Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials Synthesis
2.2. Catalyst Characterization
2.3. Catalytic Tests
2.4. Electrochemical Tests of Fuel Cells
3. Results and Discussion
3.1. Characterization of Ru-CZO Powders
3.2. Catalytic Tests of Ru-CZO
3.3. Electrochemical Tests of Fuel Cells
3.4. Post-Test Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuel Cell Handbook, 7th ed.; Lulu Press: Morrisville, NC, USA, 2004.
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Chen, W. Mobile Applications: Cars, Trucks, Locomotives, Marine Vehicles, and Aircraft. In Design and Operation of Solid Oxide Fuel Cells; Academic Press: Cambridge, MA, USA, 2020; pp. 333–358. [Google Scholar] [CrossRef]
- E4tech Fuel Cell Industry Review 2021. Available online: https://fuelcellindustryreview.com/ (accessed on 24 November 2023).
- Sasaki, K.; Watanabe, K.; Shiosaki, K.; Susuki, K.; Teraoka, Y. Power Generation Characteristics of SOFCs for Alcohols and Hydrocarbon-Based Fuels. ECS Proc. Vol. 2003, 2003, 1295. [Google Scholar] [CrossRef]
- Cimenti, M.; Hill, J.M. Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes. Energies 2009, 2, 377–410. [Google Scholar] [CrossRef]
- Raza, R.; Ullah, M.K.; Afzal, M.; Rafique, A.; Ali, A.; Arshad, S.; Zhu, B. Low-Temperature Solid Oxide Fuel Cells with Bioalcohol Fuels. In Bioenergy Systems for the Future; Woodhead Publishing: Sawston, UK, 2017; pp. 521–539. [Google Scholar] [CrossRef]
- Volnina, E.A.; Kipnis, M.A.; Khadzhiev, S.N. Catalytic Chemistry of Dimethyl Ether (Review). Pet. Chem. 2017, 57, 353–373. [Google Scholar] [CrossRef]
- Azizi, Z.; Rezaeimanesh, M.; Tohidian, T.; Rahimpour, M.R. Dimethyl Ether: A Review of Technologies and Production Challenges. Chem. Eng. Process. Process Intensif. 2014, 82, 150–172. [Google Scholar] [CrossRef]
- Saravanan, K.; Ham, H.; Tsubaki, N.; Bae, J.W. Recent Progress for Direct Synthesis of Dimethyl Ether from Syngas on the Heterogeneous Bifunctional Hybrid Catalysts. Appl. Catal. B Environ. 2017, 217, 494–522. [Google Scholar] [CrossRef]
- Mota, N.; Ordoñez, E.M.; Pawelec, B.; Fierro, J.L.G.; Navarro, R.M. Direct Synthesis of Dimethyl Ether from CO2: Recent Advances in Bifunctional/Hybrid Catalytic Systems. Catalysts 2021, 11, 411. [Google Scholar] [CrossRef]
- Mondal, U.; Yadav, G.D. Perspective of Dimethyl Ether as Fuel: Part I. Catalysis. J. CO2 Util. 2019, 32, 299–320. [Google Scholar] [CrossRef]
- Bernadet, L.; Morales, M.; Capdevila, X.G.; Ramos, F.; Monterde, M.C.; Calero, J.A.; Morata, A.; Torrell, M.; Tarancón, A. Reversible Fuel Electrode Supported Solid Oxide Cells Fabricated by Aqueous Multilayered Tape Casting. J. Phys. Energy 2021, 3, 024002. [Google Scholar] [CrossRef]
- Ge, X.-M.; Chan, S.-H.; Liu, Q.-L.; Sun, Q.; Ge, X.-M.; Chan, S.-H.; Liu, Q.-L.; Sun, Q. Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization. Adv. Energy Mater. 2012, 2, 1156–1181. [Google Scholar] [CrossRef]
- Morales, M.; Roa, J.J.; Tartaj, J.; Segarra, M. Performance and Short-Term Stability of Single-Chamber Solid Oxide Fuel Cells Based on La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte. J. Power Sources 2012, 216, 417–424. [Google Scholar] [CrossRef]
- Wang, S.; Ishihara, T.; Takita, Y. Partial Oxidation of Dimethyl Ether over Various Supported Metal Catalysts. Appl. Catal. A Gen. 2002, 228, 167–176. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, Z.; Xu, N. Partial Oxidation of Dimethyl Ether to H2/Syngas over Supported Pt Catalyst. J. Nat. Gas Chem. 2008, 17, 75–80. [Google Scholar] [CrossRef]
