Single-Walled Carbon Nanohorns for Energy Applications
Abstract
:1. Introduction
2. Characteristics of SWCNHs for Energy Applications
3. SWCNHs for Energy Conversion
3.1. SWCNHs for Fuel Cell
3.1.1. Deposition of Single Metal on SWCNHs
3.1.2. Deposition of Alloy Metal on SWCNHs
3.1.3. Heteroatom-Doped SWCNHs as Catalyst
3.2. SWCNHs for Solar Cells
3.3. SWCNHs for Biofuel Cells
3.4. SWCNHs for Solar Thermal Collectors
4. SWCNHs for Energy Storage
4.1. SWCNHs for Li-Ion Batteries
4.2. SWCNHs for Li-S Batteries
4.3. SWCNHs for Supercapacitors
4.3.1. Oxidized SWCNHs for Supercapacitors
4.3.2. SWCNH-Polymer Composite for Supercapacitors
4.3.3. SWCNH Composites with Other Nanocarbons for Supercapacitors
4.3.3.1. SWCNH-SWCNT
4.3.3.2. SWCNH-Graphene
4.3.4. SWCNHs-Metallic Oxide Composite for Supercapacitors
4.4. SWCNHs for Hydrogen Storage
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Garnier, J.; Kennedy, A.; Burghgraeve, S.; Roberta, Q. Recent trends in CO2 emissions from fuel combustion. In CO2 Emissions from Fuel Combustion Highlights; Hoeven, M.V.D., Ed.; International Energy Agency: Paris, France, 2014; Volume 1, pp. 8–9. [Google Scholar]
- Iijima, S.; Yudasaka, M.; Yamada, R.; Bandow, S.; Suenaga, K.; Kokai, F.; Takahashi, K. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 1999, 309, 165–170. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Gao, W.Y.; Zhang, L.; Zhao, J.M.; Xu, G.B. Simultaneous voltammetric determination of dihydroxybenzene isomers at single-walled carbon nanohorn modified glassy carbon electrode. Sens. Actuators B 2014, 198, 388–394. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Zhang, J.; Zhao, X.E.; Wang, H.; Xu, G.B.; You, J.M. Electrochemical behavior and voltammetric determination of l-tryptophan and l-tyrosine using a glassy carbon electrode modified with single-walled carbon nanohorns. Microchim. Acta 2014, 181, 445–451. [Google Scholar] [CrossRef]
- Lu, B.P.; Zhang, Z.; Hao, J.H.; Xu, G.B.; Zhang, B.L.; Tang, J.L. Electrochemical sensing platform based on Schiff-base cobalt(II)/single-walled carbon nanohorns complexes system. Anal. Methods 2012, 4, 3580–3585. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Niu, W.X.; Li, H.J.; Han, S.; Xu, G.B. Single-Walled Carbon Nanohorn as New Solid-Phase Extraction Adsorbent for Determination of 4-Nitrophenol in Water Sample. Talanta 2009, 79, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Guan, H.M.; Zhu, S.Y.; Gilani, M.R.H.S.; Hanif, S.; Xu, G.B.; Tong, Y.J. Electrochemical Applications of Single-Walled Carbon Nanohorns. J. Electrochem. 2014, 12, 501–505. [Google Scholar]
- Liu, Z.Y.; Zhang, W.; Qi, W.J.; Gao, W.Y.; Hanif, S.; Saqib, M.; Xu, G.B. Label-free signal-on ATP aptasensor based on the remarkable quenching of tris(2,2'-bipyridine)ruthenium(II) electrochemiluminescence by single-walled carbon nanohorn. Chem. Commun. 2015, 51, 4256–4258. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Li, H.J.; Wang, F.A.; Zhu, S.Y.; Wang, Y.L.; Xu, G.B. Functionalized single-walled carbon nanohorns for electrochemical biosensing. Biosens. Bioelectron. 2010, 25, 2194–2199. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.H.; Liu, X.Q.; Niu, W.X.; Li, H.J.; Han, S.; Chen, J.A.; Xu, G.B. Hydrogen Peroxide Biosensor Based on Direct Electrochemistry of Soybean Peroxidase Immobilized on Single-Walled Carbon Nanohorn Modified Electrode. Biosens. Bioelectron. 