Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications
Abstract
:1. Introduction
2. Mechanism and Properties of Avalanche Multiplication Effect
3. Typical Device Structures Based on the Avalanche Multiplication Effect
3.1. Schottky Junction
3.2. Stepwise Junction
3.3. Heterojunction
3.4. Top Gate-Controlled Homojunction
Structures | Device | R (A/W) | RT (ms) | λ (nm) | IDark (A) | M | T (K) | Threshold Voltage (V) | EQE (%) | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Bulk materials | Si | 50–120 | 0.1–2 × 10−6 | 400–1100 | 0.1–1 × 10−9 | 20–400 | 300 | 150–400 | 77 | [4] | |
Ge | 2.5–25 | 5–8 × 10−7 | 800–1650 | 5–50 × 10−8 | 50–200 | / | 20–40 | 55–75 | [5] | ||
InGaAs | / | 1–5 × 10−7 | 1100–1700 | 1–5 × 10−8 | 10–40 | / | 20–30 | 60–70 | [6] | ||
Two-dimensional materials | Schottkyjunction | WSe2 | / | 0.05 | 520 | 10−14 | 5 × 105 | 300 | 15 | 60 | [52] |
MoTe2-WS2-MoTe2 | 6.02 | 475 | 400–700 | 9.3 × 10−11 | 587 | 295 | 10.4 | 1406 | [49] | ||
InSe | 11,000 | 1 | 405–785 | 5 × 10−9 | 500 | / | 1.3 | / | [50] | ||
BP | 130 | / | 500–1100 | 2 × 10−6 | 7 | 300 | 14.7 | 31,000 | [53] | ||
InSe | / | 0.06 | 400–800 | 1.3 × 10−9 | 152 | / | 12 | 866 | [51] | ||
Stepwise junction | WSe2 | / | / | 520 | 1 × 10−15 | 470 | 300 | 1.6 | / | [55] | |
WSe2 | / | / | / | / | 104 | 300 | 4 | / | [56] | ||
Heteroj-unction | WSe2/MoS2 | 8.8 × 10−5 | / | 532–1030 | / | 1300 | 300 | 6.5 | / | [57] | |
Gr-MoTe2-Gr | 5 | 0.03 | 600–1350 | / | / | 300 | / | 40 | [58] | ||
Gr-MoTe2-Gr | 0.03 | 6.15 × 10−3 | 550 | 6 × 10−8 | / | 300 | / | / | [59] | ||
BP/InSe | 80 | / | 4000 | / | 104–105 | 10–180 | 4.8 | 2480 | [60] | ||
Top Gate-controlled homojunction | WSe2 | / | / | / | / | 106 | 300 | 0.88 | / | [67] |
Device | Subthreshold Swing (mV/dec) | On/Off Ratio | Ion | Ioff | Ref. |
---|---|---|---|---|---|
WSe2 | 2.73 | 106 | 2.29 × 10−3 A | 1 × 10−9 A | [67] |
MoS2 | 0.7 | 107 | 10−6 A/μm | 10−13A/μm | [61] |
Gr/InAs | <0.6 | 106 | 2.3 × 10−4 A/μm | / | [65] |
MoS2 | 11 | 106 | 10−6 A | 10−12 A | [62] |
Gr/BP/InSe | 0.4 | >105 | 1× 10−6 A/μm | 1.2 × 10−11A/μm | [66] |
MoS2 | 2.5 | 106 | 5.4 × 10−6 A/μm | 1 × 10−12A/μm | [63] |
InSe/BP | <0.25 | 104 | 1 × 10−6 A | 1.64 × 10−10 A | [60] |
MoS2 | 2.26 | 106 | 3.9 × 10−6 A | 1.9 × 10−12 A | [64] |
WSe2 | 3.09 | >105 | 1 × 10−6 A/µm | / | [56] |
4. Application of Avalanche Multiplication
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Q.Y.; Li, N.; Zhang, T.; Dong, D.M.; Yang, Y.T.; Wang, Y.H.; Dong, Z.A.; Shen, J.Y.; Zhou, T.H.; Liang, Y.L.; et al. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat. Commun. 2023, 14, 418. [Google Scholar] [CrossRef] [PubMed]
- Izhnin, I.I.; Lozovoy, K.A.; Kokhanenko, A.P.; Khomyakova, K.I.; Douhan, R.M.H.; Dirko, V.V.; Voitsekhovskii, A.V.; Fitsych, O.I.; Akimenko, N.Y. Single-photon avalanche diode detectors based on group IV materials. Appl. Nanosci. 2022, 12, 253–263. [Google Scholar] [CrossRef]
- Bartolo-Perez, C.; Chandiparsi, S.; Mayet, A.S.; Cansizoglu, H.; Gao, Y.; Qarony, W.; AhAmed, A.; Wang, S.Y.; Cherry, S.R.; Islam, M.S.; et al. Avalanche photodetectors with photon trapping structures for biomedical imaging applications. Opt. Express 2021, 29, 19024–19033. [Google Scholar] [CrossRef] [PubMed]
- Hamamatsu S12023 Series. Available online: https://www.hamamatsu.com.cn/cn/zh-cn/product/optical-sensors/apd/si-apd/S12023-02.html (accessed on 10 October 2024).
