Block Magnets with Uniform Core–Shell Microstructure Regenerated from NdFeB Grain Boundary Diffusion Sheet Magnets
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, X.; Hua, Y.; Li, X. Aligning nano-scale crystals in bulk materials. Sci. China Phys. Mech. Astron. 2025, 68, 247511. [Google Scholar] [CrossRef]
- Keijer, T.; Bakker, V.; Slootweg, J.C. Circular chemistry to enable a circular economy. Nat. Chem. 2019, 11, 190–195. [Google Scholar] [CrossRef]
- Ji, L.; Chen, M.; Gu, H.; Zhao, J.; Yang, X. Current status of light rare earth resources and their applications in the field of new energy vehicles. Zhongguo Xitu Xuebao 2020, 38, 129–138. [Google Scholar]
- Rademaker, J.H.; Kleijn, R.; Yang, Y. Recycling as a strategy against rare earth element criticality: A systemic evaluation of the potential yield of NdFeB magnet recycling. Environ. Sci. Technol. 2013, 47, 10129–10136. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Afiuny, P.; Dove, S.; Furlan, G.; Zakotnik, M.; Yih, Y.; Sutherland, J.W. Life cycle assessment of neodymium-iron-boron magnet-to-magnet recycling for electric vehicle motors. Environ. Sci. Technol. 2018, 52, 3796–3802. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, B.; Xiao, Y.; Walton, A.; Speight, J.; Harris, R.; Kleijn, R.; Visser, G.; Kramer, G.J. Life Cycle Inventory of the Production of Rare Earths and the Subsequent Production of NdFeB Rare Earth Permanent Magnets. Environ. Sci. Technol. 2014, 48, 3951–3958. [Google Scholar] [CrossRef]
- Kumari, A.; Sahu, S.K. A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Sep. Purif. Technol. 2023, 317, 123527. [Google Scholar] [CrossRef]
- Omodara, L.; Turpeinen, E.M.; Pitkäaho, S.; Keiski, R.L. Substitution potential of rare earth catalysts in ethanol steam reforming. Sustain. Mater. Technol. 2020, 26, e00237. [Google Scholar] [CrossRef]
- Lai, W.; Liu, M.; Li, C.; Suo, H.; Yue, M. Recovery of a composite powder from NdFeB slurry by co-precipitation. Hydrometallurgy 2014, 150, 27–33. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Z.; Zhang, G. Recovering REEs from NdFeB wastes with high purity and efficiency by leaching and selective precipitation process with modified agents. J. Rare Earths 2019, 37, 205–210. [Google Scholar] [CrossRef]
- Dhawan, N.; Tanvar, H. A critical review of end-of-life fluorescent lamps recycling for recovery of rare earth values. Sustain. Mater. Technol. 2022, 32, e00401. [Google Scholar] [CrossRef]
- Shirayama, S.; Okabe, T.H. Selective Extraction and Recovery of Nd and Dy from Nd-Fe-B Magnet Scrap by Utilizing Molten MgCl2. Metall. Mater. Transactions B Process Metall. Mater. Process. Sci. 2018, 49, 1067–1077. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Tsubouchi, N.; Sugawara, K. Selective Recovery of Rare Earth Elements from Dy containing NdFeB Magnets by Chlorination. ACS Sustain. Chem. Eng. 2013, 1, 655–662. [Google Scholar] [CrossRef]
