Synthesis of Turbostratic Graphene Derived from Biomass Waste Using Long Pulse Joule Heating Technique
Abstract
:1. Introduction
Flash Joule Heating (FJH) [25,27,29] | Chemical Vapor Deposition (CVD) [18,19,20,21] | Mechanical Exfoliation [16,17,18,19,20,21] | Liquid-Phase Exfoliation [16,17,18,19,20,21] | Epitaxial Growth on SiC [16,18,19,20] | |
---|---|---|---|---|---|
Synthesis Time | Milliseconds | Hours | Time-intensive (manual process) | Hours to days | Hours to days |
Temperature | 2000–3000 K | ~1000–1300 K | Room temperature | Room temperature or mild heating | >1000 °C |
Scalability | High (bulk synthesis) | Limited (substrate-dependent) | Very low (small flakes) | Moderate (bulk possible) | Limited (substrate-dependent) |
Purity | High (minimal oxygen, few defects) | High (single/few layers) | High (monolayer possible) | Moderate (polycrystalline structure) | High (epitaxial layers) |
Defect Density | Low (turbostratic graphene) | Low (depending on transfer) | Very low | High (defects from sonication) | Very low |
Cost | Low (cheap carbon feedstocks) | High (substrates, gases) | Low (but inefficient) | Low to moderate (depends on solvents, sonication) | Very high (SiC substrates) |
Environmental Impact | Lower (no toxic chemicals) | Higher (methane, hydrogen) | Low | Moderate (solvent use) | High (energy-intensive process) |
Conductivity | High (~10⁴ S/m) | Very high (~105 S/m) | Very high | Moderate (~102 to 103 S/m) | Very high |
Structural Order | Turbostratic graphene (loosely stacked layers, easy to exfoliate) | Crystalline (high-quality monolayers) | Crystalline monolayers (small flakes) | Polycrystalline sheets | Crystalline monolayers |
Layer Control | Poor (randomly stacked layers) | Excellent (monolayer possible) | Excellent but hard to scale | Poor (varied thickness) | Excellent |
Applications | Composites, coatings, energy storage, conductive inks | Electronics, transparent electrodes | Fundamental research, sensors | Composites, inks, coatings | High-speed electronics, quantum devices |
2. Materials and Methods
2.1. Carbon Powder Preparation from Biomass Waste
2.2. Graphene Synthesis Using DC-LPJH
3. Results
3.1. Characterization
3.1.1. Raman SPECTROSCOPY
3.1.2. Transmission Electron Microscopy (TEM)
3.1.3. X-Ray Photoelectron Spectroscopy (XPS)
3.1.4. Near-Edge X-Ray Absorption Fine Structure, NEXAFS
4. Discussion
4.1. Graphene Formation and Quality
4.2. Morphological Characteristics
4.3. Chemical Composition and Functionalization
4.4. Influence of Biomass Composition
4.5. Industrial Applications
4.6. Comparison with Previous Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozo, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Sci. New Ser. 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2004, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef]
- Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Chen, A.; Li, L.; Liu, Y. Preparation, properties, applications and outlook of graphene-based materials in biomedical field: A comprehensive review. J. Biomater. Sci. 2023, 34, 1121–1156. [Google Scholar] [CrossRef] [PubMed]
- Etri, H.E. Graphene: A State-of-the-Art Review of Types, Properties and Applications in Different Sectors. Prabha Mater. Sci. Lett. 2023, 2, 98–139. [Google Scholar] [CrossRef]
