. A Review of Silver Nanoparticles in Food Packaging Technologies: Regulation, Methods, Properties, Migration, and Future Challenges. J. Chin. Chem. Soc. 2020, 67, 1942–1956. [Google Scholar] [CrossRef]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-hindi, R. Antimicrobial Food Packaging Based on Sustainable Bio-Based Materials for Reducing Foodborne Pathogens: A Review. Food Chem. 2020, 310, 125915. [Google Scholar] [CrossRef]
- Liu, X.; Liao, W.; Xia, W. Recent Advances in Chitosan Based Bioactive Materials for Food Preservation. Food Hydrocoll. 2023, 140, 108612. [Google Scholar] [CrossRef]
- Ediyilyam, S.; George, B.; Shankar, S.S.; Dennis, T.T.; Wacławek, S.; Černík, M.; Padil, V.V.T. Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications. Polymers 2021, 13, 1680. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Q.; Gao, Y.; Wan, S.; Meng, F.; Weng, W.; Zhang, Y. Characterization of Silver Nanoparticles Loaded Chitosan/Polyvinyl Alcohol Antibacterial Films for Food Packaging. Food Hydrocoll. 2023, 136, 108305. [Google Scholar] [CrossRef]
- Khan, S.; Zahoor, M.; Sher Khan, R.; Ikram, M.; Islam, N.U. The Impact of Silver Nanoparticles on the Growth of Plants: The Agriculture Applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef]
- Mahapatra, D.M.; Satapathy, K.C.; Panda, B. Biofertilizers and Nanofertilizers for Sustainable Agriculture: Phycoprospects and Challenges. Sci. Total Environ. 2022, 803, 149990. [Google Scholar] [CrossRef] [PubMed]
- Fatima, F.; Hashim, A.; Anees, S. Efficacy of Nanoparticles as Nanofertilizer Production: A Review. Environ. Sci. Pollut. Res. 2021, 28, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Jaskulski, D.; Jaskulska, I.; Majewska, J.; Radziemska, M.; Bilgin, A.; Brtnicky, M. Silver Nanoparticles (AgNPs) in Urea Solution in Laboratory Tests and Field Experiments with Crops and Vegetables. Materials 2022, 15, 870. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Raza, M.A.; Rizwan, M.; Tariq, R.; Ali, S.; Huang, L. Silver Nanoparticles Improved the Plant Growth and Reduced the Sodium and Chlorine Accumulation in Pearl Millet: A Life Cycle Study. Environ. Sci. Pollut. Res. 2021, 28, 13712–13724. [Google Scholar] [CrossRef] [PubMed]
- Ali Naghizadeh, A.; Zarandi, M.M.; Khoshroo, S.M.R.; Davarani, F.H. Investigating the Effect of Green Silver Nanoparticles on Seed Germination and Physiological Parameters of Spinach (Spinacia oleracea L.) under Salt Stress. Russ. J. Plant Physiol. 2024, 71, 102. [Google Scholar] [CrossRef]
- Tokarz, K.M.; Mazur, T.; Hanula, M.; Makowski, W.; Zawal, P.; Jędrzejczyk, R.J.; Szacilowski, K.; Mazur, S.; Wesołowski, W.; Tokarz, B. Effect of Silver Nanoparticles Foliar Application on the Nutritional Properties of Potato Tubers. Sci. Rep. 2024, 14, 21753. [Google Scholar] [CrossRef]
- Jiang, T.; Huang, J.; Peng, J.; Wang, Y.; Du, L. Characterization of Silver Nanoparticles Synthesized by the Aqueous Extract of Zanthoxylum Nitidum and Its Herbicidal Activity against Bidens pilosa L. Nanomaterials 2023, 13, 1637. [Google Scholar] [CrossRef]
- Barroso, A.; Mestre, H.; Ascenso, A.; Simões, S.; Reis, C. Nanomaterials in Wound Healing: From Material Sciences to Wound Healing Applications. Nano Sel. 2020, 1, 443–460. [Google Scholar] [CrossRef]
- Kumar, S.S.D.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Recent Advances on Silver Nanoparticle and Biopolymer-Based Biomaterials for Wound Healing Applications. Int. J. Biol. Macromol. 2018, 115, 165–175. [Google Scholar] [CrossRef]
- Shehabeldine, A.M.; Salem, S.S.; Ali, O.M.; Abd-Elsalam, K.A.; Elkady, F.M.; Hashem, A.H. Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J. Fungi 2022, 8, 612. [Google Scholar] [CrossRef]
- Rigo, C.; Ferroni, L.; Tocco, I.; Roman, M.; Munivrana, I.; Gardin, C.; Cairns, W.; Vindigni, V.; Azzena, B.; Barbante, C.; et al. Active Silver Nanoparticles for Wound Healing. Int. J. Mol. Sci. 2013, 14, 4817–4840. [Google Scholar] [CrossRef]
- Maghimaa, M.; Alharbi, S.A. Green Synthesis of Silver Nanoparticles from Curcuma Longa L. and Coating on the Cotton Fabrics for Antimicrobial Applications and Wound Healing Activity. J. Photochem. Photobiol. B 2020, 204, 111806. [Google Scholar] [CrossRef] [PubMed]
- Chinnasamy, G.; Chandrasekharan, S.; Koh, T.W.; Bhatnagar, S. Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles from Azadirachta Indica. Front. Microbiol. 2021, 12, 611560. [Google Scholar] [CrossRef] [PubMed]
- Bhubhanil, S.; Talodthaisong, C.; Khongkow, M.; Namdee, K.; Wongchitrat, P.; Yingmema, W.; Hutchison, J.A.; Lapmanee, S.; Kulchat, S. Enhanced Wound Healing Properties of Guar Gum/Curcumin-Stabilized Silver Nanoparticle Hydrogels. Sci. Rep. 2021, 11, 21836. [Google Scholar] [CrossRef] [PubMed]
- Damle, A.; Sundaresan, R.; Rajwade, J.M.; Srivastava, P.; Naik, A. A Concise Review on Implications of Silver Nanoparticles in Bone Tissue Engineering. Biomater. Adv. 2022, 141, 213099. [Google Scholar] [CrossRef]
- Zhang, R.; Lee, P.; Lui, V.C.H.; Chen, Y.; Liu, X.; Lok, C.N.; To, M.; Yeung, K.W.K.; Wong, K.K.Y. Silver Nanoparticles Promote Osteogenesis of Mesenchymal Stem Cells and Improve Bone Fracture Healing in Osteogenesis Mechanism Mouse Model. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1949–1959. [Google Scholar] [CrossRef]
- Abd-Elkawi, M.; Sharshar, A.; Misk, T.; Elgohary, I.; Gadallah, S. Effect of Calcium Carbonate Nanoparticles, Silver Nanoparticles and Advanced Platelet-Rich Fibrin for Enhancing Bone Healing in a Rabbit Model. Sci. Rep. 2023, 13, 15232. [Google Scholar] [CrossRef]
- Sun, C.; Che, Y.; Lu, S. Preparation and Application of Collagen Scaffold-Encapsulated Silver Nanoparticles and Bone Morphogenetic Protein 2 for Enhancing the Repair of Infected Bone. Biotechnol. Lett. 2015, 37, 467–473. [Google Scholar] [CrossRef]
- Ribeiro, M.; Ferraz, M.P.; Monteiro, F.J.; Fernandes, M.H.; Beppu, M.M.; Mantione, D.; Sardon, H. Antibacterial Silk Fibroin/Nanohydroxyapatite Hydrogels with Silver and Gold Nanoparticles for Bone Regeneration. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 231–239. [Google Scholar] [CrossRef]
- Kaushal, A.; Khurana, I.; Yadav, P.; Allawadhi, P.; Banothu, A.K.; Neeradi, D.; Thalugula, S.; Barani, P.J.; Naik, R.R.; Navik, U.; et al. Advances in Therapeutic Applications of Silver Nanoparticles. Chem. Biol. Interact. 2023, 382, 110590. [Google Scholar] [CrossRef] [PubMed]
- Facciolà, A.; Visalli, G.; Laganà, A.; Di Pietro, A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines 2022, 10, 819. [Google Scholar] [CrossRef]