- Zakotnik, M.; Tudor, C.O. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materials. Waste Manag. 2015, 44, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Walton, A.; Yi, H.; Rowson, N.; Speight, J.; Mann, V.; Sheridan, R.; Bradshaw, A.; Harris, I.; Williams, A. The use of hydrogen to separate and recycle neodymium–iron–boron-type magnets from electronic waste. J. Clean. Prod. 2015, 104, 236–241. [Google Scholar] [CrossRef]
- Li, C.; Liu, W.Q.; Yue, M.; Liu, Y.Q.; Zhang, D.T.; Zuo, T.Y. Waste Nd-Fe-B Sintered Magnet Recycling by Doping with Rare Earth Rich Alloys. IEEE Trans. Magn. 2014, 50, 1–3. [Google Scholar] [CrossRef]
- Lu, Q.; Shao, Y.; Yin, Y.; Chen, H.; Xu, H.; Liu, W.; Liu, M.; Zhong, C.; Yu, X.; Chen, J.; et al. Mass production of regenerated sintered NdFeB magnets with improved magnetic properties compared to original magnets. Sustain. Mater. Technol. 2023, 36, e00615. [Google Scholar] [CrossRef]
- Liu, Z.; Qian, D.; Zeng, D. Reducing Dy Content by Y Substitution in Nanocomposite NdFeB Alloys with Enhanced Magnetic Properties and Thermal Stability. IEEE Trans. Magn. 2012, 48, 2797–2799. [Google Scholar] [CrossRef]
- Yang, X.; Cao, S.; Li, Y.; Jia, Z.; Xie, Y.; Xiong, Z.; Zheng, S.; Ding, G.; Guo, S.; Chen, R.; et al. Improvement of thermal stability by co-introducing Dy and Co with dual-alloy method in NdFeB magnets. J. Mater. Res. Technol. 2024, 30, 6619–6629. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Chen, H.; Han, R.; Zhou, M.; Li, D.; Dong, S. Optimizing the grain boundary structure of sintered Nd-Fe-Co-B magnets by Dy-Al-Cu alloys grain boundary diffusion. J. Magn. Magn. Mater. 2024, 606, 172387. [Google Scholar] [CrossRef]
- Zhao, L.; He, J.; Li, W.; Liu, X.; Zhang, J.; Wen, L.; Zhang, Z.-H.; Hu, J.; Zhang, J.; Liao, X.; et al. Understanding the Role of Element Grain Boundary Diffusion Mechanism in Nd–Fe–B Magnets. Adv. Funct. Mater. 2022, 32, 2109529. [Google Scholar] [CrossRef]
- He, J.; Hu, J.; Zhou, B.; Jia, H.; Liu, X.; Zhang, Z.; Wen, L.; Zhao, L.; Yu, H.; Zhong, X.; et al. Simultaneous enhancement of coercivity and electric resistivity of Nd-Fe-B magnets by Pr-Tb-Al-Cu synergistic grain boundary diffusion toward high-temperature motor rotors. J. Mater. Sci. Technol. 2023, 154, 54–64. [Google Scholar] [CrossRef]
- Chang, R.; Bai, G.; Li, Y.; Yan, Z.; Qin, X.; Guo, J.; Wang, F.; Xu, X. Synergistic regulation and optimization of microstructure, coercivity, and thermal stability in sintered NdFeB magnets through grain boundary diffusion of Dy and Al elements. J. Mater. Res. Technol. 2025, 34, 2183–2192. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, T.; Lin, F.; Jiang, J.; Zheng, B.; Yang, L.; He, X.; Li, J.; Song, Z. Effect of Al associated grain boundary diffusion of Tb for NdFeB magnets by dual-layer coating. J. Magn. Magn. Mater. 2024, 603, 172240. [Google Scholar] [CrossRef]