- Yano, M.; Kawai, T.; Okamoto, K.; Nagao, M.; Sano, M.; Tomita, A.; Hibino, T. Single-Chamber SOFCs Using Dimethyl Ether and Ethanol. J. Electrochem. Soc. 2007, 154, B865–B870. [Google Scholar] [CrossRef]
- Murray, E.P.; Harris, S.J.; Jen, H. Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel. J. Electrochem. Soc. 2002, 149, A1127. [Google Scholar] [CrossRef]
- Su, C.; Ran, R.; Wang, W.; Shao, Z. Coke Formation and Performance of an Intermediate-Temperature Solid Oxide Fuel Cell Operating on Dimethyl Ether Fuel. J. Power Sources 2011, 196, 1967–1974. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.H. Progress in Low-Temperature Solid Oxide Fuel Cells with Hydrocarbon Fuels. Chem. Eng. J. 2020, 402, 126235. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, C.; Zhu, D.; Jia, X.; Zhang, Y.; Yu, J.; Li, X.; Yang, M. High Performance Low-Temperature Solid Oxide Fuel Cells Based on Nanostructured Ceria-Based Electrolyte. Nanomaterials 2021, 11, 2231. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.B.; Beitollahi, H.; Di, B.; Methanol, A.; Askari, M.B.; Beitollahi, H.; Di Bartolomeo, A. Methanol and Ethanol Electrooxidation on ZrO2/NiO/RGO. Nanomaterials 2023, 13, 679. [Google Scholar] [CrossRef] [PubMed]
- Welander, M.M.; Hu, B.; Belko, S.; Lee, K.X.; Dubey, P.K.; Robinson, I.; Singh, P.; Tucker, M.C. Direct Utilization of Gaseous Fuels in Metal Supported Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2023, 48, 1533–1539. [Google Scholar] [CrossRef]
- Anaya-Castro, F.D.J.; Beltrán-Gastélum, M.; Morales Soto, O.; Pérez-Sicairos, S.; Lin, S.W.; Trujillo-Navarrete, B.; Paraguay-Delgado, F.; Salazar-Gastélum, L.J.; Romero-Castañón, T.; Reynoso-Soto, E.; et al. Ultra-Low Pt Loading in Ptco Catalysts for the Hydrogen Oxidation Reaction: What Role Do Co Nanoparticles Play? Nanomaterials 2021, 11, 3156. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Yang, J.; Guan, W.; Wang, J.; Singhal, S.C.; Wang, L. Nanoengineering Modification of Ni-YSZ Anode Using in-Situ Solvothermal Process in Solid Oxide Fuel Cells with Internally Reformed Fuel. Electrochim. Acta 2023, 444, 141986. [Google Scholar] [CrossRef]
- Cao, T.; Kwon, O.; Gorte, R.J.; Vohs, J.M. Metal Exsolution to Enhance the Catalytic Activity of Electrodes in Solid Oxide Fuel Cells. Nanomaterials 2020, 10, 2445. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Espiell, F.; Segarra, M. Improvement of Performance in Low Temperature Solid Oxide Fuel Cells Operated on Ethanol and Air Mixtures Using Cu-ZnO-Al2O3 catalyst Layer. J. Power Sources 2015, 293, 366–372. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, L.; Zhao, B.; Lei, Z.; Ge, B.; Yang, Z.; Jin, X.; Peng, S. Direct Power Generation from Ethanol by Solid Oxide Fuel Cells with an Integrated Catalyst Layer. Fuel 2023, 333, 126340. [Google Scholar] [CrossRef]
- Vakros, J.; Avgouropoulos, G. Tuning the Physicochemical Properties of Nanostructured Materials through Advanced Preparation Methods. Nanomaterials 2022, 12, 956. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Laguna-Bercero, M.A. Microtubular Solid Oxide Fuel Cells Fabricated by Gel-Casting: The Role of Supporting Microstructure on the Mechanical Properties. RSC Adv. 2017, 7, 17620–17628. [Google Scholar] [CrossRef]