- Sanchez-Guzman, D.; Le Guen, P.; Villeret, B.; Sola, N.; Le Borgne, R.; Guyard, A.; Kemmel, A.; Crestani, B.; Sallenave, J.-M.; Garcia-Verdugo, I. Silver Nanoparticle-Adjuvanted Vaccine Protects against Lethal Influenza Infection through Inducing BALT and IgA-Mediated Mucosal Immunity. Biomaterials 2019, 217, 119308. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, S.D.; Ideris, A.; Zakaria, Z.; Shameli, K.; Moeini, H.; Omar, A.R. Cytotoxicity and Immunological Responses Following Oral Vaccination of Nanoencapsulated Avian Influenza Virus H5 DNA Vaccine with Green Synthesis Silver Nanoparticles. J. Control. Release 2012, 161, 116–123. [Google Scholar] [CrossRef]
- Lara, H.H.; Ixtepan-Turrent, L.; Garza Treviño, E.N.; Singh, D.K. Use of Silver Nanoparticles Increased Inhibition of Cell-Associated HIV-1 Infection by Neutralizing Antibodies Developed against HIV-1 Envelope Proteins. J. Nanobiotechnol. 2011, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Javed, B.; Ikram, M.; Farooq, F.; Sultana, T.; Mashwani, Z.-R.; Raja, N.I. Biogenesis of Silver Nanoparticles to Treat Cancer, Diabetes, and Microbial Infections: A Mechanistic Overview. Appl. Microbiol. Biotechnol. 2021, 105, 2261–2275. [Google Scholar] [CrossRef]
- Choudhury, H.; Pandey, M.; Lim, Y.Q.; Low, C.Y.; Lee, C.T.; Marilyn, T.C.L.; Loh, H.S.; Lim, Y.P.; Lee, C.F.; Bhattamishra, S.K.; et al. Silver Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. Mater. Sci. Eng. C 2020, 112, 110925. [Google Scholar] [CrossRef] [PubMed]
- Torabian, F.; Akhavan Rezayat, A.; Ghasemi Nour, M.; Ghorbanzadeh, A.; Najafi, S.; Sahebkar, A.; Sabouri, Z.; Darroudi, M. Administration of Silver Nanoparticles in Diabetes Mellitus: A Systematic Review and Meta-Analysis on Animal Studies. Biol. Trace Elem. Res. 2022, 200, 1699–1709. [Google Scholar] [CrossRef]
- Wahab, M.; Bhatti, A.; John, P. Evaluation of Antidiabetic Activity of Biogenic Silver Nanoparticles Using Thymus Serpyllum on Streptozotocin-Induced Diabetic BALB/c Mice. Polymers 2022, 14, 3138. [Google Scholar] [CrossRef]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of A-amylase and A-glucosidase: Potential Linkage for Whole Cereal Foods on Prevention of Hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. A Review of the Molecular Mechanisms of Hyperglycemia-induced Free Radical Generation Leading to Oxidative Stress. J. Cell. Physiol. 2019, 234, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Perumalsamy, R.; Krishnadhas, L. Anti-Diabetic Activity of Silver Nanoparticles Synthesized from the Hydroethanolic Extract of Myristica Fragrans Seeds. Appl. Biochem. Biotechnol. 2022, 194, 1136–1148. [Google Scholar] [CrossRef]
- Sivalingam, A.M.; Pandian, A.; Sivanesan, S.; Yuvaraj, M.F.; Rajendiran, N.; Manivel, R.; Sivamani, G. Biochemical Characterization and Green Synthesis of Silver Nanoparticles (AgNPs) from Costus Spicatus for Potential Anti-Diabetic Target in Streptozocin (STZ) Induced Diabetic Rats. J. Inorg. Organomet. Polym. Mater. 2024, 1–17. [Google Scholar] [CrossRef]
- Alkhalaf, M.I.; Hussein, R.H.; Hamza, A. Green Synthesis of Silver Nanoparticles by Nigella Sativa Extract Alleviates Diabetic Neuropathy through Anti-Inflammatory and Antioxidant Effects. Saudi J. Biol. Sci. 2020, 27, 2410–2419. [Google Scholar] [CrossRef]
- Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M.S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. Silver Nanoparticle Impregnated Chitosan-PEG Hydrogel Enhances Wound Healing in Diabetes Induced Rabbits. Int. J. Pharm. 2019, 559, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Mallineni, S.K.; Sakhamuri, S.; Kotha, S.L.; AlAsmari, A.R.G.M.; AlJefri, G.H.; Almotawah, F.N.; Mallineni, S.; Sajja, R. Silver Nanoparticles in Dental Applications: A Descriptive Review. Bioengineering 2023, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Y.; Haapasalo, M. Dental Materials with Antibiofilm Properties. Dent. Mater. 2014, 30, e1–e16. [Google Scholar] [CrossRef]
- Bacali, C.; Baldea, I.; Moldovan, M.; Carpa, R.; Olteanu, D.E.; Filip, G.A.; Nastase, V.; Lascu, L.; Badea, M.; Constantiniuc, M.; et al. Flexural Strength, Biocompatibility, and Antimicrobial Activity of a Polymethyl Methacrylate Denture Resin Enhanced with Graphene and Silver Nanoparticles. Clin. Oral Investig. 2020, 24, 2713–2725. [Google Scholar] [CrossRef]
- Chen, S.; Yang, J.; Jia, Y.-G.; Lu, B.; Ren, L. A Study of 3D-Printable Reinforced Composite Resin: PMMA Modified with Silver Nanoparticles Loaded Cellulose Nanocrystal. Materials 2018, 11, 2444. [Google Scholar] [CrossRef]
- Hernández-Venegas, P.A.; Martínez-Martínez, R.E.; Zaragoza-Contreras, E.A.; Domínguez-Pérez, R.A.; Reyes-López, S.Y.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Molina-Frechero, N.; Espinosa-Cristóbal, L.F. Bactericidal Activity of Silver Nanoparticles on Oral Biofilms Related to Patients with and without Periodontal Disease. J. Funct. Biomater. 2023, 14, 311. [Google Scholar] [CrossRef] [PubMed]
- De Giglio, E.; Cafagna, D.; Cometa, S.; Allegretta, A.; Pedico, A.; Giannossa, L.C.; Sabbatini, L.; Mattioli-Belmonte, M.; Iatta, R. An Innovative, Easily Fabricated, Silver Nanoparticle-Based Titanium Implant Coating: Development and Analytical Characterization. Anal. Bioanal. Chem. 2013, 405, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.-C.; Grumezescu, A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials 2020, 10, 2318. [Google Scholar] [CrossRef] [PubMed]
- Ratan, Z.A.; Haidere, M.F.; Nurunnabi, M.; Shahriar, S.M.; Ahammad, A.J.S.; Shim, Y.Y.; Reaney, M.J.T.; Cho, J.Y. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers 2020, 12, 855. [Google Scholar] [CrossRef]
- Abass Sofi, M.; Sunitha, S.; Ashaq Sofi, M.; Khadheer Pasha, S.K.; Choi, D. An Overview of Antimicrobial and Anticancer Potential of Silver Nanoparticles. J. King Saud Univ.-Sci. 2022, 34, 101791. [Google Scholar] [CrossRef]
- Hembram, K.C.; Kumar, R.; Kandha, L.; Parhi, P.K.; Kundu, C.N.; Bindhani, B.K. Therapeutic Prospective of Plant-Induced Silver Nanoparticles: Application as Antimicrobial and Anticancer Agent. Artif. Cells Nanomed. Biotechnol. 2018, 46, 38–51. [Google Scholar] [CrossRef]
- Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, Characterization, Biocompatible and Anticancer Activity of Green and Chemically Synthesized Silver Nanoparticles–A Comparative Study. Biomed. Pharmacother. 2016, 84, 10–21. [Google Scholar] [CrossRef]
- Khan, M.S.; Alomari, A.; Tabrez, S.; Hassan, I.; Wahab, R.; Bhat, S.A.; Alafaleq, N.O.; Altwaijry, N.; Shaik, G.M.; Zaidi, S.K.; et al. Anticancer Potential of Biogenic Silver Nanoparticles: A Mechanistic Study. Pharmaceutics 2021, 13, 707. [Google Scholar] [CrossRef] [PubMed]
- Ajaykumar, A.P.; Mathew, A.; Chandni, A.P.; Varma, S.R.; Jayaraj, K.N.; Sabira, O.; Rasheed, V.A.; Binitha, V.S.; Swaminathan, T.R.; Basheer, V.S.; et al. Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria Narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties. Antibiotics 2023, 12, 564. [Google Scholar] [CrossRef]