- Chen, F. Recent progress of grain boundary diffusion process of Nd-Fe-B magnets. J. Magn. Magn. Mater. 2020, 514, 167227. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, S.C.; Kim, J.; Baek, J.Y.; Yun, T.Y.; Kim, J.T.; Kim, S.; Kim, D.; Li, S.H.; Do, D.; et al. Coercivity and thermal stability enhancement of Nd-Fe-B sintered magnets by grain boundary diffusion with Tb-Al-Cu alloys. Materialia 2024, 36, 102161. [Google Scholar] [CrossRef]
- Kim, S.; Galkin, V.; Jeong, J.R.; Kuchi, R.; Kim, D. Enhanced magnetic and structural properties of chemically prepared Nd-Fe-B particles by reduction-diffusion method through optimization of heat treatments. J. Alloys Compd. 2021, 869, 159337. [Google Scholar] [CrossRef]
- Liang, J.; Hu, X.; Wu, Q.; Jia, J.; Zou, M.; Yan, J.; Ge, H. Study on in-situ grain boundary diffusion Nd-Fe-B magnets prepared by high pressure torsion: Magnetic properties and microstructure. J. Magn. Magn. Mater. 2025, 614, 172773. [Google Scholar] [CrossRef]
- Yan, J.; Wu, Q.; Hu, X.; Jia, J.; Zhao, Y.; Zou, M.; Ge, H. The effect of Dy-Cu co-deposition and grain boundary diffusion on the microstructure and magnetic properties of sintered NdFeB magnets. J. Magn. Magn. Mater. 2024, 600, 172129. [Google Scholar] [CrossRef]
- Mohapatra, P.P.; Li, G.; Alagarsamy, P.; Xu, X. Advances in grain-boundary diffusion for high-performance permanent magnets. Mater. Futures 2024, 3, 42101. [Google Scholar] [CrossRef]
- Elwert, T.; Goldmann, D.; Schmidt, F.; Stollmaier, R. Hydrometallurgical recycling of sintered NdFeB magnets. World Metall. 2013, 66, 209–219. [Google Scholar]
- Önal, M.A.R.; Borra, C.R.; Guo, M.; Blanpain, B.; Van Gerven, T. Hydrometallurgical recycling of NdFeB magnets: Complete leaching, iron removal and electrolysis. J. Rare Earths 2017, 35, 574–584. [Google Scholar] [CrossRef]
- Xie, M.; Yang, F.; Sun, Z.; Zhao, Z.; Xue, L.; Wang, K.; Jiang, Z. Research status and prospects of wet recovery of neodymium iron boron permanent magnet waste. Xi Tu 2024, 45, 16–35. [Google Scholar]
- Schönfeldt, M.; Rossa, J.; Opelt, K.; Schäfer, K.; Schäfer, L.; Maccari, F.; Jovičević-Klug, M.; Schwarz, T.M.; Lin, C.-C.; Hasan, M.; et al. Functional recycling of grain boundary diffusion processed Nd-Fe-B sintered magnets. Acta Mater. 2025, 283, 120532. [Google Scholar] [CrossRef]
- Salazar, D.; Martín-Cid, A.; Madugundo, R.; Barandiaran, J.M.; Hadjipanayis, G.C. Coercivity enhancement in heavy rare earth-free NdFeB magnets by grain boundary diffusion process. Appl. Phys. Lett. 2018, 113, 152402. [Google Scholar] [CrossRef]
- Cherkezova-Zheleva, Z.; Paneva, D.; Fironda, S.A.; Piroeva, I.; Burada, M.; Sabeva, M.; Vasileva, A.; Ivanov, K.; Ranguelov, B.; Piticescu, R.R. Direct Reuse of Spent Nd–Fe–B Permanent Magnets. Materials 2025, 18, 2946. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yu, Y.; Tang, C.; Hu, Q.; Bai, S.; Wang, P.; Li, Z.; Zhao, G. Structural Design of High-Coercivity Nd-Ce-Fe-B Magnets with Easy Axis Perpendicular Orientation and High-Abundance Ce Content Based on Micromagnetic Simulations. Nanomaterials 2025, 15, 1358. [Google Scholar] [CrossRef]