- Urade, R.; Lahiri, I.; Suresh, K.S. Graphene Properties, Synthesis and Applications: A Review. JOM 2023, 75, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Santhiran, A.; Iyngaran, P.; Abiman, P.; Kuganathan, N. Graphene Synthesis and Its Recent Advances in Applications—A Review C. J. Carbon Res. 2021, 7, 76. [Google Scholar] [CrossRef]
- Liu, N.; Tang, Q.; Huang, B.; Wang, Y. Graphene Synthesis: Method, Exfoliation Mechanism and Large-Scale Production. Crystals 2022, 12, 25. [Google Scholar] [CrossRef]
- Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of Graphene and Its Applications: A Review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71. [Google Scholar] [CrossRef]
- Alwan, S.H.; Omran, A.A.; Naser, D.K.; Ramadan, M.F. A Mini-Review on Graphene: Exploration of Synthesis Methods and Multifaceted Properties. Eng. Proc. 2023, 59, 226. [Google Scholar]
- Abbas, Q.; Shinde, P.A.; Abdelkareem, M.A.; Alami, A.H.; Mirzaeian, M.; Yadav, A.; Olabi, A.G. Graphene Synthesis Techniques and Environmental Applications. Materials 2022, 15, 7804. [Google Scholar] [CrossRef]
- Yan, Y.; Nashath, F.Z.; Chen, S.; Manickam, S.; Lim, S.S.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnol. Rev. 2020, 9, 1284–1314. [Google Scholar] [CrossRef]
- Edward, K.; Mamun, K.; Narayan, S.; Assaf, M.; Rohindra, D.; Rathnayake, U. State-of-the-Art Graphene Synthesis Methods and Environmental Concerns. Appl. Environ. Soil Sci. 2023, 2023, 8475504. [Google Scholar] [CrossRef]
- Politano, G.G. Optimizing Graphene Oxide Film Quality: The Role of Solvent and Deposition Technique. Carbon 2024, 10, 90. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, T.; Chen, H.; Ma, Y. Studies for the growing mechanism of few-layered graphene by arc-discharge. Carbon 2016, 102, 494–498. [Google Scholar] [CrossRef]
- Luong, D.X.; Bets, K.V.; Algozeeb, W.A.; Stanford, M.G.; Kittrell, C.; Chen, W.; Salvatierra, R.V.; Ren, M.; McHugh, E.A.; Advincula, P.A.; et al. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, J.T.; Wang, Z.; Algozeeb, W.A.; Luong, D.X.; Kittrell, C.; McHugh, E.A.; Advincula, P.A.; Wyss, K.M.; Beckham, J.L.; et al. Ultrafast and Controllable Phase Evolution by Flash Joule Heating. ACS Nano 2021, 15, 1158–11167. [Google Scholar] [CrossRef] [PubMed]
- Algozeeb, W.A.; Savas, P.E.; Luong, D.X.; Chen, W.; Kittrell, C.; Bhat, M.; Shahsavari, R.; Tour, J.M. Flash Graphene from Plastic Waste. ACS Nano 2020, 14, 15595–15604. [Google Scholar] [CrossRef]
- Barbhuiya, N.H.; Kumar, A.; Singh, A.; Chandel, M.K.; Arnusch, C.J.; Tour, J.M.; Singh, S.P. The Future of Flash Graphene for the Sustainable Management of Solid Waste. ACS Nano 2021, 15, 15461–15470. [Google Scholar] [CrossRef]
- Liu, X.; Luo, H. Preparation of Coal-Based Graphene by Flash Joule Heating. ACS Omega 2024, 9, 2657–2663. [Google Scholar] [CrossRef]
- Mao, X.; Zhang, Y.; Li, H.; Zhao, N.; Zhang, H.; Zhao, P.; Song, J.; Zhang, W.; Huang, X. Ultrafast synthesis of lignin-based graphene by flash Joule heating for multifunctional applications. J. Power Sources 2025, 631, 236211. [Google Scholar] [CrossRef]
- Stanford, M.G.; Bets, K.V.; Luong, D.X.; Advincula, P.A.; Chen, W.; Li, J.T.; Wang, Z.; McHugh, E.A.; Algozeeb, W.A.; Yakobson, B.I.; et al. Flash Graphene Morphologie. ACS Nano 2020, 14, 13691–13699. [Google Scholar] [CrossRef]
- Sattari, K.; Eddy, L.; Beckham, J.L.; Wyss, K.M.; Byfield, R.; Qian, L.; Tour, J.M.; Lin, J. A scientific machine learning framework to understand flash graphene synthesis. Digit. Discov. 2023, 2, 1209–1218. [Google Scholar] [CrossRef]