- Mejía-Méndez, J.L.; López-Mena, E.R.; Sánchez-Arreola, E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023, 11, 389. [Google Scholar] [CrossRef]
- Azhar, N.A.; Ghozali, S.Z.; Abu Bakar, S.A.; Lim, V.; Ahmad, N.H. Suppressing Growth, Migration, and Invasion of Human Hepatocellular Carcinoma HepG2 Cells by Catharanthus Roseus-silver Nanoparticles. Toxicol. Vitr. 2020, 67, 104910. [Google Scholar] [CrossRef]
- Das, S.; Das, J.; Samadder, A.; Bhattacharyya, S.S.; Das, D.; Khuda-Bukhsh, A.R. Biosynthesized Silver Nanoparticles by Ethanolic Extracts of Phytolacca Decandra, Gelsemium Sempervirens, Hydrastis Canadensis and Thuja Occidentalis Induce Differential Cytotoxicity through G2/M Arrest in A375 Cells. Colloids Surf. B Biointerfaces 2013, 101, 325–336. [Google Scholar] [CrossRef]
- Singh, S.P.; Mishra, A.; Shyanti, R.K.; Singh, R.P.; Acharya, A. Silver Nanoparticles Synthesized Using Carica Papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells. Biol. Trace Elem. Res. 2021, 199, 1316–1331. [Google Scholar] [CrossRef] [PubMed]
- Pucelik, B.; Sułek, A.; Borkowski, M.; Barzowska, A.; Kobielusz, M.; Dąbrowski, J.M. Synthesis and Characterization of Size- and Charge-Tunable Silver Nanoparticles for Selective Anticancer and Antibacterial Treatment. ACS Appl. Mater. Interfaces 2022, 14, 14981–14996. [Google Scholar] [CrossRef]
- Tortella, G.R.; Rubilar, O.; Durán, N.; Diez, M.C.; Martínez, M.; Parada, J.; Seabra, A.B. Silver Nanoparticles: Toxicity in Model Organisms as an Overview of Its Hazard for Human Health and the Environment. J. Hazard. Mater. 2020, 390, 121974. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef]
- Tan, P.; Li, H.; Wang, J.; Gopinath, S.C.B. Silver Nanoparticle in Biosensor and Bioimaging: Clinical Perspectives. Biotechnol. Appl. Biochem. 2020, 68, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Jamaluddin, N.D.; Tan, L.L.; Mohd Yusof, N.Y. A Review on the Development of Gold and Silver Nanoparticles-Based Biosensor as a Detection Strategy of Emerging and Pathogenic RNA Virus. Sensors 2021, 21, 5114. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef]
- Amirjani, A.; Firouzi, F.; Haghshenas, D.F. Predicting the Size of Silver Nanoparticles from Their Optical Properties. Plasmonics 2020, 15, 1077–1082. [Google Scholar] [CrossRef]
- Kravets, V.; Almemar, Z.; Jiang, K.; Culhane, K.; Machado, R.; Hagen, G.; Kotko, A.; Dmytruk, I.; Spendier, K.; Pinchuk, A. Imaging of Biological Cells Using Luminescent Silver Nanoparticles. Nanoscale Res. Lett. 2016, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Fuke, M.V.; Kanitkar, P.; Kulkarni, M.; Kale, B.B.; Aiyer, R.C. Effect of Particle Size Variation of Ag Nanoparticles in Polyaniline Composite on Humidity Sensing. Talanta 2010, 81, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Barroso, L.G.; Lanzagorta Garcia, E.; Mojicevic, M.; Huerta, M.; Pogue, R.; Devine, D.M.; Brennan-Fournet, M. Triangular Silver Nanoparticles Synthesis: Investigating Potential Application in Materials and Biosensing. Appl. Sci. 2023, 13, 8100. [Google Scholar] [CrossRef]
- Ngo, N.M.; Omidiyan, M.; Tran, H.-V.; Lee, T.R. Stable Semi-Hollow Gold-Silver Nanostars with Tunable Plasmonic Resonances Ranging from Ultraviolet–Visible to Near-Infrared Wavelengths: Implications for Photocatalysis, Biosensing, and Theranostics. ACS Appl. Nano Mater. 2022, 5, 11391–11399. [Google Scholar] [CrossRef]
- Sovizi, M.; Aliannezhadi, M. Localized Surface Plasmon Resonance (LSPR) of Coupled Metal Nanospheres in Longitudinal, Transverse and Three-Dimensional Coupling Configurations. Optik 2022, 252, 168518. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z. Control of Surface Plasmon Resonance in Silver Nanocubes by CEP-Locked Laser Pulse. Photonics 2022, 9, 53. [Google Scholar] [CrossRef]
- Chen, J.; Shi, S.; Su, R.; Qi, W.; Huang, R.; Wang, M.; Wang, L.; He, Z. Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles. Sensors 2015, 15, 12205–12217. [Google Scholar] [CrossRef]
- Loiseau, A.; Zhang, L.; Hu, D.; Salmain, M.; Mazouzi, Y.; Flack, R.; Liedberg, B.; Boujday, S. Core–Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing. ACS Appl. Mater. Interfaces 2019, 11, 46462–46471. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, Z.; Xin, M.; Liu, D. SERS-Based Ag NCs@PDMS Flexible Substrate Combined with Chemometrics for Rapid Detection of Foodborne Pathogens on Egg Surface. Microchim. Acta 2024, 191, 612. [Google Scholar] [CrossRef]
- Sotiriou, G.A.; Pratsinis, S.E. Engineering Nanosilver as an Antibacterial, Biosensor and Bioimaging Material. Curr. Opin. Chem. Eng. 2011, 1, 3–10. [Google Scholar] [CrossRef]
- Haque, S.; Norbert, C.C.; Acharyya, R.; Mukherjee, S.; Kathirvel, M.; Patra, C.R. Biosynthesized Silver Nanoparticles for Cancer Therapy and In Vivo Bioimaging. Cancers 2021, 13, 6114. [Google Scholar] [CrossRef]
- Hadrup, N.; Lam, H.R. Oral Toxicity of Silver Ions, Silver Nanoparticles and Colloidal Silver—A Review. Regul. Toxicol. Pharmacol. 2014, 68, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Salarian, A.A.; Bahari Mollamahale, Y.; Hami, Z.; Soltani-Rezaee-Rad, M. Cephalexin Nanoparticles: Synthesis, Cytotoxicity and Their Synergistic Antibacterial Study in Combination with Silver Nanoparticles. Mater. Chem. Phys. 2017, 198, 125–130. [Google Scholar] [CrossRef]
- Stensberg, M.C.; Wei, Q.; McLamore, E.S.; Porterfield, D.M.; Wei, A.; Sepúlveda, M.S. Toxicological Studies on Silver Nanoparticles: Challenges and Opportunities in Assessment, Monitoring and Imaging. Nanomedicine 2011, 6, 879–898. [Google Scholar] [CrossRef] [PubMed]
- Pinzaru, I.; Coricovac, D.; Dehelean, C.; Moacă, E.-A.; Mioc, M.; Baderca, F.; Sizemore, I.; Brittle, S.; Marti, D.; Calina, C.D.; et al. Stable PEG-Coated Silver Nanoparticles–A Comprehensive Toxicological Profile. Food Chem. Toxicol. 2018, 111, 546–556. [Google Scholar] [CrossRef]
- El Mahdy, M.M.; Eldin, T.A.S.; Aly, H.S.; Mohammed, F.F.; Shaalan, M.I. Evaluation of Hepatotoxic and Genotoxic Potential of Silver Nanoparticles in Albino Rats. Exp. Toxicol. Pathol. 2015, 67, 21–29. [Google Scholar] [CrossRef]
- Du, J.; Tang, J.; Xu, S.; Ge, J.; Dong, Y.; Li, H.; Jin, M. A Review on Silver Nanoparticles-Induced Ecotoxicity and the Underlying Toxicity Mechanisms. Regul. Toxicol. Pharmacol. 2018, 98, 231–239. [Google Scholar] [CrossRef]
- Cunningham, B.; Engstrom, A.M.; Harper, B.J.; Harper, S.L.; Mackiewicz, M.R. Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo. Nanomaterials 2021, 11, 1516. [Google Scholar] [CrossRef]
- Patlolla, A.K.; Hackett, D.; Tchounwou, P.B. Silver Nanoparticle-Induced Oxidative Stress-Dependent Toxicity in Sprague-Dawley Rats. Mol. Cell. Biochem. 2015, 399, 257–268. [Google Scholar] [CrossRef]