2009, 24, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Fan, L.S.; Liu, X.Q.; Shi, L.H.; Li, H.J.; Han, S.; Xu, G.B. Determination of Concentrated Hydrogen Peroxide at Single-Walled Carbon Nanohorn Paste Electrode. Electrochem. Commun. 2008, 10, 695–698. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Li, H.J.; Niu, W.X.; Xu, G.B. Simultaneous Electrochemical Determination of Uric Acid, Dopamine, and Ascorbic Acid at Single-Walled Carbon Nanohorn Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2009, 24, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Shi, L.H.; Li, H.J.; Niu, W.X.; Xu, G.B. Amperometric Glucose Biosensor Based on Single-Walled Carbon Nanohorns. Biosens. Bioelectron. 2008, 23, 1887–1890. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Liu, Z.Y.; Hu, L.Z.; Yuan, Y.L.; Xu, G.B. Turn-on fluorescence sensor based on single-walled carbon nanohorn-peptide complex for detection of thrombin. Chem. A 2012, 18, 16556–16561. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Han, S.; Zhang, L.; Parveen, S.; Xu, G.B. A novel fluorescent aptasensor based on single-walled carbon nanohorns. Nanoscale 2011, 3, 4589–4592. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Liu, Z.Y.; Zhang, W.; Han, S.; Hu, L.Z.; Xu, G.B. Nucleic acid detection using single-walled carbon nanohorns as a fluorescent sensing platform. Chem. Commun. 2011, 47, 6099–6101. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Zhao, X.E.; You, J.M.; Xu, G.B.; Wang, H. Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection. Analyst 2015, 140, 6398–6403. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, S.; Ohba, T.; Tanaka, H.; Urita, K.; Kaneko, K. Porosity and Adsorption Properties of Single-Wall Carbon Nanoborn. In Novel Carbon Adsorbents, 1st ed.; Tascón, J.M.D., Ed.; Elsevier: Kidlington, Oxford, UK, 2012; Chapter 13; pp. 401–433. [Google Scholar]
- Tang, S.; Sun, G.; Qi, J.; Sun, S.; Guo, J.; Xin, Q.; Haarberg, G.M. New Carbon Materials as Catalyst Supports in Direct Alcohol Fuel Cells. Chin. J. Catal. 2010, 31, 12–17. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, G. Single-walled carbon nanohorns and their applications. Nanoscale 2010, 2, 2538–2549. [Google Scholar] [CrossRef] [PubMed]
- Su, D.S.; Centi, G. A perspective on carbon materials for future energy application. J. Energy Chem. 2013, 22, 151–173. [Google Scholar] [CrossRef]
- Guldi, D.M.; Sgobba, V. Carbon nanostructures for solar energy conversion schemes. Chem. Commun. 2011, 47, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Kaneko, K.; Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S. Pore structure of single-wall carbon nanohorn aggregates. Chem. Phys. Lett. 2000, 331, 14–20. [Google Scholar] [CrossRef]
- Shao, Y.; Yin, G.; Gao, Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566. [Google Scholar] [CrossRef]
- Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, T.; Shimakawa, Y.; Kuroshima, S.; Kimura, H.; Ichihashi, T.; Kubo, Y.; Kasuya, D.; Takahashi, K.; Kokai, F.; Yudasaka, M.; et al. Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys. B 2002, 323, 124–126. [Google Scholar] [CrossRef]
