Study of Laser-Induced Multi-Exciton Generation and Dynamics by Multi-Photon Absorption in CdSe Quantum Dots
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of CdSe QDs
2.2. Optical Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pusch, A.; Bremner, S.P.; Tayebjee, M.J.Y.; Daukes, N.J.E. Microscopic Reversibility Demands Lower Open Circuit Voltage in Multiple Exciton Generation Solar Cells. Appl. Phys. Lett. 2021, 118, 5. [Google Scholar] [CrossRef]
- Lee, T.; Kim, B.J.; Lee, H.; Hahm, D.; Bae, W.K.; Lim, J.; Kwak, J. Bright and Stable Quantum Dot Light-Emitting Diodes. Adv. Mater. 2022, 34, 9. [Google Scholar] [CrossRef]
- Cassidy, J.; Diroll, B.T.; Mondal, N.; Berkinsky, D.B.; Zhao, K.H.; Harankahage, D.; Porotnikov, D.; Gately, R.; Khon, D.; Proppe, A.; et al. Quantum Shells Boost the Optical Gain of Lasing Media. ACS Nano 2022, 16, 3017–3026. [Google Scholar] [CrossRef] [PubMed]
- Schaller, R.D.; Klimov, V.I. High Efficiency Carrier Multiplication in Pbse Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 2004, 92, 4. [Google Scholar] [CrossRef] [PubMed]
- Marri, I.; Ossicini, S. Multiple Exciton Generation in Isolated and Interacting Silicon Nanocrystals. Nanoscale 2021, 13, 12119–12142. [Google Scholar] [CrossRef] [PubMed]
- Labrador, T.; Dukovic, G. Simultaneous Determination of Spectral Signatures and Decay Kinetics of Excited State Species in Semiconductor Nanocrystals Probed by Transient Absorption Spectroscopy. J. Phys. Chem. C 2020, 124, 8439–8447. [Google Scholar] [CrossRef]
- Liu, C.J.; Lu, M.; Su, W.A.; Dong, T.Y.; Shen, W.Z. Recent Advance in Multiple Exciton Generation in Semiconductor Nanocrystals. Acta Phys. Sin. 2018, 67, 17. [Google Scholar]
- Xia, Y.; Ji, T.M.; Lu, Y.; Xiang, P.F.; Wu, Z.X.; Yang, X.K.; Deng, H. High-Efficiency Infrared Sulfide Lead Quantum Dot Solar Cells Via Mixed Halide Ions Ligand Engineering. Sol. RRL 2023, 7, 2300804. [Google Scholar] [CrossRef]
- Li, W.Z.; Song, P.; Xin, Y.; Kuang, Z.; Liu, Q.; Ge, F.; Zhu, L.B.; Zhang, X.G.; Tao, Y.G.; Zhang, W.W. The Effects of Luminescent Cdse Quantum Dot-Functionalized Antimicrobial Peptides Nanoparticles on Antibacterial Activity and Molecular Mechanism. Int. J. Nanomed. 2021, 16, 1849–1867. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.M.; Lian, T.Q. Enhanced Multiple Exciton Dissociation from Cdse Quantum Rods: The Effect of Nanocrystal Shape. J. Am. Chem. Soc. 2012, 134, 11289–11297. [Google Scholar] [CrossRef]
- Sahu, S.R.; Khan, S.; Tripathy, A.; Dey, K.; Bano, N.; Mohan, S.R.; Joshi, M.P.; Verma, S.; Rao, B.T.; Sathe, V.G.; et al. Multiple Exciton Generation in Vo2. Phys. Rev. B 2023, 108, 6. [Google Scholar] [CrossRef]
- Jin, H.; Livache, C.; Kim, W.D.; Diroll, B.T.; Schaller, R.D.; Klimov, V.I. Spin-Exchange Carrier Multiplication in Manganese-Doped Colloidal Quantum Dots. Nat. Mater. 2023, 22, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Kolay, I.; Asil, D. Pbse Nanorod-Quantum Dot Bulk Nano-Heterojunction Solar Cells Generating Multiple Excitons with Record Photo Conversion Efficiencies. Mater. Today Commun. 2023, 35, 9. [Google Scholar]