- Su, C.; Wang, W.; Ran, R.; Zheng, T.; Shao, Z. Further Performance Enhancement of a DME-Fueled Solid Oxide Fuel Cell by Applying Anode Functional Catalyst. Int. J. Hydrogen Energy 2012, 37, 6844–6852. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Xu, H.; Xiong, G. Hydrogen Production Capacity of Membrane Reformer for Methane Steam Reforming near Practical Working Conditions. J. Membr. Sci. 2008, 322, 453–459. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Fujimoto, K.; Asami, K. Hydrogen Production by Partial Oxidation and Reforming of DME. Appl. Catal. A Gen. 2005, 288, 169–174. [Google Scholar] [CrossRef]
- Yu, B.Y.; Lee, K.H.; Kim, K.; Byun, D.J.; Ha, H.P.; Byun, J.Y. Partial Oxidation of Dimethyl Ether Using the Structured Catalyst Rh/Al2O3/Al Prepared through the Anodic Oxidation of Aluminum. J. Nanosci. Nanotechnol. 2011, 11, 6298–6305. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, S.H.; Byun, J.Y. A Microreactor with Metallic Catalyst Support for Hydrogen Production by Partial Oxidation of Dimethyl Ether. Chem. Eng. J. 2015, 280, 468–474. [Google Scholar] [CrossRef]
- Badmaev, S.D.; Akhmetov, N.O.; Belyaev, V.D.; Kulikov, A.V.; Pechenkin, A.A.; Potemkin, D.I.; Konishcheva, M.V.; Rogozhnikov, V.N.; Snytnikov, P.V.; Sobyanin, V.A. Syngas Production via Partial Oxidation of Dimethyl Ether over Rh/Ce0.75Zr0.25O2 Catalyst and Its Application for SOFC Feeding. Int. J. Hydrogen Energy 2020, 45, 26188–26196. [Google Scholar] [CrossRef]
- Badmaev, S.D.; Akhmetov, N.O.; Sobyanin, V.A. Partial Oxidation of Dimethoxymethane to Syngas Over Supported Noble Metal Catalysts. Top. Catal. 2020, 63, 196–202. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Li, Y.; Schwank, J.W. A Review on Oxygen Storage Capacity of CeO2-Based Materials: Influence Factors, Measurement Techniques, and Applications in Reactions Related to Catalytic Automotive Emissions Control. Catal. Today 2019, 327, 90–115. [Google Scholar] [CrossRef]
- Zhan, Z.; Barnett, S.A. An Octane-Fueled Solid Oxide Fuel Cell. Science 2005, 308, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; deGlee, B.; Tang, Y.; Wang, Z.; Zhao, B.; Wei, Y.; Zhang, L.; Yoo, S.; Pei, K.; Kim, J.H.; et al. A Robust Fuel Cell Operated on Nearly Dry Methane at 500 °C Enabled by Synergistic Thermal Catalysis and Electrocatalysis. Nat. Energy 2018, 3, 1042–1050. [Google Scholar] [CrossRef]
- Morales, M.; Laguna-Bercero, M.Á.; Jiménez-Piqué, E. Hydrogen-Rich Gas Production by Steam Reforming and Oxidative Steam Reforming of Methanol over La0.6Sr0.4CoO3−δ: Effects of Preparation, Operation Conditions, and Redox Cycles. ACS Appl. Energy Mater. 2023, 6, 7887–7898. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; He, F.; Xie, J.; Xue, L. Calibration of Binding Energy Positions with C1s for XPS Results. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020, 35, 711–718. [Google Scholar] [CrossRef]
- Jin, B.; Wei, Y.; Zhao, Z.; Liu, J.; Jiang, G.; Duan, A. Effects of Au–Ce Strong Interactions on Catalytic Activity of Au/CeO2/3DOM Al2O3 Catalyst for Soot Combustion under Loose Contact Conditions. Chin. J. Catal. 2016, 37, 923–933. [Google Scholar] [CrossRef]
- Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.W.; Herman, I.P. Size-Dependent Properties of Nanoparticles as Studied by Raman Scattering. Phys. Rev. B 2001, 64, 245407. [Google Scholar] [CrossRef]