- Sano, N.; Ukita, S.I. One-step synthesis of Pt-supported carbon nanohorns for fuel cell electrode by arc plasma in liquid nitrogen. Mater. Chem. Phys. 2006, 99, 447–450. [Google Scholar] [CrossRef]
- Kosaka, M.; Kuroshima, S.; Kobayashi, K.; Sekino, S.; Ichihashi, T.; Nakamura, S.; Yoshitake, T.; Kubo, Y. Single-Wall Carbon Nanohorns Supporting Pt Catalyst in Direct Methanol Fuel Cells. J. Phys. Chem. C 2009, 113, 8660–8667. [Google Scholar] [CrossRef]
- Niu, B.; Xu, W.; Guo, Z.; Zhou, N.; Liu, Y.; Shi, Z.; Lian, Y. Controllable Deposition of Platinum Nanoparticles on Single-Wall Carbon Nanohorns as Catalyst for Direct Methanol Fuel Cells. J. Nanosci. Nanotechnol. 2012, 12, 7376–7381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, N.; Gao, A.; Zhu, C.; Wang, Z.; Wang, Y.; Shi, Z.; Liu, Y. A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters. J. Power Sources 2012, 220, 449–454. [Google Scholar] [CrossRef]
- Boaventura, M.; Brandao, L.; Mendes, A. Single-Wall Nanohorns as Electrocatalyst Support for High Temperature PEM Fuel Cells. J. Electrochem. Soc. 2011, 158, B394–B401. [Google Scholar] [CrossRef]
- Brandao, L.; Boaventura, M.; Passeira, C.; Gattia, D.M.; Marazzi, R.; Antisari, M.V.; Mendes, A. An Electrochemical Impedance Spectroscopy Study of Polymer Electrolyte Membrane Fuel Cells Electrocatalyst Single Wall Carbon Nanohorns-Supported. J. Nanosci. Nanotechnol. 2011, 11, 9016–9024. [Google Scholar] [CrossRef] [PubMed]
- Hamoudi, Z.; Aissa, B.; El Khakani, M.A.; Mohamedi, M. Electrocatalytic Reduction of Oxygen at Binderless Carbon-Pt Nanostructured Electrodes: Effects of the Nature of the Carbon Support and the Pt Morphology. Int. J. Electrochem. Sci. 2012, 7, 12227–12235. [Google Scholar]
- Sano, N.; Kimura, Y.; Suzuki, T. Synthesis of carbon nanohorns by a gas-injected arc-in-water method and application to catalyst-support for polymer electrolyte fuel cell electrodes. J. Mater. Chem. 2008, 18, 1555–1560. [Google Scholar] [CrossRef]
- Sano, N.; Suzuki, T.; Hirano, K.; Akita, Y.; Tamon, H. Influence of arc duration time on the synthesis of carbon nanohorns by a gas-injected arc-in-water system: Application to polymer electrolyte fuel cell electrodes. Plasma Sources Sci. Technol. 2011, 20. [Google Scholar] [CrossRef]
- Aissa, B.; Hamoudi, Z.; Takahashi, H.; Tohji, K.; Mohamedi, M.; El Khakani, M.A. Carbon nanohorns-coated microfibers for use as free-standing electrodes for electrochemical power sources. Electrochem. Commun. 2009, 11, 862–866. [Google Scholar] [CrossRef]
- Brandao, L.; Passeira, C.; Gattia, D.M.; Mendes, A. Use of single wall carbon nanohorns in polymeric electrolyte fuel cells. J. Mater. Sci. 2011, 46, 7198–7205. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, A.; Liu, Y.; Wang, Y.; Ma, J. PtRu nanoparticles dispersed on nitrogen-doped carbon nanohorns as an efficient electrocatalyst for methanol oxidation reaction. Electrochim. Acta 2014, 132, 416–422. [Google Scholar] [CrossRef]
- Sano, N.; Suntornlohanakul, T.; Poonjarernsilp, C.; Tamon, H.; Charinpanitkul, T. Controlled Syntheses of Various Palladium Alloy Nanoparticles Dispersed in Single-Walled Carbon Nanohorns by One-Step Formation Using an Arc Discharge Method. Ind. Eng. Chem. Res. 2014, 53, 4732–4738. [Google Scholar] [CrossRef]