- Kim, H.R.; Kim, M.J.; Lee, S.Y.; Oh, S.M.; Chung, K.H. Genotoxic Effects of Silver Nanoparticles Stimulated by Oxidative Stress in Human Normal Bronchial Epithelial (BEAS-2B) Cells. Mutat. Res. Toxicol. Environ. Mutagen. 2011, 726, 129–135. [Google Scholar] [CrossRef]
- Vazquez-Muñoz, R.; Borrego, B.; Juárez-Moreno, K.; García-García, M.; Mota Morales, J.D.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of Silver Nanoparticles in Biological Systems: Does the Complexity of Biological Systems Matter? Toxicol. Lett. 2017, 276, 11–20. [Google Scholar] [CrossRef]
- Chen, L.; Giesy, J.P.; Xie, P. The Dose Makes the Poison. Sci. Total Environ. 2018, 621, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Antony, J.J.; Sivalingam, P.; Chen, B. Toxicological Effects of Silver Nanoparticles. Environ. Toxicol. Pharmacol. 2015, 40, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Shah, P.; Agrawal, N. Dose-Dependent Effect of Silver Nanoparticles (AgNPs) on Fertility and Survival of Drosophila: An in-Vivo Study. PLoS ONE 2017, 12, e0178051. [Google Scholar] [CrossRef]
- Wen, H.; Dan, M.; Yang, Y.; Lyu, J.; Shao, A.; Cheng, X.; Chen, L.; Xu, L. Acute Toxicity and Genotoxicity of Silver Nanoparticle in Rats. PLoS ONE 2017, 12, e0185554. [Google Scholar] [CrossRef] [PubMed]
- Noga, M.; Milan, J.; Frydrych, A.; Jurowski, K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int. J. Mol. Sci. 2023, 24, 5133. [Google Scholar] [CrossRef] [PubMed]
- Nie, P.; Zhao, Y.; Xu, H. Synthesis, Applications, Toxicity and Toxicity Mechanisms of Silver Nanoparticles: A Review. Ecotoxicol. Environ. Saf. 2023, 253, 114636. [Google Scholar] [CrossRef]
- Stark, W.J.; Stoessel, P.R.; Wohlleben, W.; Hafner, A. Industrial Applications of Nanoparticles. Chem. Soc. Rev. 2015, 44, 5793–5805. [Google Scholar] [CrossRef]
- Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017). Antibiotics 2018, 7, 93. [Google Scholar] [CrossRef]
- Google Patents. Available online: https://patents.google.com/ (accessed on 26 August 2024).
- Nadeem, N.; Habib, A.; Hussain, S.; Sufian, A.; Ahmad, I.; Noreen, F.; Mehmood, A.; Ali, F.; Batoo, K.M.; Ijaz, M.F. Ecofriendly Synthesis of Silver Nanoparticle for Phytochemical Screening, Photocatalytic and Biological Applications. J. Inorg. Organomet. Polym. Mater. 2024, 1–16. [Google Scholar] [CrossRef]
- Kahraman, H.T. Fabrication of Electrospun PA66 Nanofibers Loaded with Biosynthesized Silver Nanoparticles: Investigation of Dye Degradation and Antibacterial Activity. Environ. Sci. Pollut. Res. 2024, 31, 53121–53134. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, J.; Chen, J.; Xu, Y.; Jiang, L. Fabrication of Highly Stable Polyurushiol-Decorated Silver Nanoparticles and Evaluation of Their Antibacterial and Anti-Microalgae Activities. J. Inorg. Organomet. Polym. Mater. 2024, 1–13. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Yao, Z.; Li, M. A Review on the Alternatives to Antibiotics and the Treatment of Antibiotic Pollution: Current Development and Future Prospects. Sci. Total Environ. 2024, 926, 171757. [Google Scholar] [CrossRef] [PubMed]
- Andreani, T.; Cheng, R.; Elbadri, K.; Ferro, C.; Menezes, T.; Dos Santos, M.R.; Pereira, C.M.; Santos, H.A. Natural Compounds-Based Nanomedicines for Cancer Treatment: Future Directions and Challenges. Drug Deliv. Transl. Res. 2024, 14, 2845–2916. [Google Scholar] [CrossRef]
- Samal, D.; Khandayataray, P.; Sravani, M.; Murthy, M.K. Silver Nanoparticle Ecotoxicity and Phytoremediation: A Critical Review of Current Research and Future Prospects. Environ. Sci. Pollut. Res. 2024, 31, 8400–8428. [Google Scholar] [CrossRef]
- Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials 2020, 10, 1654. [Google Scholar] [CrossRef]
- Vidyasagar; Patel, R.R.; Singh, S.K.; Singh, M. Green Synthesis of Silver Nanoparticles: Methods, Biological Applications, Delivery and Toxicity. Mater. Adv. 2023, 4, 1831–1849. [Google Scholar] [CrossRef]
- Kang, J.; Zhou, N.; Zhang, Y.; Wang, Y.; Song, C.; Gao, X.; Song, G.; Guo, J.; Huang, L.; Ma, T.; et al. Synthesis, Multi-Site Transformation Fate and Biological Toxicity of Silver Nanoparticles in Aquatic Environment: A Review. Environ. Technol. Innov. 2023, 32, 103295. [Google Scholar] [CrossRef]
- Li, F.; Li, R.; Lu, F.; Xu, L.; Gan, L.; Chu, W.; Yan, M.; Gong, H. Adverse Effects of Silver Nanoparticles on Aquatic Plants and Zooplankton: A Review. Chemosphere 2023, 338, 139459. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lackner, M. Green Synthesis of Silver Nanoparticles from Cannabis Sativa: Properties, Synthesis, Mechanistic Aspects, and Applications. ChemEngineering 2024, 8, 64. [Google Scholar] [CrossRef]
- Khan, M.R.; Urmi, M.A.; Kamaraj, C.; Malafaia, G.; Ragavendran, C.; Rahman, M.M. Green Synthesis of Silver Nanoparticles with Its Bioactivity, Toxicity and Environmental Applications: A Comprehensive Literature Review. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100872. [Google Scholar] [CrossRef]
- Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; et al. Bacterial Resistance to Silver Nanoparticles and How to Overcome It. Nat. Nanotechnol. 2018, 13, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, H. Mechanisms of Bacterial Resistance to Environmental Silver and Antimicrobial Strategies for Silver: A Review. Environ. Res. 2024, 248, 118313. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hou, J.; Luan, J. Resistance Mechanisms of Saccharomyces Cerevisiae against Silver Nanoparticles with Different Sizes and Coatings. Food Chem. Toxicol. 2024, 186, 114581. [Google Scholar] [CrossRef]
- Zulfiqar, Z.; Khan, R.R.M.; Summer, M.; Saeed, Z.; Pervaiz, M.; Rasheed, S.; Shehzad, B.; Kabir, F.; Ishaq, S. Plant-Mediated Green Synthesis of Silver Nanoparticles: Synthesis, Characterization, Biological Applications, and Toxicological Considerations: A Review. Biocatal. Agric. Biotechnol. 2024, 57, 103121. [Google Scholar] [CrossRef]
- Almatroudi, A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024, 16, 1232. [Google Scholar] [CrossRef] [PubMed]
- Fahy, K.M.; Eiken, M.K.; Baumgartner, K.V.; Leung, K.Q.; Anderson, S.E.; Berggren, E.; Bouzos, E.; Schmitt, L.R.; Asuri, P.; Wheeler, K.E. Silver Nanoparticle Surface Chemistry Determines Interactions with Human Serum Albumin and Cytotoxic Responses in Human Liver Cells. ACS Omega 2023, 8, 3310–3318. [Google Scholar] [CrossRef]
- Suthar, J.K.; Vaidya, A.; Ravindran, S. Toxic Implications of Silver Nanoparticles on the Central Nervous System: A Systematic Literature Review. J. Appl. Toxicol. 2023, 43, 4–21. [Google Scholar] [CrossRef]
- Jaswal, T.; Gupta, J. A Review on the Toxicity of Silver Nanoparticles on Human Health. Mater. Today Proc. 2023, 81, 859–863. [Google Scholar] [CrossRef]
Application | Source of NPs | Properties | Results | Reference |
---|---|---|---|---|