- Han, J.; Kim, H.J.; Yoon, S.; Lee, H. Shape Effect of Ceria in Cu/Ceria Catalysts for Preferential CO Oxidation. J. Mol. Catal. A Chem. 2011, 335, 82–88. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, P.; Koberstein, J.; Khalid, S.; Chan, S.W. Cerium Oxidation State in Ceria Nanoparticles Studied with X-Ray Photoelectron Spectroscopy and Absorption near Edge Spectroscopy. Surf. Sci. 2004, 563, 74–82. [Google Scholar] [CrossRef]
- Leppelt, R.; Schumacher, B.; Plzak, V.; Kinne, M.; Behm, R.J. Kinetics and Mechanism of the Low-Temperature Water–Gas Shift Reaction on Au/CeO2 Catalysts in an Idealized Reaction Atmosphere. J. Catal. 2006, 244, 137–152. [Google Scholar] [CrossRef]
- Hua, X.; Zheng, Y.; Yang, Z.; Sun, L.; Su, H.; Murayama, T.; Qi, C. Gold Nanoparticles Supported on Ce–Zr Oxides for Selective Hydrogenation of Acetylene. Top. Catal. 2021, 64, 206–214. [Google Scholar] [CrossRef]
- Li, B.; Croiset, E.; Wen, J.Z. Influence of Surface Properties of Nanostructured Ceria-Based Catalysts on Their Stability Performance. Nanomaterials 2022, 12, 392. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; García-González, S.; Rieux, J.; Jiménez-Piqué, E. Nanosecond Pulsed Laser Surface Modification of Yttria Doped Zirconia for Solid Oxide Fuel Cell Applications: Damage and Microstructural Changes. J. Eur. Ceram. Soc. 2023, 43, 3396–3403. [Google Scholar] [CrossRef]
- Morales, M.; García-González, S.; Plch, M.; Montinaro, D.; Jiménez-Piqué, E. Laser Machining of Nickel Oxide–Yttria Stabilized Zirconia Composite for Surface Modification in Solid Oxide Fuel Cells. Crystals 2023, 13, 1016. [Google Scholar] [CrossRef]
- Nelson, A.E.; Schulz, K.H. Surface Chemistry and Microstructural Analysis of CexZr1−xO2−y Model Catalyst Surfaces. Appl. Surf. Sci. 2003, 210, 206–221. [Google Scholar] [CrossRef]
- Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. Investigations into Nanostructured Ceria–Zirconia Catalysts for Soot Combustion. Appl. Catal. B-Environ. 2016, 180, 271–282. [Google Scholar] [CrossRef]
- Vinodkumar, T.; Durgasri, D.N.; Maloth, S.; Reddy, B.M. Tuning the Structural and Catalytic Properties of Ceria by Doping with Zr4+, La3+ and Eu3+ Cations. J. Chem. Sci. 2015, 127, 1145–1153. [Google Scholar] [CrossRef]
- Chiou, J.Y.Z.; Lee, C.L.; Ho, K.F.; Huang, H.H.; Yu, S.W.; Wang, C. Bin Catalytic Performance of Pt-Promoted Cobalt-Based Catalysts for the Steam Reforming of Ethanol. Int. J. Hydrogen Energy 2014, 39, 5653–5662. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Z.; Guo, Y.; Wang, L.; Guo, Y.; Zhang, J.; Zhan, W. Total Oxidation of Propane over a Ru/CeO2 Catalyst at Low Temperature. Environ. Sci. Technol. 2018, 52, 9531–9541. [Google Scholar] [CrossRef] [PubMed]
- Pei, W.; Dai, L.; Liu, Y.; Deng, J.; Jing, L.; Zhang, K.; Hou, Z.; Han, Z.; Rastegarpanah, A.; Dai, H. PtRu Nanoparticles Partially Embedded in the 3DOM Ce0.7Zr0.3O2 Skeleton: Active and Stable Catalysts for Toluene Combustion. J. Catal. 2020, 385, 274–288. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, H.B.; Lin, G.D.; Hong, Q.; Tsai, K.R. Growth of Carbon Nanotubes by Catalytic Decomposition of CH4 or CO on a Ni MgO Catalyst. Carbon N. Y. 1997, 35, 1495–1501. [Google Scholar] [CrossRef]
- De Jong, K.P.; Geus, J.W. Carbon Nanofibers: Catalytic Synthesis and Applications. Catal. Rev. 2000, 42, 481–510. [Google Scholar] [CrossRef]
