SERS Response of Graphene Oxide on Magnetron-Sputtered Gold Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Micro-Raman Measurements
3.2. SEM Measurements
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GO | Graphene oxide |
Au | Gold |
SERS | Surface Enhanced Raman Scattering |
LSPRs | Localized surface plasmon resonances |
References
- Politano, G.G. Optimizing Graphene Oxide Film Quality: The Role of Solvent and Deposition Technique. C 2024, 10, 90. [Google Scholar] [CrossRef]
- Donato, K.Z.; Tan, H.L.; Marangoni, V.S.; Martins, M.V.S.; Ng, P.R.; Costa, M.C.F.; Jain, P.; Lee, S.J.; Koon, G.K.W.; Donato, R.K.; et al. Graphene oxide classification and standardization. Sci. Rep. 2023, 13, 6064. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Cao, Z.; Yao, B.; Qin, C.; Yang, R.; Guo, Y.; Zhang, Y.; Wu, Y.; Bi, L.; Chen, Y.; Xie, Z.; et al. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light Sci. Appl. 2019, 8, 107. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; D’Olimpio, G.; Mazzola, F.; Kuo, C.-N.; Mardanya, S.; Fujii, J.; Politano, G.G.; Lue, C.S.; Agarwal, A.; Vobornik, I.; et al. Unveiling the Catalytic Potential of Topological Nodal-Line Semimetal AuSn4 for Hydrogen Evolution and CO2 Reduction. J. Phys. Chem. Lett. 2023, 14, 3069–3076. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Wang, Y.-H.; Kuo, P.-Y.; Yang, Y.-C.; Hsieh, W.-Y.; Liu, S.-Y.; Huang, Y.-F.; Yen, C.-M.; Tang, C.M.; Liu, B.-S.; et al. In vitro and In Vivo evaluation of graphene oxide–gold nanocomposites for enhanced biocompatibility and functional performance in biomaterial application. Colloids Surfaces A Physicochem. Eng. Asp. 2025, 725, 137721. [Google Scholar] [CrossRef]
- Singh, N.S.S.; El-kott, A.F.; Negm, S.; AlShehri, M.A.; Salama, S.A.; Alamri, A.A.; Alhabardi, S.A.; Karmakar, B. Bio-decorated gold nanoparticles over the surface of graphene oxide mediated by Orange leaves extract as efficient catalyst for synthesis of propargylamines and evaluation of its antioxidant activity. J. Organomet. Chem. 2025, 1039, 123798. [Google Scholar] [CrossRef]
- Pupel, K.; Jędrzejewski, K.; Zoladek, S.; Palys, M.; Palys, B. The Graphene Oxide/Gold Nanoparticles Hybrid Layers for Hydrogen Peroxide Sensing—Effect of the Nanoparticles Shape and Importance of the Graphene Oxide Defects for the Sensitivity. Molecules 2025, 30, 533. [Google Scholar] [CrossRef]
- Ibrahim, B.; Akere, T.H.; Dhumal, P.; Valsami-Jones, E.; Chakraborty, S. Designing safer nanohybrids: Stability and ecotoxicological assessment of graphene oxide–gold nanoparticle hybrids in embryonic zebrafish. Environ. Sci. Nano 2025, 12, 1965–1978. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Li, X.; Zhang, Y.; Chen, Q.; Ye, Z.; Alqarni, Z.; Bell, S.E.J.; Xu, Y. Towards practical and sustainable SERS: A review of recent developments in the construction of multifunctional enhancing substrates. J. Mater. Chem. C 2021, 9, 11517–11552. [Google Scholar] [CrossRef]
- Faggio, G.; Politano, G.G.; Lisi, N.; Capasso, A.; Messina, G. The structure of chemical vapor deposited graphene substrates for graphene-enhanced Raman spectroscopy. J. Phys. Condens. Matter 2024, 36, 195303. [Google Scholar] [CrossRef]
- Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-based SERS biosensor: From substrate design to sensing and bioapplication. NPG Asia Mater. 2021, 13, 8. [Google Scholar] [CrossRef]
- Abbas, A.; Zhang, Q.; Kazmi, J.; Li, Y.; Li, W.; Ahmad, W.; Zou, C.; Liang, Q. Label-Free SERS Fingerprinting for Chiral Discrimination Using Chiral Two-Dimensional Superlattice. Nano Lett. 2025, 25, 12676–12684. [Google Scholar] [CrossRef]