Antibacterial | Green synthesis using Brassica vulgaris (B. vulgaris), Brassica nigra (B. nigra), Capsella bursa-pastoris (C. bursa-pastoris), Lavandula angustifolia (L. angustifolia), and Origanum vulgare (O. vulgare). | Size = 800, 912, 820, 40, and 46 nm average diameter for silver NPs synthesized from B. vulgaris, B. nigra, C. bursa-pastoris, L. angustifolia, and O. vulgare, respectively. Shape = spherical and truncated octahedron for smaller and larger NPs, respectively | -Significant antibacterial activity by five different types of green synthesized silver NPs, indicated by relative inhibition zone diameter ratio. | [13] |
Antibacterial | Green synthesis using Zataria multiflora | Size = average hydrodynamic diameter of 25.5 nm Shape = spherical | -Stronger antibacterial activity and biofilm inhibition by plant-mediated silver NPs compared to commercial counterparts, with minimum inhibitory concentration (MIC) values of 4 µg/mL and 8 µg/mL against Staphylococcus aureus (S. aureus). | [14] |
Antibacterial | Green synthesis using Lawsonia inermis (henna) leaves | Size = average diameter of 3.48 to 19.34 nm Shape = spherical | -Significant antibacterial activity of green synthesized silver NPs against multiple resistant bacterial strains. | [15] |
Antibacterial | Green synthesis using Energy Cane Bagasse Hydrolysate | Size = approximately 15 nm Shape = spherical | -Significant antibacterial activity against both Gram-positive and Gram-negative bacteria with cellular attachment of the silver NPs. -Prevention of biofilm formation up to 100% at the highest concentration (250 µg/mL). | [16] |
Antibacterial | Green synthesis using Enterococcus faecium-derived exopolysaccharides. | Shape = predominantly quasi-spherical structure SPR absorbance = 456 nm | -Significant antibacterial activity against both Gram-positive and Gram-negative bacteria. -Antioxidant activity in DPPH test. | [17] |
Antibacterial | Green synthesis using aqueous extract of A. australe | Size = 15 ± 3 nm Shape = spherical SPR absorbance = 411 nm | -Significant antimicrobial activity on various bacteria, yeasts, and dermatophytes. | [18] |
Antibacterial/Antibiotic | NPs synthesized using silver nitrate (AgNO3) and D-glucose as the reducing agent | Size = ∼26 nm Shape = spherical | -Inhibition of all bacterial strains with solo administration of silver NPs at a concentration of 10 μg/mL. -Demonstration of combined treatment leading to increased susceptibility and nearly complete inhibition of most resistant bacteria compared to solo treatments. | [19] |
Antibacterial/Antibiotic | NPs were synthesized using chemical reduction and precipitation processes | Concentration of silver NPs was determined to be 1.7 µg/mL | -Enhancement of the activity of antibiotics against multidrug-resistant bacteria isolated from burn wound infections. -Increased activity determined by a 5.5- to 8-fold increase in sensitivity of isolates. -Enhanced in vivo healing activity and wound contraction observed with a spray formulation of silver NPs and neomycin antibiotics. | [20] |
Antibacterial/Antibiotic | Stock silver NPs, with a concentration of 20 µg/mL, were purchased commercially | Size = 10 and 20 nm Shape= spherical | -Synergistic antibacterial activity between silver NPs and various antibiotics. -The MIC values were dropped by ½ or ¼ by the involvement of silver NPs. | [21] |
Antiviral | NPs were synthesized using AgNO3 and NaBH4 as reducing agents, with TSC (thiosemicarbazide) acting as a capping agent | Size = the synthesized silver NPs had average sizes ranging from 6.2 ± 2.6 nm to 13.4 ± 4.0 nm, using different synthesis parameters such as dropwise addition of reagents and varying concentrations of silver precursor and reducing agents Shape = spherical | -Approximately 100% reduction in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load after two hours of infection. | [22] |
Antiviral | Green synthesis using Spirulina platensis (S. platensis) and Nostoc linckia (N. linckia) | Size = average sizes of 21.211 and 21.052 nm for S. platensis and N. linckia, respectively. Shape = spherical | -Significant inhibition of hepatitis C virus (HCV) by 64.9% compared to ribavirin at 66.6%. | [23] |
Antiviral | Green synthesis using Punica granatum (pomegranate) peel extract | Size = average size of 33.37 ± 12.7 nm Shape = spherical or round-shaped | -Significant increase in root and shoot length and plant weight in TMV-infected tomato plants treated with green synthesized silver NPs. -Significant decrease in TMV coat-proteins in all phases of treatment (before/after infection and dual treatment); 3-fold and 5.48-fold inductions in the expression of PR-1 genes, depending on the treatment phase (highest in the dual treatment). -Silver NP treatment showed a 50% decrease in the induction of PR-2 gene expression by TMV infection. | [24] |
Antiviral | Green synthesis using Rhizobium leguminosarum | Size = ranging between 13.7 and 40 nm. Shape = spherical | -Significant restoration of weight loss and increase in chlorophyll concentration, along with a decrease in total protein, through administration of silver NPs before bean yellow mosaic virus infection. -Treatment showed a 3.34-fold increase in PR-1 gene expression and 2.31-fold increase in hydroxycinnamoyl transferase expression. -Reduction in oxidative stress markers and lower antioxidant enzymes compared to untreated infected plants. | [25] |
Antiviral | Chemical synthesis | Size = approximately 7–8 nm SPR absorbance = 400 nm Shape = spherical | -Direct interaction of chitosan-modified silver NPs with swine coronavirus virions (12% viral attachment reduction). -Significant inhibition of viral replication. | [26] |
Antifungal | Green synthesis using Bacillus thuringiensis MAE 6 | Size = average size of 32.7 nm Shape = Spherical | -Antifungal activity against several Aspergillus spp., supported with inhibition zones of 16–26 mm at 500 μg/mL and MIC values between 15.62 and 125 µg/mL. | [27] |
Antifungal | Green synthesis using Beech bark extract | Size = medium size of 32 nm Shape = spherical or sometimes triangular and polygonal | -Antifungal activity of biosynthesized silver NPs against Candida spp., with low MIC values, reflected by growth rates. | [28] |
Antifungal | Stock silver NPs with a concentration of 5 mg/mL were purchased commercially | Size = average size of 5 nm Shape = spherical | -Inhibition of four types of kiwifruit rot pathogenic fungi by silver NPs through several mechanisms. -Significant inhibition of mycelium growth by increasing mycelium cell membrane permeability, inducing pathogen hypha shrinkage and distortion. -Decrease or complete inhibition of spore germination for all types of fungi, with reductions in two pathogens from 88.48% and 94.44% to 9.70% and 7.07%, respectively. | [29] |