- Xing, G.C.; Liao, Y.L.; Wu, X.Y.; Chakrabortty, S.; Liu, X.F.; Yeow, E.K.L.; Chan, Y.; Sum, T.C. Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded Cdse/Cds Nanorod Heterostructures. ACS Nano 2012, 6, 10835–10844. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.M.; Song, N.H.; Rodríguez-Córdoba, W.; Lian, T.Q. Wave Function Engineering for Efficient Extraction of up to Nineteen Electrons from One Cdse/Cds Quasi-Type Ii Quantum Dot. J. Am. Chem. Soc. 2012, 134, 4250–4257. [Google Scholar] [CrossRef]
- Cihan, A.F.; Kelestemur, Y.; Guzelturk, B.; Yerli, O.; Kurum, U.; Yaglioglu, H.G.; Elmali, A.; Demir, H.V. Attractive Versus Repulsive Excitonic Interactions of Colloidal Quantum Dots Control Blue- to Red-Shifting (and Non-Shifting) Amplified Spontaneous Emission. J. Phys. Chem. Lett. 2013, 4, 4146–4152. [Google Scholar] [CrossRef]
- Liu, Y.W.; Cullen, D.A.; Lian, T.Q. Slow Auger Recombination of Trapped Excitons Enables Efficient Multiple Electron Transfer in Cds-Pt Nanorod Heterostructures. J. Am. Chem. Soc. 2021, 143, 20264–20273. [Google Scholar] [CrossRef]
- Li, M.J.; Begum, R.; Fu, J.H.; Xu, Q.; Koh, T.M.; Veldhuis, S.A.; Grätzel, M.; Mathews, N.; Mhaisalkar, S.; Sum, T.C. Low Threshold and Efficient Multiple Exciton Generation in Halide Perovskite Nanocrystals. Nat. Commun. 2018, 9, 7. [Google Scholar] [CrossRef]
- Fan, F.J.; Voznyy, O.; Sabatini, R.P.; Bicanic, K.T.; Adachi, M.M.; McBride, J.R.; Reid, K.R.; Park, Y.S.; Li, X.Y.; Jain, A.; et al. Continuous-Wave Lasing in Colloidal Quantum Dot Solids Enabled by Facet-Selective Epitaxy. Nature 2017, 544, 75–79. [Google Scholar] [CrossRef]
- Klimov, V.I. Spectral and Dynamical Properties of Multilexcitons in Semiconductor Nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673. [Google Scholar] [CrossRef]
- Gesuele, F.; Sfeir, M.Y.; Koh, W.K.; Murray, C.B.; Heinz, T.F.; Wong, C.W. Ultrafast Supercontinuum Spectroscopy of Carrier Multiplication and Biexcitonic Effects in Excited States of Pbs Quantum Dots. Nano Lett. 2012, 12, 2658–2664. [Google Scholar] [CrossRef]
- Wu, W.; Liu, W.; Han, Q.; Gao, Y.; Kong, D.; Yang, Q. Composition Effects on Exciton Recombination Dynamics of Blue-Emitting Alloyed Cd1–Xznxs/Zns Quantum Dots. J. Mater. Chem. C 2023, 11, 1854–1862. [Google Scholar] [CrossRef]
- Qin, C.; Jiang, Z.; Zhou, Z.; Liu, Y.; Jiang, Y. Multiexciton Dynamics in Cspbbr3 Nanocrystals: The Dependence on Pump Fluence and Temperature. Nanotechnology 2021, 32, 455702. [Google Scholar] [CrossRef]
- El-Ballouli, A.O.; Alarousu, E.; Usman, A.; Pan, J.; Bakr, O.M.; Mohammed, O.F. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in Pbs Quantum Dots. Acs Photonics 2014, 1, 285–292. [Google Scholar] [CrossRef]
- Liu, Q.; Kong, D.G. Multi-Exciton Properties of Inp/Zns Core-Shell Quantum Dots. Phys. B 2022, 646, 4. [Google Scholar] [CrossRef]
- Qin, C.C.; Guo, J.J.; Zhou, Z.P.; Liu, Y.F.; Jiang, Y.H. Hot Excitons Cooling and Multiexcitons Auger Recombination in Pbs Quantum Dots. Nanotechnology 2021, 32, 7. [Google Scholar] [CrossRef] [PubMed]
- Hilsum, C. Semiconductors (2nd Edn). Phys. Bull. 1979, 30, 528. [Google Scholar] [CrossRef]
- Arzhanov, A.I.; Savostianov, A.O.; Magaryan, K.A.; Karimullin, K.R.; Naumov, A.V. Photonics of Semiconductor Quantum Dots: Basic Aspects. Photonics Russ. 2021, 15, 622. [Google Scholar]
- Arakawa, Y.; Holmes, M.J. Progress in Quantum-Dot Single Photon Sources for Quantum Information Technologies: A Broad Spectrum Overview. Appl. Phys. Rev. 2020, 7, 021309. [Google Scholar] [CrossRef]