- Kong, F.; Luo, J.; Jing, L.; Wang, Y.; Shen, H.; Yu, R.; Sun, S.; Xing, Y.; Ming, T.; Liu, M.; et al. Reduced Graphene Oxide and Gold Nanoparticles-Modified Electrochemical Aptasensor for Highly Sensitive Detection of Doxorubicin. Nanomaterials 2023, 13, 1223. [Google Scholar] [CrossRef]
- Phung, V.-D.; Jung, W.-S.; Kim, J.-H.; Lee, S.-W. Gold nanostructures electrodeposited on graphene oxide-modified indium tin oxide glass as a surface-enhanced Raman scattering-active substrate for ultrasensitive detection of dopamine neurotransmitter. Jpn. J. Appl. Phys. 2018, 57, 08PF02. [Google Scholar] [CrossRef]
- Fu, W.L.; Zhen, S.J.; Huang, C.Z. One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. Analyst 2013, 138, 3075–3081. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Jo, G.; Shin, S.; Kim, J.-B.; Jang, J.-H. Dendrimer-Capped Gold Nanoparticles for Highly Reliable and Robust Surface Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2016, 8, 20379–20384. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Li, J.; Ren, G.-K.; Chen, J.; Chen, X.; Wu, W.; Liu, Y.; Chen, X.; Song, J.; Lin, Y.-H.; Shi, Y. Facilitating Complex Thin Film Deposition by Using Magnetron Sputtering: A Review. JOM 2022, 74, 3069–3081. [Google Scholar] [CrossRef]
- Politano, G.G.; Vena, C.; Desiderio, G.; Versace, C. Spectroscopic ellipsometry investigation of the optical properties of graphene oxide dip-coated on magnetron sputtered gold thin films. J. Appl. Phys. 2018, 123, 055303. [Google Scholar] [CrossRef]
- Theeten, J.B.; Aspnes, D.E. Ellipsometry in Thin Film Analysis. Annu. Rev. Mater. Sci. 1981, 11, 97–122. [Google Scholar] [CrossRef]
- Yi, T.-M.; Xing, P.-F.; Zheng, F.-C.; Xie, J.; Li, C.-Y.; Yang, M.-S. Preparation of continuous gold nano-films by magnetron sputtering. At. Energy Sci. Technol. 2010, 44, 479–483. [Google Scholar] [CrossRef]
- Scriven, L.E. Physics and Applications of DIP Coating and Spin Coating. MRS Proc. 1988, 121, 717. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, S.; Zhou, P.; Sun, Q.; Wang, P.; Wan, L.; Li, J.; Chen, L.; Wang, X.; Ding, S.; et al. Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon 2013, 62, 157–164. [Google Scholar] [CrossRef]
- Schatz, G.C.; Young, M.A.; Van Duyne, R.P. Electromagnetic Mechanism of SERS. In Surface-Enhanced Raman Scattering: Physics and Applications; Kneipp, K., Moskovits, M., Kneipp, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 19–45. ISBN 978-3-540-33567-2. [Google Scholar]
- Lin, C.; Li, Y.; Peng, Y.; Zhao, S.; Xu, M.; Zhang, L.; Huang, Z.; Shi, J.; Yang, Y. Recent development of surface-enhanced Raman scattering for biosensing. J. Nanobiotechnol. 2023, 21, 149. [Google Scholar] [CrossRef]
- Goncalves, G.; Marques, P.A.A.P.; Granadeiro, C.M.; Nogueira, H.I.S.; Singh, M.K.; Grácio, J. Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chem. Mater. 2009, 21, 4796–4802. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politano, G.G. SERS Response of Graphene Oxide on Magnetron-Sputtered Gold Films. Nanomaterials 2025, 15, 1438. https://doi.org/10.3390/nano15181438
Politano GG. SERS Response of Graphene Oxide on Magnetron-Sputtered Gold Films. Nanomaterials. 2025; 15(18):1438. https://doi.org/10.3390/nano15181438
Chicago/Turabian StylePolitano, Grazia Giuseppina. 2025. "SERS Response of Graphene Oxide on Magnetron-Sputtered Gold Films" Nanomaterials 15, no. 18: 1438. https://doi.org/10.3390/nano15181438
APA StylePolitano, G. G. (2025). SERS Response of Graphene Oxide on Magnetron-Sputtered Gold Films. Nanomaterials, 15(18), 1438. https://doi.org/10.3390/nano15181438