- Yu, X.; Luo, S.; Yang, M.; Shen, Q.; Yang, H.; Zhong, S.; Zhang, W.; Yang, B. Preparation of (Nd, Ce)-Fe-B Regenerated Magnets by In-Situ Restoration of Grain Boundary Structure Using Nascent Nd-Fe-B Powder. Materials 2024, 17, 3381. [Google Scholar] [CrossRef]
- Samardak, V.Y.; Samardak, A.Y.; Borisov, S.A.; Antonov, V.; Mushtuk, P.; Shtarev, D.; Shichalin, O.; Belov, A.; Azon, S.; Rogachev, K.; et al. Investigation of the composition, structure and magnetic properties of the Nd2Fe14B ceramics dependence on the initial powder characteristics and spark plasma sintering modes. Vacuum 2023, 215, 112206. [Google Scholar] [CrossRef]
Element (wt%) | RE | Nd | Pr | Tb | B | Fe | Co | Cu | Al | Zr | Ti | Ga |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Magnet S | 31.41 | 22.36 | 7.32 | 1.73 | 0.93 | 65.74 | 1.25 | 0.11 | 0.25 | 0.11 | ND | 0.20 |
Magnet D | 31.20 | 23.64 | 7.16 | 0.40 | 0.94 | 66.73 | 0.53 | 0.07 | 0.26 | 0.10 | 0.09 | 0.08 |
Magnet RS | 31.51 | 20.57 | 9.44 | 1.50 | 0.92 | 65.73 | 1.20 | 0.11 | 0.23 | 0.11 | ND | 0.19 |
Magnet RD | 31.33 | 21.66 | 9.28 | 0.39 | 0.92 | 66.66 | 0.51 | 0.08 | 0.15 | 0.10 | 0.09 | 0.06 |
Magnet | Br (kG) | Hcj (kOe) | (BH)max (MGOe) | Hk/Hcj (%) |
---|---|---|---|---|
Magnet RS | 13.31 | 19.08 | 43.21 | 95.8 |
Magnet RD | 13.27 | 19.61 | 42.95 | 97.7 |
Sample | Mass Fraction (wt.%) | R Factor | |||
---|---|---|---|---|---|
RE2Fe14B | RE-rich | REOx | Rp | Rwp | |
Magnet RS | 96.88 | 2.36 | 0.76 | 1.76 | 2.63 |
Magnet RD | 96.95 | 2.28 | 0.77 | 1.52 | 2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuge, X.; Dong, S.; Jin, Y.; Wu, Q.; Yue, M.; Liu, W.; Li, Y.; Wang, Z.; Lu, Q.; Qiu, Y.; et al. Block Magnets with Uniform Core–Shell Microstructure Regenerated from NdFeB Grain Boundary Diffusion Sheet Magnets. Nanomaterials 2025, 15, 1437. https://doi.org/10.3390/nano15181437
Zhuge X, Dong S, Jin Y, Wu Q, Yue M, Liu W, Li Y, Wang Z, Lu Q, Qiu Y, et al. Block Magnets with Uniform Core–Shell Microstructure Regenerated from NdFeB Grain Boundary Diffusion Sheet Magnets. Nanomaterials. 2025; 15(18):1437. https://doi.org/10.3390/nano15181437
Chicago/Turabian StyleZhuge, Xiangheng, Shuhan Dong, Yuxin Jin, Qiong Wu, Ming Yue, Weiqiang Liu, Yuqing Li, Zhanjia Wang, Qingmei Lu, Yiming Qiu, and et al. 2025. "Block Magnets with Uniform Core–Shell Microstructure Regenerated from NdFeB Grain Boundary Diffusion Sheet Magnets" Nanomaterials 15, no. 18: 1437. https://doi.org/10.3390/nano15181437
APA StyleZhuge, X., Dong, S., Jin, Y., Wu, Q., Yue, M., Liu, W., Li, Y., Wang, Z., Lu, Q., Qiu, Y., & Tong, Y. (2025). Block Magnets with Uniform Core–Shell Microstructure Regenerated from NdFeB Grain Boundary Diffusion Sheet Magnets. Nanomaterials, 15(18), 1437. https://doi.org/10.3390/nano15181437