Antifungal | Green synthesis using Trichoderma longibrachiatum | - | -Significant inhibition of fungal pathogen, Fusarium oxysporum (F. oxysporum), by leading defects on the cell wall and structural damages. -Approximately 10% increase in both germination rate and germination potential of muskmelon. -Potential induction of reactive oxygen species (ROS) and cellular metabolism pathway interruption. | [30] |
Antifungal | Green synthesized using Cedrela odorata (leaf and bark extracts) | Size (mean values) = 29.06 nm (leaf) and 19.80 nm (bark) SPR absorbance = 447.56 nm (leaf) and 439.44 nm (bark) | -Concentration-dependent fungicidal activity against Fusarium circinatum. | [31] |
Antifungal | Green synthesized using F. oxysporum | Size = between 20 and 50 nm SPR absorbance = 415–420 nm Shape = spherical (The properties were taken from the methodology that researchers cited) | -Significant antifungal activity for onychomycosis treatment. -Mean MIC value 4.24 µg/mL and minimum fungicidal concentration from >3.31 to >42.50 µg/mL, depending on the fungal species. -Successful demonstration of antifungal activity ex vivo. | [32] |
Food Packaging and Preservation | Green synthesized using Ficus carica | Size = ranging between 20 and 80 nm Shape = spherical | -Preservation of apple slices from browning and reduction in weight and moisture loss over time with biodegradable food packaging incorporating silver NPs. -Increase in thickness with the addition of NPs and alterations in water vapor permeability (WVP) and solubility. -High antioxidant capacity and antimicrobial activity due to the addition of silver NPs. | [33] |
Food Packaging and Preservation | Green synthesis using grape seed extracts | Size = average size of 20 nm Shape = spherical | -Enhancement of shelf life of grapes by green synthesized silver NP and chitosan composite, preserving the texture and reducing weight loss over 5 days. -Antifungal activity and dose-dependent antioxidant capacity. -Significant reduction in total yeast and mold count on stored grapes. | [34] |
Food Packaging and Preservation | NPs were synthesized using AgNO3 as the silver precursor and sodium citrate as a reducing agent, with cellulose nanocrystals serving as stabilizers | Size = average diameter of 10 to 20 nm Shape = spherical | -Enhanced shelf life of strawberries by silver NP coating onto a paper surface. -Significant antibacterial activity in the packaging structure, concentration-dependent. -Increased tensile strength by 1.26-fold, enhanced flexibility and ductility, decreased WVP by 45.4%, and reduced air permeability by 93.3%. | [35] |
Food Packaging/Antifungal | Green synthesis using marine algae Turbinaria turbinata | Size = ranging from 14.50 to 39.85 nm Shape = spherical | -Significant antifungal activity. -Extended shelf-life, preserved quality, and delated microbiological decomposition of tomato samples for up to 17 days. | [36] |
Nanofertilizer | Silver NPs were synthesized using feather hydrolysates obtained from the degradation of chicken feathers by Bacillus safensis (B. safensis) LAU 13 and Aquamicrobium defluvii (A. defluvii) FH 20 | Size = average sizes of 42.01 ± 20.9 nm and 11.52 ± 6.37 nm for NPs synthesized from B. safensis and A. defluvii, respectively. | -At the highest concentration (150 µg/mL), silver NPs enhanced seed germination, shoot height, root length, leaf size, and chlorophyll content by up to 1.58-fold. -Increased radical scavenging capacity by 1.1-fold and inhibition of lipid peroxidation by up to 78% (1.21-fold). -Significant antifungal activity on three fungal strains, ranging from 60.33% to 88.2%. | [37] |
Nanofertilizer | Silver NPs with a concentration of 200 ppm were purchased commercially | Size = around 40 to 60 nanometers Shape = spherical | -The highest concentration (15 mL/L) of spraying significantly enhanced the fruit’s physical characteristics: 48.9% increase in weight (grams), 38% in length (cm), and 44.4% in size (cm3). -Increased total sugar percentages by approximately 44%. -Insecticidal activity against various insects, with mortality rates ranging from 88.33% to 100% at 5000 ppm. -Increased pollen viability. | [38] |
Nanofertilizer | Green synthesis using ascorbic acid, caffeic acid, and gallic acid | Size = 70 nm, between 50 and 80 nm, and 20 nm. Shape = spherical SPR absorbance = 440 nm, between 421 and 467 nm, and between 402 and 467 nm. (The properties were given respectively for gallic, caffeic, and ascorbic acid-synthesized particles.) | -Enhanced shoot and root lengths in cucumber seedlings. -Increased chlorophyll index and chlorophyll and carotenoid contents. -Variances in oxidative stress levels (both positive and negative). | [39] |
Nano-pesticidal | Green synthesized using Cassia fistula (L.) leaf | Size = ranging from 10 to 20 nm Shape = spherical and oval | -Significant pesticidal activity against several tomato phytopathogens through a reduction in cell numbers and damage on the cell surface. -A significant reduction in biofilm formation. -Demonstration of antifungal activity against several fungal pathogens, evidenced by a 78% reduction in growth. -Inhibition of hatching (82% at 100 μg), galls formation (76%), and increased mortality (65.78% at 100 μg) of root-knot nematodes. -Increase in length (66%), lycopene (up to 52%), and dry biomass (58%) of tomatoes. -Increased levels of antioxidant enzymes by 47% and 60%. | [40] |
Nano-pesticidal | Green synthesized using pecan nutshell extracts (Carya illinoinensis) | Size = approximate diameter of 50.2 nm Shape = hemispherical | -Strong insecticide activity with high mortality ratios, reaching up to 100% mortality with increased concentration and treatment time. -Under greenhouse conditions, the mortality ratio reached up to 80%. | [41] |
Wound Healing | Green synthesized using green tea leaf extract, Camellia sinensis (C. sinensis) | Size = average diameter of 22.31 nm Shape = spherical | -Significant wound healing activity in vitro and in vivo. -Cell viability was above 70% in all tested samples. -The hydrogel significantly closed the wound gaps by 60–75% at day 8 and 98–99% at day 12. | [42] |
Wound Healing | Silver NPs were synthesized using chemical reduction | Size = ranging between 10 and 20 nm Shape = spherical | -Significant antibacterial activity, biofilm removal (46.7% and 61.6%), and wound healing in infected burn wounds. -Reduction in the amount of blood loss by 4 times compared to the control group in a mouse liver trauma model (from 350 mg to 82 mg). -Noncompressive bleeding reduction in a rat liver defect model, from 1.04 g to 0.21 g. -A 96% total healed wound ratio after treatment, with the lowest TNF-α levels. | [43] |
Wound Healing | - | - | -Accelerated healing effect of silver NPs (27.8 days) in administration on day 3 compared to other groups (35.8 and 40 days). -Inhibition of early inflammation by silver NP treatment at day 0. -Inhibition of prolonged inflammation in treatment on day 3. | [44] |