- Ushio PDGAJ Series. Available online: https://www.ushio.com/product/pd-ld-germanium-avalanche-photodiode/ (accessed on 4 June 2020).
- Hamamatsu G8931 Series. Available online: https://www.hamamatsu.com.cn/cn/zh-cn/product/optical-sensors/apd/ingaas-apd/G8931-04.html (accessed on 10 July 2024).
- Shi, Z.W.; Ke, S.Y.; Meng, W.H.; Wang, Z.R.; Guo, M.H.; Jiang, X.L.; Liu, K.; Lin, Z.W.; Chen, X.P. Double modulation of the electric field in InGaAs/Si APD by groove rings for the achievement of THz gain-bandwidth product. Phys. Scr. 2024, 99, 115501. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Ge, H.C.; Guo, H.J.; Chen, L.; Lin, C.; Chen, B.L. Gain and Excess Noise in HgCdTe e-Avalanche Photodiodes at Various Temperatures and Wavelengths. IEEE Trans. Electron Devices 2023, 70, 2384–2388. [Google Scholar] [CrossRef]
- Yan, S.L.; Huang, J.; Zhang, Y.; Ma, W. Mid wavelength type II InAs/GaSb superlattice avalanche photodiode with AlAsSb multiplication layer. IEEE Electron Device Lett. 2021, 42, 1634–1637. [Google Scholar] [CrossRef]
- Gatt, P.; Johnson, S.; Nichols, T. Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics. Appl. Opt. 2009, 48, 3261–3276. [Google Scholar] [CrossRef]
- Albota, M.A.; Heinrichs, R.M.; Kocher, D.G.; Fouche, D.G.; Player, B.E.; O’Brien, M.E.; Aull, B.F.; Zayhowski, J.J.; Mooney, J.; Willard, B.C.; et al. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Appl. Opt. 2002, 41, 7671–7678. [Google Scholar] [CrossRef]
- Kardynal, B.E.; Yuan, Z.L.; Shields, A.J. An avalanche-photodiode-based photon-number-resolving detector. Nat. Photonics 2008, 2, 425–428. [Google Scholar] [CrossRef]
- Kang, Y.M.; Liu, H.D.; Morse, M.; Paniccia, M.J.; Zadka, M.; Litski, S.; Sarid, G.; Pauchard, A.; Kuo, Y.H.; Chen, H.W.; et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat. Photonics 2009, 3, 59–63. [Google Scholar] [CrossRef]
- Kim, S.; Myeong, G.; Shin, W.; Lim, H.; Kim, B.; Jin, T.; Chang, S.; Watanabe, K.; Taniguchi, T.; Cho, S. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 2020, 15, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, Y.; Cui, A.L.; Li, Q.; He, T.; Zhang, K.; Wang, Z.; Li, Z.P.; Zhang, Z.H.; Wu, P.S.; et al. Fast Uncooled Mid-Wavelength Infrared Photodetectors with Heterostructures of van der Waals on Epitaxial HgCdTe. Adv. Mater. 2022, 34, 2107772. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Shi, L.; Pasanen, H.; Vivo, P.; Maity, P.; Hatamvand, M.; Zhan, Y.Q. There is plenty of room at the top: Generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light-Sci. Appl. 2021, 10, 174. [Google Scholar] [CrossRef]
- Li, M.J.; Fu, J.H.; Xu, Q.; Sum, T.C. Slow Hot-Carrier Cooling in Halide Perovskites: Prospects for Hot-Carrier Solar Cells. Adv. Mater. 2019, 31, e1802486. [Google Scholar] [CrossRef]
- Weng, Q.C.; Komiyama, S.; Yang, L.; An, Z.H.; Chen, P.P.; Biehs, S.A.; Kajihara, Y.; Lu, W. Imaging of nonlocal hot-electron energy dissipation via shot noise. Science 2018, 360, 775–778. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.H.; Serna, M.I.; Goossens, S.; Li, L.J.; Wong, H.S.P.; Koppens, F.H.L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.Y.; Zhou, Z.Y.; Zhou, Z.F.; Li, C.; Shu, L.; Shen, L.F.; Li, D.P.; Dong, R.T.; Yip, S.P.; Ho, J. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 2018, 11, 3371–3384. [Google Scholar] [CrossRef]