- Furlan, A.; Gueorguiev, G.K.; Czigány, Z.; Högberg, H.; Braun, S.; Stafström, S.; Hultman, L. Synthesis of phosphorus-carbide thin films by magnetron sputtering. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2008, 2, 191–193. [Google Scholar] [CrossRef]
- Gueorguiev, G.K.; Pacheco, J.M. Shapes of cagelike metal carbide clusters: First-principles calculations. Phys. Rev. B 2003, 68, 241401. [Google Scholar] [CrossRef]
- Xu, C.; Strømme, M. Sustainable Porous Carbon Materials Derived from Wood-Based Biopolymers for CO2 Capture. Nanomaterials 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Pang, M.; Lu, Y.; Zhu, Y.-G.; Zhu, X.; Yan, Y. Graphene environmental footprint greatly reduced when derived from biomass waste via flash Joule heating. One Earth 2022, 5, 1394–1403. [Google Scholar] [CrossRef]
- Călin, C.; Sîrbu, E.-E.; Tănase, M.; Győrgy, R.; Popovici, D.R.; Banu, I. A Thermogravimetric Analysis of Biomass Conversion to Biochar: Experimental and Kinetic Modeling. Appl. Sci. 2024, 14, 9856. [Google Scholar] [CrossRef]
- Olatunji, O.O.; Akinlabi, S.A.; Mashinini, M.P.; Fatoba, S.O.; Ajay, O.O. Thermo-gravimetric characterization of biomass properties: A review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 423, 012175. [Google Scholar] [CrossRef]
- Shen, W.; Fan, W.; Wang, H. Development of porous carbons for CO2 capture. Energy Fuels 2010, 24, 1018–1024. [Google Scholar]
- Zahid, M.; Abuzairi, T. Sustainable Graphene Production: Flash Joule Heating Utilizing Pencil Graphite Precursors. Nanomaterials 2024, 14, 1289. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, L.; Pang, M.; Jia, C.; Xia, L.; Shi, G.; Zhang, S.; Lu, Y.; Sun, L.; Yu, F.; et al. Continuous and low-carbon production of biomass flash graphene. Nat. Commun. 2024, 15, 3218. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Ferrari, C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, A.; Felten, A.; Verzhbitskiy, I.; Davey, R.; Casiragh, C. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Phy. Rev. 2013, B 88, 035426. [Google Scholar] [CrossRef]
- Hu, M.; Yao, Z.; Wa, X. Characterization techniques for graphene-based materials in catalysis. AIMS Mater. Sci. 2017, 4, 755–778. [Google Scholar] [CrossRef]
- Meyer, J.C.; Amadeo, L.; de Parga, V.; Miranda, R.; Hulman, M.; Susi, T. Graphene Properties, Preparation, Characterization, and Application, 2nd ed.; Skakalova, V., Kaiser, A.B., Eds.; Elsevier: Duxford, UK, 2021; pp. 315–436. [Google Scholar]
- Kokmat, P.; Surinlert, P.; Ruammaitree, A. Growth of High-Purity and High-Quality Turbostratic Graphene with Different Interlayer Spacings. ACS Omega 2023, 8, 4010–4018. [Google Scholar] [CrossRef]
- Bhorkar, K.; Samartzis, N.; Athanasiou, M.; Sygellou, L.; Boukos, N.; Dracopoulos, V.; Ioannides, T.; Yannopoulos, S.N. Laser-assisted explosive synthesis and transfer of turbostratic graphene-related materials for energy conversion applications. NPJ 2D Mater. Appl. 2022, 6, 56. [Google Scholar] [CrossRef]
- Speranza, G. Characterization of Carbon Nanostructures by Photoelectron Spectroscopies. Materials 2022, 15, 4434. [Google Scholar] [CrossRef]
- Aarva, A.; Deringer, V.L.; Sainio, S.; Laurila, T.; Caro, M. Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part II: Quantitative Fitting of Spectra. Chem. Mater. 2019, 31, 9256–9267. [Google Scholar] [CrossRef]