Wound Healing | Chemical Synthesis | Size = predominantly between 27.25 and 49.61 nm Shape = spherical | -Silver NP-incorporated alginate gels demonstrated significant antibacterial activity and increased proliferation of HaCaT keratinocytes. -Suitable cytocompatibility and no induction of oxidative stress. | [45] |
Wound Healing | Green synthesis through reduction of AgNO3 with lignin NPs and preparation with oxidation of cellulose nanofibrils | SPR absorbance = between 400 and 420 nm Shape = spherical | -Silver NP-included biofilm demonstrated significant UV protection (100% UVB and over 90% UVA) and antioxidant activity. -Enhanced mechanical properties, tensile strength, elongation at break, and WVP in optimum concentrations. -Antibacterial activity. | [46] |
Bone Repair | - | - | -Osteogenesis and significant antibacterial activity by silver NP bone scaffolds. -A great increase in compressive strength and hardness and a reduction in water contact angle by approximately 17.5°. -Increased bone volume/total volume ratio by 55.7% at week 4 and 76.9% at week 8 in New Zealand rabbits. | [47] |
Bone Repair | Green synthesized using Trigonella foenum-graecum extract | Size = average size of 118.0 ± 1.7 nm Shape = spherical | -Induction of osteocalcin levels between weeks 2 and 6. -Increase in calcium and phosphorus levels. -Near completion in bone repair progress, with mature bone formation at week 4. | [48] |
Bone Repair | - | - | -Significant increase in proliferation of MC3T3-E1 cells between days 3 and 7 at a 200 μM concentration. -A significant increase in bone volume at concentrations of 200 μM and 400 μM. | [49] |
Bone Repair | Chemically synthesized | Size = average 5–6 nm Shape = spherical | -Silver NP-containing antimicrobial bone scaffolds induced proliferation of osteoblasts. | [50] |
Vaccine Adjuvant | Green synthesized using F. oxysporum 551 strain | Size = average 50 nm SPR absorbance = 420 nm Shape = spherical | -A vaccine combined with silver NPs against Acinetobacter baumannii (A. baumannii) protected mice against lethal infection. -Significant induction of IgG antibody response. -Prevented bacterial growth in lungs from mice. | [51] |
Vaccine Adjuvant | Green synthesized using propolis extract | -Increased concentration (nearly doubled) of IL-4 with the addition of 30 mg/mL propolis silver NPs as adjuvants. -Concentration of IgG increased. | [52] | |
Vaccine Adjuvant | Purchased from NanoComposix, Europe | Size = 10 nm Shape= spherical | -Administration of silver NPs in the lungs of mice led to the recruitment of lymphoid cells (predominantly natural killer cells). -Enhancement of natural killer cell migration and IFN-γ production through macrophages. | [53] |
Diabetes | Green synthesized using Allium cepa | Size = ranging between 49 and 73 nm Shape = spherical | -Significant in vitro antidiabetic activity by the inhibition of α-amylase and α-glucosidase by 70% and 55%, respectively. -Approximately 60% DPPH inhibition. | [54] |
Diabetes | Green synthesized using Psidium guajava leaf extract | Size = ranging between 52.12 and 65.02 nm Shape = predominantly spherical | -A significant reduction in blood glucose levels, weight recovery, and restoration of lipid profiles to near control levels in streptozotocin-induced diabetic rats. -Improvements in liver and pancreatic cells in histopathological analysis. | [55] |
Diabetes | Green synthesized using Allium sativum | Size = ranging from 10 to 30 nm Shape = spherical | -Increase in glucose uptake ranging from 28.9% to 41.54%. -Inhibition of glucose production by 26.28% to 57.74%. -Antioxidant activity ranging from 31% to 63%, dose-dependently (20 to 100 µg/mL). -A significant inhibition of α-amylase and α-glucosidase enzymes through the interaction of silver atoms with amino acid residues. | [56] |
Diabetes/Wound Healing | Green synthesized using Cyanobacteria Synechocystis sp. | Size = diameters ranging from 10 to 35 nm Shape = spherical | -Diabetic wound healing by 89.4% and wound closure by 50.96% in diabetic rats. -Complete wound restoration with treatment on day 21 with increased levels of angiogenesis-related factors. | [57] |
Diabetes/Wound Healing | Chemical Synthesis | Size = 2–12 nm SPR absorbance = 420–430 nm Shape = spherical | -Compatible wound dressing characteristics. -High cytocompatibility and hemocompatibility for diabetes-induced wound dressing. -Significant antibacterial activity. | [58] |
Diabetes | Green synthesis using Salvia blepharophylla (S. blepharophylla) and Salvia greggii (S. greggii)leaf extracts | Size = average of 52.4 nm (Salvia blepharophylla) and 62.5 nm (Salvia greggii) Shape = spherical | -Significant antidiabetic activity through α-amylase inhibition of up to 86.5%, depending on the concentration. -Antioxidant and antibacterial activity also demonstrated. | [59] |
Diabetes | Green synthesis using Azadirachta indica seed extract | Size = average 34.43 nm SPR absorbance = between 400 and 450 nm Shape = spherical | -Silver NPs demonstrated α-amylase inhibition by 73.85%, glucose absorption by 10.65%, and glucose uptake by yeast cells of 75%. -Significant inhibition of blood glucose levels of mice (420 to 290 mg/dL at the highest concentrations). | [60] |
Diabetes | Green synthesis using Cucumis melo L. leaf extract | Size = between 66.7 and 92.3 nm Shape = spherical | -Significant α-amylase and α-glucosidase inhibitory activity by 65.6% and 63.1% at the highest concentration (100 μg/mL), respectively. -Anticoccidial activity. | [61] |
Dental (Oral Disease) | Silver NPs were synthesized through chemical reduction, using AgNO3 with gallic acid as a reducing and stabilizing agent | Size = two different sizes, 5.2 ± 1.2 and 37.4 ± 3.6 nm Shape = spherical and semispherical, respectively | -Significant antimicrobial activity against biofilms from patients with dental caries. | [62] |
Dental (Acrylic Resin) | Silver NPs were synthesized through AgNO3 reduction by sodium citrate | Size = 5 and 10 nm Shape = spherical | -Biofilm inhibition on acrylic resin with silver NP nanocomposite incorporation. -No alterations in inflammatory responses and flexural strength of acrylic resin. | [63] |
Dental (Acrylic Resin) | Chemical synthesis | Size = 25 nm | -Resistance to bacterial adhesion. -Significant bactericidal activity. -Stabile and self-cleaning coating. | [64] |
Dental (Composite Resin) | Silver NPs were synthesized through chemical reduction, using AgNO3 with sodium borohydride as a reducing agent | Size = 33.5 nm Shape = spherical | -Increased antibacterial activity and enhancement of compressive strength in silver NP-containing resin composite. | [65] |