- Guo, N.; Xiao, L.; Gong, F.; Luo, M.; Wang, F.; Jia, Y.; Chang, H.C.; Liu, J.K.; Li, Q.; Wu, Y.; et al. Light-Driven WSe2-ZnO Junction Field-Effect Transistors for High-Performance Photodetection. Adv. Sci. 2020, 7, 1901637. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Duan, X.F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333. [Google Scholar] [CrossRef]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef]
- Meng, L.Y.; Zhang, J.M.; Yuan, X.X.; Yang, M.L.; Wang, B.; Wang, L.M.; Zhang, N.N.; Liu, M.L.; Zhu, Z.M.; Hu, H.Y. Gate Voltage Dependence Ultrahigh Sensitivity WS2 Avalanche Field-Effect Transistor. IEEE Trans. Electron Devices 2022, 69, 3225–3229. [Google Scholar] [CrossRef]
- Meng, L.Y.; Zhang, N.N.; Yang, M.L.; Yuan, X.X.; Liu, M.L.; Hu, H.Y.; Wang, L.M. Low-voltage and high-gain WSe2 avalanche phototransistor with an out-of-plane WSe2/WS2 heterojunction. Nano Res. 2023, 16, 3422–3428. [Google Scholar] [CrossRef]
- Kang, T.; Choi, H.; Li, J.S.; Kang, C.; Hwang, E.; Lee, S. Anisotropy of impact ionization in WSe2 field effect transistors. Nano Converg. 2023, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.C.; Hu, W.D. Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors. Sci. China-Phys. Mech. Astron. 2015, 58, 027001. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Xia, F.N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Hu, W.D.; Chen, X.S.; Ye, Z.H.; Lu, W. A hybrid surface passivation on HgCdTe long wave infrared detector with insitu CdTe deposition and high-density Hydrogen plasma modification. Appl. Phys. Lett. 2011, 99, 091101. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, H.; Wang, P.; Zhou, X.H.; Liu, C.S.; Zhang, Q.H.; Wang, F.; Huang, M.L.; Chen, S.Y.; Wu, P.S.; et al. Controllable Doping in 2D Layered Materials. Adv. Mater. 2021, 33, 2104942. [Google Scholar] [CrossRef]
- Tong, L.; Peng, Z.R.; Lin, R.F.; Li, Z.; Wang, Y.L.; Huang, X.Y.; Xue, K.H.; Xu, H.Y.; Liu, F.; Xia, H.; et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373, 1353–1358. [Google Scholar] [CrossRef]
- Miao, J.S.; Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. 2021, 14, 1878–1888. [Google Scholar] [CrossRef]
- Hu, W.D.; Ye, Z.H.; Liao, L.; Chen, H.L.; Chen, L.; Ding, R.J.; He, L.; Chen, X.S.; Lu, W. 128 x 128 longwavelength/mid-wavelength two-color HgCdle inirared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 2014, 39, 5184–5187. [Google Scholar]
- Wu, P.S.; He, T.; Zhu, H.; Wang, Y.; Li, Q.; Wang, Z.; Fu, X.; Wang, F.; Wang, P.; Shan, C.X.; et al. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. Infomat 2022, 4, e12275. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef]
- Nozik, A.J. Utilizing hot electrons. Nat. Energy 2018, 3, 170–171. [Google Scholar] [CrossRef]
- Paul, S.; Karak, S.; Mathew, A.; Ram, A.; Saha, S. Electron-phonon and phonon-phonon anharmonic interactions in 2H-MoX2 (X = S, Te): A comprehensive resonant Raman study. Phys. Rev. B 2021, 104, 075418. [Google Scholar] [CrossRef]