- Sivkov, D.V.; Petrova, O.V.; Nekipelov, S.V.; Vinogradov, A.S.; Skandakov, R.N.; Bakina, K.A.; Isaenko, S.I.; Ob’edkov, A.M.; Kaverin, B.S.; Vilkov, I.V.; et al. Quantitative Characterization of Oxygen-Containing Groups on the Surface of Carbon Materials: XPS and NEXAFS Study. Appl. Sci. 2022, 12, 7744. [Google Scholar] [CrossRef]
- Tatarova, E.; Dias, A.; Henriques, J.; Abrashev, M.; Bundaleska, N.; Kovacevic, E.; Alves, L.L.; Cvelbar, U.; Valcheva, E.; Arnaudov, B.; et al. Towards large-scale in free-standing graphene and N-graphene sheets. Sci. Rep. 2017, 7, 10175. [Google Scholar] [CrossRef]
- Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Z.; Yin, J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces 2011, 3, 1127–1133. [Google Scholar] [CrossRef]
- Kovtun, A.; Jones, D.; Dell’Elce, S.; Treossi, E.; Liscio, A.; Palermo, V. Accurate chemical analysis of graphene-based materials using X-ray photoelectron spectroscopy. Carbon 2019, 143, 268–275. [Google Scholar] [CrossRef]
- Singh, B.; Fang, Y.; Cowie, B.C.; Thomsen, L. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars. Org. Geochem. 2014, 77, 1–10. [Google Scholar] [CrossRef]
- Ehlert, C.; Unger, W.E.; Saalfrank, P. C K-edge NEXAFS spectra of graphene with physical and chemical defects: A study based on density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14083–14095. [Google Scholar] [CrossRef]
- Mangolini, F.; McClimon, J.B.; Carpick, R.W. Quantitative Evaluation of the Carbon Hybridization State by Near Edge X-ray Absorption Fine Structure Spectroscopy. Anal. Chem. 2016, 88, 2817–2824. [Google Scholar] [CrossRef]
- Zieba, W.; Jurkiewicz, K.; Burian, A.; Pawlyta, M.; Boncel, S.; Szymanski, G.S.; Kubacki, J.; Kowalczyk, P.; Krukiewicz, K.; Furuse, A.; et al. High-Surface-Area Graphene Oxide for Next-Generation Energy Storage Applications. ACS Appl. Nano Mater. 2022, 5, 18448–18461. [Google Scholar]
- Cuadros-Lugo, E.; Piñon-Espitia, M.; Martinez-Rodríguez, H.A.; Lardizabal-Gutierrez, D.; Estrada-Guel, I.; Herrera-Ramirez, J.M.; Carreño-Gallardo, C. Turbostratic Carbon/Graphene Prepared via the Dry Ice in Flames Method and Its Purification Using Different Routes: A Comparative Study. Materials 2022, 15, 2501. [Google Scholar] [CrossRef] [PubMed]
Elements | Types of Biomass Waste | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bagasse | Cassava Pomace | Sugarcane Leaves | Straw | Palm Bunches | Corncobs | Corn Stalks | ||||||||
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | |
C | 47.82 | 79.51 | 44.25 | 40.04 | 47.26 | 53.47 | 36.42 | 48.37 | 50.02 | 80.29 | 47.32 | 72.25 | 45.45 | 70.61 |
O | 50.4 | 11.55 | 50.36 | 21.94 | 48.04 | 22.94 | 53.55 | 31.08 | 46.66 | 9.29 | 50.81 | 24.11 | 46.85 | 13.57 |
Na | 0.02 | 0.06 | 0.05 | 0.02 | ||||||||||
Mg | 0.04 | 0.26 | 0.44 | 1.26 | 0.2 | 0.79 | 0.14 | 0.32 | 0.16 | 0.28 | 0.10 | 0.23 | 0.17 | 0.33 |
Al | 0.13 | 0.50 | 0.13 | 0.56 | 0.03 | 0.08 | 0.14 | 0.27 | 0.04 | 0.04 | 0.01 | 0.01 | 0.03 | 0.04 |
Si | 1.22 | 5.70 | 0.56 | 6.18 | 2.83 | 13.18 | 7.16 | 15.19 | 0.68 | 0.83 | 0.74 | 1.34 | 1.69 | 2.69 |
P | 0.03 | 0.20 | 0.16 | 1.07 | 0.05 | 0.28 | 0.09 | 0.25 | 0.10 | 0.17 | 0.09 | 0.21 | 0.16 | 0.30 |
S | 0.04 | 0.13 | 0.09 | 0.37 | 0.14 | 0.83 | 0.07 | 0.06 | 0.10 | 0.08 | 0.04 | 0.04 | 0.10 | 0.04 |
Cl | 0.02 | 0.06 | 0.25 | 0.07 | 0.04 | 0.22 | 0.13 | 0.30 | 0.97 | 0.36 | 0.09 | 1.17 | 1.86 | |
K | 0.13 | 0.79 | 1.24 | 4.83 | 0.61 | 2.97 | 1.57 | 2.68 | 1.601 | 3.40 | 0.45 | 1.48 | 1.86 | 3.33 |
Ca | 0.09 | 0.72 | 2.58 | 22.24 | 0.72 | 5.13 | 0.45 | 1.14 | 0.19 | 0.27 | 0.05 | 0.17 | 0.36 | 0.57 |