Dental (Composite Resin) | Chemical synthesis | Size = average 26.5 nm SPR absorbance = 407 nm Shape = spherical | -Significant antibacterial activity of silver NP-containing composite resin against multiple strains. | [66] |
Dental (Periodontal Restoration) | Silver NPs were synthesized through chemical reduction, using ascorbic acid as a reducing agent and sodium citrate as a stabilizing agent | Size = average diameter of 30 nm Shape = spherical | -Increased tensile strength and decreased elongation at break obtained with collagen–silver NP hydrogels. -Significant antibacterial activity, high inhibition zone (concentration-dependent), and slight increase in proliferation of human gingival fibroblast. | [67] |
Dental (Periodontal Restoration) | Chemical synthesis | Size = 10.2 and 29.3 nm Shape = spherical | -Significant bactericidal and antibiofilm activity of silver NPs against oral biofilms from patients. | [68] |
Dental (Root Canal Filming) | Chemical synthesis | Size = 5.57 nm Shape = spherical | -No influence on mechanical properties, bonding strength, or surface roughness. | [69] |
Dental (Orthodontics) | Chemical synthesis | - | -Lowered bacterial adherence with silver NP-coated orthodontic brackets. | [70] |
Dental (Orthodontics) | Silver NPs were synthesized through chemical reduction, using Augmentin as both a reducing agent and a coating material to stabilize the particles | Size = ranging in diameter from 50 to 80 nm Shape = spherical | -Antibacterial activity and enhanced shear bond strength by augmentin-coated silver NPs on orthodontic cement without any toxicity. | [71] |
Dental (Implant) | Silver NPs were synthesized through in situ reduction, using dopamine as the reducing agent | Size = ranging from 20 to 30 nm | -Significant antibacterial activity with prevention of bacterial adhesion and colonization. | [72] |
Anticancer | Green synthesized using Actinobacterial strain SF23 | Size = mean of 13.2 nm Shape = spherical | -Significant cytotoxic activity on MCF-7 cancer cells and RAW 264.7 macrophages. -With increased ROS levels, cell viabilities were reduced to 15.8% and 14.2%, respectively. | [73] |
Anticancer | Green synthesized using the Dictyota ciliolata extract | Size = average size of 100 nm Shape = spherical | -Anticancer activity against lung adenocarcinoma A549 cells through ROS induction and DNA damage, leading to morphological changes. -Expressions of Caspase-3, Bcl2, and Bax induced. | [74] |
Anticancer | Green synthesized using Swietenia macrophylla seed extract | Size = ranging between 10 and 23 nm Shape = spherical or oval | -Significant anticancer activity through oxidative stress. -High DNA damage from S-phase cycle arrest (20.3% increase) and decrease in G1/G0 phase (77.7%). | [75] |
Anticancer | Green synthesized using Cissus woodrowii leaf extract | Size = ranging between 20 and 30 nm Shape = spherical | -Significant inhibition of cell proliferation in breast cancer cells. -Induction of apoptosis through up-regulated expression of both p53 and caspase-3 genes and down-regulation of Bcl2 (both protein and mRNA levels). | [76] |
Anticancer | Green synthesized using extracellular filtrate of F. oxysporum | Size = ranging from 6.53 to 21.84 nm Shape = spherical | - In vitro anticancer activity against HepG2 and MCF-7 cells. - Half-maximal inhibitory concentration (IC50) values determined as 7.6 µg/mL and 35.4 µg/mL, respectively. -Interaction with FGF19 and BCL-2 proteins. | [77] |
Anticancer | Green synthesis using tomato flower waste extracts | Size = ranging from 14 to 40 nm Shape = predominantly spherical SPR absorbance = ranging between 400 and 500 nm | -Significant antitumor potential against HeLa and HT29 cell lines. -Cell viability reductions of 50.49% and 62.45%. -Observable cell deformation. | [78] |
Bioimaging/Biosensor | Green synthesis using black tea extract (C. sinensis) | Size = 52.3 nm Shape = spherical | -A novel electrochemical sensor based on incorporating silver NPs and carbon black on chitosan films was developed. -Close to 100% recovery rate was recorded in the analysis of ciprofloxacin in synthetic urine samples. | [79] |
Bioimaging/Biosensor | Silver NPs were synthesized through the laser ablation method | Size = 26 nm Shape = spherical | -LSPR-active silver NPs were developed to detect trenbolone acetate dopants, which is crucial in anti-doping efforts in sports. -A 9.12 ppb limit of detection was achieved, meeting World Anti-Doping Agency (WADA) standards. | [80] |
Bioimaging/Biosensor | Silver NPs were synthesized through chemical reduction, using sodium citrate as a reducing agent | Size = approximately 70 ± 20 nm Shape = spherical | -A novel, highly sensitive surface-enhanced Raman scattering (SERS) chip based on silver NPs nanocomposites was developed. -Efficient detection of DNA bases (adenine) with a limit of detection of 0.026 pM. | [81] |
Bioimaging/Biosensor | Silver NPs were synthesized through a photochemical reduction method, using ultraviolet-C (UVC) light as the reducing agent | - | -Development of Mn2O3–silver nanocomposites for the sensitive detection of Nitrofurazone, an antibiotic linked to potential abnormalities in human embryos or fetuses. -Achievement of an ultralow limit of detection, 7.39 × 10−13 M, along with an enhancement factor of 2.05 × 1012 in SERS performance. | [82] |
Bioimaging/Biosensor | Synthesis by the Tollens method | Plasmon resonance band = around 455 nm Size = mostly distributed around 75 and 95 nm Shape = spherical and semi-spherical | -Detection of Shigella bacteria by quick and sensitive silver NP-based SERS system. -High enhancement factor and low limits of detection. -Antibacterial activity, mediated by silver ions, against Shigella bacteria. | [83] |
Bioimaging/Biosensor | Chemical synthesis | Size = between 16 and 25 nm SPR absorbance = 317 nm | -Sensitive and strong detection of the chikungunya virus. -The sensor demonstrated a limit of detection of 0.1 ng/mL and a recovery rate between 91% and 93%. | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eker, F.; Duman, H.; Akdaşçi, E.; Witkowska, A.M.; Bechelany, M.; Karav, S. Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. Nanomaterials 2024, 14, 1618. https://doi.org/10.3390/nano14201618
Eker F, Duman H, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. Nanomaterials. 2024; 14(20):1618. https://doi.org/10.3390/nano14201618
Chicago/Turabian StyleEker, Furkan, Hatice Duman, Emir Akdaşçi, Anna Maria Witkowska, Mikhael Bechelany, and Sercan Karav. 2024. "Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications" Nanomaterials 14, no. 20: 1618. https://doi.org/10.3390/nano14201618
APA StyleEker, F., Duman, H., Akdaşçi, E., Witkowska, A. M., Bechelany, M., & Karav, S. (2024). Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. Nanomaterials, 14(20), 1618. https://doi.org/10.3390/nano14201618