- Kim, J.H.; Bergren, M.R.; Park, J.C.; Adhikari, S.; Lorke, M.; Frauenheim, T.; Choe, D.H.; Kim, B.; Choi, H.; Gregorkiewicz, T.; et al. Carrier multiplication in van der Waals layered transition metal dichalcogenides. Nat. Commun. 2019, 10, 5488. [Google Scholar] [CrossRef]
- Paul, K.K.; Kim, J.H.; Lee, Y.H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 2021, 3, 178–192. [Google Scholar] [CrossRef]
- Shao, Z.G.; Chen, D.J.; Liu, Y.L.; Lu, H.; Zhang, R.; Zheng, Y.D.; Li, L.; Dong, K.X. Significant Performance Improvement in AlGaN Solar-Blind Avalanche Photodiodes by Exploiting the Built-In Polarization Electric Field. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3803306. [Google Scholar] [CrossRef]
- Xie, R.Z.; Li, Q.; Wang, P.; Chen, X.S.; Lu, W.; Guo, H.J.; Chen, L.; Hu, W.D. Spatial description theory of narrow-band single-carrier avalanche photodetectors. Opt. Express 2021, 29, 16432–16446. [Google Scholar] [CrossRef]
- Liu, S.N.; Han, Q.; Luo, W.J.; Lei, W.; Zhao, J.; Wang, J.; Jiang, Y.D.; Raschke, M.B. Recent progress of innovative infrared avalanche photodetectors. Infrared Phys. Technol. 2024, 137, 105114. [Google Scholar] [CrossRef]
- Zhao, Y.L. Impact Ionization in Absorption, Grading, Charge, and Multiplication Layers of InP/InGaAs SAGCM APDs with a Thick Charge Layer. IEEE Trans. Electron Devices 2013, 60, 3493–3499. [Google Scholar] [CrossRef]
- Gabor, N.M.; Zhong, Z.H.; Bosnick, K.; Park, J.; McEuen, P.L. Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes. Science 2009, 325, 1367–1371. [Google Scholar] [CrossRef]
- Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y.J.; Lombardo, A.; Milana, S.; Nair, R.R.; Novoselov, K.S.; Ferrari, A.C.; Cerullo, G.; et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 2013, 4, 1987. [Google Scholar] [CrossRef]
- Barati, F.; Grossnickle, M.; Su, S.S.; Lake, R.K.; Aji, V.; Gabor, N.M. Hot carrier-enhanced interlayer electron-hole pair multiplication in 2D semiconductor heterostructure photocells. Nat. Nanotechnol. 2017, 12, 1134–1139. [Google Scholar] [CrossRef]
- Beard, M.C.; Knutsen, K.P.; Yu, P.R.; Luther, J.M.; Song, Q.; Metzger, W.K.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 2007, 7, 2506–2512. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.H.; Wang, X.M.; Liu, S.J.; Chen, H.J.; Deng, S.Z. A Complete Two-Dimensional Avalanche Photodiode Based on MoTe2-WS2-MoTe2 Heterojunctions with Ultralow Dark Current. Front. Mater. 2021, 8, 736180. [Google Scholar] [CrossRef]
- Yang, Y.J.; Jeon, J.; Park, J.H.; Jeong, M.S.; Lee, B.H.; Hwang, E.; Lee, S. Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano 2019, 13, 8804–8810. [Google Scholar] [CrossRef]