Ti | 0.07 | 0.08 | 0.02 | 0.02 | <0.01 | |||||||||
Cr | 0.01 | 0.06 | 0.16 | <0.01 | <0.01 | 0.01 | 0.02 | |||||||
Mn | 0.01 | 0.03 | 0.01 | 0.09 | 0.02 | 0.12 | 0.09 | 0.24 | 0.09 | 0.14 | 0.01 | 0.04 | 0.01 | 0.03 |
Fe | 0.06 | 0.52 | 0.1 | 1.01 | 0.02 | 0.15 | <0.01 | |||||||
Ni | 0.01 | <0.01 | 0.01 | <0.01 | <0.01 | 0.02 | <0.01 | <0.01 | ||||||
Zn | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 | |||||||||
Rb | 0.01 | <0.01 | <0.01 | <0.01 | ||||||||||
Sr | <0.01 | 0.03 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Feature | [25] | [27] | [29] | This Work |
---|---|---|---|---|
Carbon Precursor | Various carbon sources (coal, petroleum coke, biochar, plastics, etc.) | Mixed plastic waste (HDPE, PET, PVC, etc.) | Anthracite coal | Biomass |
Process | Flash Joule Heating | Alternating Current + Direct Current Flash Joule Heating (AC-DC FJH) | Flash Joule Heating | Direct Current Long Pulse Joule Heating (DC-LPGH) |
Energy Requirement | ~7.2 kJ/g | ~23 kJ/g | Not explicitly stated | 18 kJ/g |
Graphene Type | Turbostratic graphene | Turbostratic graphene | Turbostratic graphene | Turbostratic graphene |
Raman Spectroscopy | I2D/IG up to 17 (high-quality graphene) | I2D/IG up to 6 (after DC-FJH treatment) | Confirmed turbostratic structure, peak shift at 26.0° | Typically lower I2D/IG due to longer heating duration |
TEM Analysis | Graphene layers show Moiré patterns | Layer structure confirmed; fewer defects after DC-FJH | Larger interlayer spacing than typical graphite | Multilayer graphene |
Environmental Impact | Sustainable, no solvents required | Upcycling of plastic waste, prevents pollution | Efficient use of coal, reduces waste | Sustainable, no solvents required, reduces biomass waste |
Potential Applications | Composite materials | Composite materials | Energy storage, catalysis, carbon-based applications | Composite materials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watcharamaisakul, S.; Janphuang, N.; Chueangam, W.; Srisom, K.; Rueangwittayanon, A.; Rittihong, U.; Tunmee, S.; Chanlek, N.; Pornsetmetakul, P.; Wirojsirasak, W.; et al. Synthesis of Turbostratic Graphene Derived from Biomass Waste Using Long Pulse Joule Heating Technique. Nanomaterials 2025, 15, 468. https://doi.org/10.3390/nano15060468
Watcharamaisakul S, Janphuang N, Chueangam W, Srisom K, Rueangwittayanon A, Rittihong U, Tunmee S, Chanlek N, Pornsetmetakul P, Wirojsirasak W, et al. Synthesis of Turbostratic Graphene Derived from Biomass Waste Using Long Pulse Joule Heating Technique. Nanomaterials. 2025; 15(6):468. https://doi.org/10.3390/nano15060468
Chicago/Turabian StyleWatcharamaisakul, Sukasem, Nisa Janphuang, Warisara Chueangam, Kriettisak Srisom, Anuchit Rueangwittayanon, Ukit Rittihong, Sarayut Tunmee, Narong Chanlek, Peerapol Pornsetmetakul, Warodom Wirojsirasak, and et al. 2025. "Synthesis of Turbostratic Graphene Derived from Biomass Waste Using Long Pulse Joule Heating Technique" Nanomaterials 15, no. 6: 468. https://doi.org/10.3390/nano15060468
APA StyleWatcharamaisakul, S., Janphuang, N., Chueangam, W., Srisom, K., Rueangwittayanon, A., Rittihong, U., Tunmee, S., Chanlek, N., Pornsetmetakul, P., Wirojsirasak, W., Watanarojanaporn, N., Ruethaivanich, K., & Janphuang, P. (2025). Synthesis of Turbostratic Graphene Derived from Biomass Waste Using Long Pulse Joule Heating Technique. Nanomaterials, 15(6), 468. https://doi.org/10.3390/nano15060468