- Azam, N.; Najabat Ali, M.; Javaid Khan, T. Carbon Quantum Dots for Biomedical Applications: Review and Analysis. Front. Mater. 2021, 8, 700403. [Google Scholar] [CrossRef]
- Pham Thi, T.; Ung Thi Dieu, T.; Tran Thi Kim, C.; Le Quang, P.; Nguyen Quang, L.; Liang, L.; Peter, R. Time-Resolved Photoluminescence Measurements of Inp/Zns Quantum Dots. J. Phys. Conf. Ser. 2009, 187, 012014. [Google Scholar]
- Wehrenberg, B.L.; Wang, C.J.; Guyot-Sionnest, P. Interband and Intraband Optical Studies of Pbse Colloidal Quantum Dots. J. Phys. Chem. B 2002, 106, 10634–10640. [Google Scholar] [CrossRef]
- Beard, M.C.; Luther, J.M.; Semonin, O.E.; Nozik, A.J. Third Generation Photovoltaics Based on Multiple Exciton Generation in Quantum Confined Semiconductors. Acc. Chem. Res. 2013, 46, 1252–1260. [Google Scholar] [CrossRef]
- McGuire, J.A.; Joo, J.; Pietryga, J.M.; Schaller, R.D.; Klimov, V.I. New Aspects of Carrier Multiplication in Semiconductor Nanocrystals. Acc. Chem. Res. 2008, 41, 1810–1819. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Z.; Qin, C.C.; Cui, M.H.; He, T.W.; Liu, K.K.; Huang, Y.M.; Luo, M.H.; Zhang, L.; Xu, H.Y.; Li, S.S.; et al. Spectra Stable Blue Perovskite Light-Emitting Diodes. Nat. Commun. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.H.; Qin, C.C.; Jiang, Y.Z.; Yuan, M.J.; Xu, L.H.; Song, D.D.; Jiang, Y.H.; Liu, Y.F. Direct Observation of Competition between Amplified Spontaneous Emission and Auger Recombination in Quasi-Two-Dimensional Perovskites. J. Phys. Chem. Lett. 2020, 11, 5734–5740. [Google Scholar] [CrossRef]
- Chuang, C.H.; Lo, S.S.; Scholes, G.D.; Burda, C. Charge Separation and Recombination in Cdte/Cdse Core/Shell Nanocrystals as a Function of Shell Coverage: Probing the Onset of the Quasi Type-Ii Regime. J. Phys. Chem. Lett. 2010, 1, 2530–2535. [Google Scholar] [CrossRef]
Pump–Pulse Energy/nJ | τe/ps (Weights/%) | τ1/ps (Weights/%) | τ2/ps (Weights/%) | τ3/ps (Weights/%) |
---|---|---|---|---|
50 | 0.184 (100) | / | / | / |
100 | 0.228 (100) | / | / | / |
150 | 0.246 (100) | 20.56 (/) | 101.09 (30.5) | >2 ns (69.5) |
200 | 0.290 (100) | 20.36 (/) | 89.53 (39.8) | >2 ns (60.2) |
500 | 0.311 (100) | 19.74 (/) | 87.08 (40.8) | >2 ns (59.2) |
1000 | 0.368 (100) | 13.07 (/) | 80.29 (43.7) | >2 ns (56.3) |
1500 | 0.416 (100) | 15.19 (/) | 72.61 (48.9) | >2 ns (51.1) |
2000 | 0.441 (100) | 18.45 (/) | 61.41 (52.4) | >2 ns (47.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Wang, Y.; Su, X.; Zhang, Q.; Sun, M. Study of Laser-Induced Multi-Exciton Generation and Dynamics by Multi-Photon Absorption in CdSe Quantum Dots. Nanomaterials 2024, 14, 558. https://doi.org/10.3390/nano14070558
Zhang P, Wang Y, Su X, Zhang Q, Sun M. Study of Laser-Induced Multi-Exciton Generation and Dynamics by Multi-Photon Absorption in CdSe Quantum Dots. Nanomaterials. 2024; 14(7):558. https://doi.org/10.3390/nano14070558
Chicago/Turabian StyleZhang, Peng, Yimeng Wang, Xueqiong Su, Qiwen Zhang, and Mingyu Sun. 2024. "Study of Laser-Induced Multi-Exciton Generation and Dynamics by Multi-Photon Absorption in CdSe Quantum Dots" Nanomaterials 14, no. 7: 558. https://doi.org/10.3390/nano14070558
APA StyleZhang, P., Wang, Y., Su, X., Zhang, Q., & Sun, M. (2024). Study of Laser-Induced Multi-Exciton Generation and Dynamics by Multi-Photon Absorption in CdSe Quantum Dots. Nanomaterials, 14(7), 558. https://doi.org/10.3390/nano14070558