- Lei, S.D.; Wen, F.F.; Ge, L.H.; Najmaei, S.; George, A.; Gong, Y.J.; Gao, W.L.; Jin, Z.H.; Li, B.; Lou, J.; et al. An Atomically Layered InSe Avalanche Photodetector. Nano Lett. 2015, 15, 3048–3055. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Yu, F.L.; Chen, X.S.; Lu, W.; Li, G.H. Achieving a Noise Limit with a Few-layer WSe2 Avalanche Photodetector at Room Temperature. Nano Lett. 2024, 24, 13255–13262. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.Y.; Jeon, J.; Park, J.H.; Lee, B.H.; Hwang, E.; Lee, S. Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector. Small 2019, 15, 1805352. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Cheng, B.; Lim, J.; Gao, A.Y.; Lyu, L.Y.; Cao, T.J.; Wang, S.; Li, Z.A.; Wu, Q.Y.; Ang, L.K.; et al. Approaching the Intrinsic Threshold Breakdown Voltage and Ultrahigh Gain in a Graphite/InSe Schottky Photodetector. Adv. Mater. 2022, 34, e2206196. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Xia, H.; Liu, Y.Q.; Chen, Y.; Xie, R.Z.; Wang, Z.; Wang, P.; Miao, J.S.; Wang, F.; Li, T.X.; et al. Room-temperature low-threshold avalanche effect in stepwise van-der-Waals homojunction photodiodes. Nat. Commun. 2024, 15, 3639. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, W.R.; Wang, H.L.; Bai, Y.Z.; Zhang, T.; Zhang, K.; Duan, S.K.; Yu, Y.Y.; Zhao, T.E.; Xie, R.Z.; et al. Room-Temperature WSe2 Impact Ionization Field-Effect Transistor Based on a Stepwise Homojunction. Small 2025, 2412466. [Google Scholar] [CrossRef] [PubMed]
- Son, B.; Wang, Y.D.; Luo, M.L.; Lu, K.Z.; Kim, Y.; Joo, H.J.; Yi, Y.; Wang, C.W.; Wang, Q.J.; Chae, S.H.; et al. Efficient Avalanche Photodiodes with a WSe2/MoS2 Heterostructure via Two-Photon Absorption. Nano Lett. 2022, 22, 9516–9522. [Google Scholar] [CrossRef]
- Wu, G.J.; Wang, X.D.; Chen, Y.; Wu, S.Q.; Wu, B.M.; Jiang, Y.Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X.R.; et al. MoTe2 p-n Homojunctions Defined by Ferroelectric Polarization. Adv. Mater. 2020, 32, 1907937. [Google Scholar] [CrossRef]
- Wei, X.; Yan, F.G.; Lv, Q.S.; Zhu, W.K.; Hu, C.; Patanè, A.; Wang, K.Y. Enhanced Photoresponse in MoTe2 Photodetectors with Asymmetric Graphene Contacts. Adv. Opt. Mater. 2019, 7, 1900190. [Google Scholar] [CrossRef]
- Gao, A.Y.; Lai, J.W.; Wang, Y.J.; Zhu, Z.; Zeng, J.W.; Yu, G.L.; Wang, N.Z.; Chen, W.C.; Cao, T.J.; Hu, W.D.; et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chen, X.Z.; Duan, X.P.; Yu, Z.M.; Niu, W.C.; Zhang, M.L.; Liu, C.; Li, G.L.; Liu, Y.; Liu, X.Q.; et al. Ultra-Steep-Slope High-Gain MoS2 Transistors with Atomic Threshold-Switching Gate. Adv. Sci. 2022, 9, 2104439. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, S.H.; Kim, G.S.; Jeon, H.; Kim, T.; Yu, H.Y. Steep-Slope Gate-Connected Atomic Threshold Switching Field-Effect Transistor with MoS2 Channel and Its Application to Infrared Detectable Phototransistors. Adv. Sci. 2021, 8, 2100208. [Google Scholar] [CrossRef]
- Hua, Q.L.; Gao, G.Y.; Jiang, C.S.; Yu, J.R.; Sun, J.L.; Zhang, T.P.; Gao, B.; Cheng, W.J.; Liang, R.R.; Qian, H.; et al. Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics. Nat. Commun. 2020, 11, 6207. [Google Scholar] [CrossRef]
- Wang, X.F.; Tian, H.; Liu, Y.M.; Shen, S.H.; Yan, Z.Y.; Deng, N.Q.; Yang, Y.; Ren, T.L. Two-Mode MoS2 Filament Transistor with Extremely Low Subthreshold Swing and Record High On/Off Ratio. ACS Nano 2019, 13, 2205–2212. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Song, W.J.; Wang, P.Q.; Gambin, V.; Huang, Y.; Duan, X.F. Ultra-Steep Slope Impact Ionization Transistors Based on Graphene/InAs Heterostructures. Small Struct. 2021, 2, 2000039. [Google Scholar] [CrossRef]