- Chen, D.; Christensen, K.O.; Ochoa-Fernández, E.; Yu, Z.; Tøtdal, B.; Latorre, N.; Monzón, A.; Holmen, A. Synthesis of Carbon Nanofibers: Effects of Ni Crystal Size during Methane Decomposition. J. Catal. 2005, 229, 82–96. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Yasuda, I. The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I. Dependence on Temperature, Time, and Impurity Concentration. Solid State Ion. 2000, 132, 261–269. [Google Scholar] [CrossRef]
- Sukeshini, A.M.; Habibzadeh, B.; Becker, B.P.; Stoltz, C.A.; Eichhorn, B.W.; Jackson, G.S. Electrochemical Oxidation of H2, CO, and CO/H2 Mixtures on Patterned Ni Anodes on YSZ Electrolytes. J. Electrochem. Soc. 2006, 153, A705. [Google Scholar] [CrossRef]
- Hua, B.; Yan, N.; Li, M.; Sun, Y.F.; Chen, J.; Zhang, Y.Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L. Toward Highly Efficient in Situ Dry Reforming of H2S Contaminated Methane in Solid Oxide Fuel Cells via Incorporating a Coke/Sulfur Resistant Bimetallic Catalyst Layer. J. Mater. Chem. A 2016, 4, 9080–9087. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascón, J.M.D. Raman Microprobe Studies on Carbon Materials. Carbon N. Y. 1994, 32, 1523–1532. [Google Scholar] [CrossRef]
- Watanabe, S.; Shinohara, M.; Kodama, H.; Tanaka, T.; Yoshida, M.; Takagi, T. Amorphous Carbon Layer Deposition on Plastic Film by PSII. Thin Solid Film. 2002, 420–421, 253–258. [Google Scholar] [CrossRef]
- Pillai, M.; Lin, Y.; Zhu, H.; Kee, R.J.; Barnett, S.A. Stability and Coking of Direct-Methane Solid Oxide Fuel Cells: Effect of CO2 and Air Additions. J. Power Sources 2010, 195, 271–279. [Google Scholar] [CrossRef]
- Chang, H.; Chen, H.; Shao, Z.; Shi, J.; Bai, J.; Li, S.D. In Situ Fabrication of (Sr,La)FeO4 with CoFe Alloy Nanoparticles as an Independent Catalyst Layer for Direct Methane-Based Solid Oxide Fuel Cells with a Nickel Cermet Anode. J. Mater. Chem. A 2016, 4, 13997–14007. [Google Scholar] [CrossRef]
Sample | Nominal Composition Ru (wt.%) | Ru (wt.%) | Ce (wt.%) | Zr (wt.%) | O (wt.%) |
---|---|---|---|---|---|
CZO | 0 | 0 | 62.3 | 18.3 | 19.4 |
1.0 wt.% Ru-CZO | 1.0 | 1.2 | 61.9 | 18.1 | 18.8 |
1.5 wt.% Ru-CZO | 1.5 | 1.8 | 61.2 | 18.0 | 19.0 |
2.0 wt.% Ru-CZO | 2.0 | 2.3 | 61.5 | 17.6 | 18.7 |
Ru (wt.%) | DME conv. (%) | H2 sel. (%) | CO sel. (%) | CO2 sel. (%) | CH4 sel. (%) |
---|---|---|---|---|---|
1.0 | 100 | 66 | 62 | 17 | 21 |
1.5 | 100 | 78 | 76 | 14 | 12 |
2.0 | 100 | 82 | 80 | 12 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, M.; Rezayat, M.; García-González, S.; Mateo, A.; Jiménez-Piqué, E. Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells. Nanomaterials 2024, 14, 603. https://doi.org/10.3390/nano14070603
Morales M, Rezayat M, García-González S, Mateo A, Jiménez-Piqué E. Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells. Nanomaterials. 2024; 14(7):603. https://doi.org/10.3390/nano14070603
Chicago/Turabian StyleMorales, Miguel, Mohammad Rezayat, Sandra García-González, Antonio Mateo, and Emilio Jiménez-Piqué. 2024. "Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells" Nanomaterials 14, no. 7: 603. https://doi.org/10.3390/nano14070603
APA StyleMorales, M., Rezayat, M., García-González, S., Mateo, A., & Jiménez-Piqué, E. (2024). Ru-Ce0.7Zr0.3O2−δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells. Nanomaterials, 14(7), 603. https://doi.org/10.3390/nano14070603