- Gao, A.Y.; Zhang, Z.Y.; Li, L.F.; Zheng, B.J.; Wang, C.Y.; Wang, Y.J.; Cao, T.J.; Wang, Y.; Liang, S.J.; Miao, F.; et al. Robust Impact-Ionization Field-Effect Transistor Based on Nanoscale Vertical Graphene/Black Phosphorus/Indium Selenide Heterostructures. ACS Nano 2020, 14, 434–441. [Google Scholar] [CrossRef]
- Choi, H.; Li, J.; Kang, T.; Kang, C.; Son, H.; Jeon, J.; Hwang, E.; Lee, S. A steep switching WSe2 impact ionization field-effect transistor. Nat. Commun. 2022, 13, 6076. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, P.; Wang, P.; Rogalski, A.; Gu, Y.; Jiang, R.; Wang, F.; Hu, W. Infrared avalanche photodiodes from bulk to 2D materials. Light-Sci. Appl. 2023, 12, 2095–5545. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.H.; Mu, J.F. High-speed Si-Ge avalanche photodiodes. PhotoniX 2022, 3, 8. [Google Scholar] [CrossRef]
- Liu, J.X.; Peng, Z.H.; Tan, C.; Yang, L.; Xu, R.D.; Wang, Z.G. Emerging single-photon detection technique for high-performance photodetector. Front. Phys. 2024, 19, 62502. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Douhan, R.M.H.; Dirko, V.V.; Deeb, H.; Khomyakova, K.I.; Kukenov, O.I.; Sokolov, A.S.; Akimenko, N.Y.; Kokhanenko, A.P. Silicon-Based Avalanche Photodiodes: Advancements and Applications in Medical Imaging. Nanomaterials 2023, 13, 3078. [Google Scholar] [CrossRef]
- Abbasi, R.; Hu, X.Y.; Zhang, A.; Dummer, I.; Wachsmann-Hogiu, S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering 2024, 11, 912. [Google Scholar] [CrossRef]
- Yuan, B.W.; Chen, Z.B.; Chen, Y.X.; Tang, C.J.; Chen, W.A.; Cheng, Z.G.; Zhao, C.S.; Hou, Z.Z.; Zhang, Q.; Gan, W.Z.; et al. High drain field impact ionization transistors as ideal switches. Nat. Commun. 2024, 15, 9038. [Google Scholar] [CrossRef]
- Choi, H.; Baek, S.; Jung, H.; Kang, T.; Lee, S.; Jeon, J.; Jang, B.C.; Lee, S. Spiking Neural Network Integrated with Impact Ionization Field-Effect Transistor Neuron and a Ferroelectric Field-Effect Transistor Synapse. Adv. Mater. 2024, 2406970. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, S.S.; Wang, W.H.; Zhang, J.L.; Sun, Y.M.; Deng, Q.R.; Zheng, T.; Lu, J.T.; Gao, W.; Yang, M.M.; et al. Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nat. Commun. 2024, 15, 6261. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Kang, M.; Fang, Y.; Martyniuk, P.; Wang, H. Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications. Nanomaterials 2025, 15, 636. https://doi.org/10.3390/nano15090636
Zhou Z, Kang M, Fang Y, Martyniuk P, Wang H. Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications. Nanomaterials. 2025; 15(9):636. https://doi.org/10.3390/nano15090636
Chicago/Turabian StyleZhou, Zhangxinyu, Mengyang Kang, Yueyue Fang, Piotr Martyniuk, and Hailu Wang. 2025. "Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications" Nanomaterials 15, no. 9: 636. https://doi.org/10.3390/nano15090636
APA StyleZhou, Z., Kang, M., Fang, Y., Martyniuk, P., & Wang, H. (2025). Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications. Nanomaterials, 15(9), 636. https://doi.org/10.3390/nano15090636