- Eblagon, K.M.; Brandao, L. RuSe Electrocatalysts and Single Wall Carbon Nanohorns Supports for the Oxygen Reduction Reaction. J. Fuel Cell Sci. Technol. 2015, 12. [Google Scholar] [CrossRef]
- Ciric-Marjanovic, G.; Pasti, I.; Mentus, S. One-dimensional nitrogen-containing carbon nanostructures. Prog. Mater. Sci. 2015, 69, 61–182. [Google Scholar] [CrossRef]
- Unni, S.M.; Bhange, S.N.; Illathvalappil, R.; Mutneja, N.; Patil, K.R.; Kurungot, S. Nitrogen-Induced Surface Area and Conductivity Modulation of Carbon Nanohorn and Its Function as an Efficient Metal-Free Oxygen Reduction Electrocatalyst for Anion-Exchange Membrane Fuel Cells. Small 2015, 11, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Unni, S.M.; Ramadas, S.; Illathvalappil, R.; Bhange, S.N.; Kurungot, S. Surface-modified single wall carbon nanohorn as an effective electrocatalyst for platinum-free fuel cell cathodes. J. Mater. Chem. A 2015, 3, 4361–4367. [Google Scholar] [CrossRef]
- Hasobe, T.; Sakaia, H. Molecular nanoarchitectures composed of porphyrins and carbon nanomaterials for light energy conversion. J. Porphyr. Phthalocyanines 2011, 15, 301–311. [Google Scholar] [CrossRef]
- Cruz, R.; Brandao, L.; Mendes, A. Use of single-wall carbon nanohorns as counter electrodes in dye-sensitized solar cells. Int. J. Energy Res. 2013, 37, 1498–1508. [Google Scholar] [CrossRef]
- Pagona, G.; Sandanayaka, A.S.D.; Hasobe, T.; Charalambidis, G.; Coutsolelos, A.G.; Yudasaka, M.; Iijima, S.; Tagmatarchis, N. Characterization and photoelectrochemical properties of nanostructured thin film composed of carbon nanohorns covalently functionalized with porphyrins. J. Phys. Chem. C 2008, 112, 15735–15741. [Google Scholar] [CrossRef]
- Vizuete, M.; Jose Gomez-Escalonilla, M.; Fierro, J.L.G.; Sandanayaka, A.S.D.; Hasobe, T.; Yudasaka, M.; Iijima, S.; Ito, O.; Langa, F. A Carbon Nanohorn-Porphyrin Supramolecular Assembly for Photoinduced Electron-Transfer Processes. Chem. A 2010, 16, 10752–10763. [Google Scholar] [CrossRef] [PubMed]
- Pagona, G.; Zervaki, G.E.; Sandanayaka, A.S.D.; Ito, O.; Charalambidis, G.; Hasobe, T.; Coutsoleos, A.G.; Tagmatarchis, N. Carbon Nanohorn-Porphyrin Dimer Hybrid Material for Enhancing Light-Energy Conversion. J. Phys. Chem. C 2012, 116, 9439–9449. [Google Scholar] [CrossRef]
- Costa, R.D.; Feihl, S.; Kahnt, A.; Gambhir, S.; Officer, D.L.; Wallace, G.G.; Lucio, M.I.; Herrero, M.A.; Vzquez, E.; Syrgiannis, Z.; et al. Carbon Nanohorns as Integrative Materials for Efficient Dye-Sensitized Solar Cells. Adv. Mater. 2013, 25, 6513–6518. [Google Scholar] [CrossRef] [PubMed]
- Casillas, R.; Lodermeyer, F.; Costa, R.D.; Prato, M.; Guldi, D.M. Substituting TiCl4-Carbon Nanohorn Interfaces for Dye-Sensitized Solar Cells. Adv. Energy Mater. 2014, 4, 1301577. [Google Scholar] [CrossRef]
- Lodermeyer, F.; Costa, R.D.; Casillas, R.; Kohler, F.T.U.; Wasserscheid, P.; Prato, M.; Guldi, D.M. Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy Environ. Sci. 2015, 8, 241–246. [Google Scholar] [CrossRef]
- Wen, D.; Deng, L.; Zhou, M.; Guo, S.; Shang, L.; Xu, G.; Dong, S. A biofuel cell with a single-walled carbon nanohorn-based bioanode operating at physiological condition. Biosens. Bioelectron. 2010, 25, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Xu, X.; Dong, S. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy Environ. Sci. 2011, 4, 1358–1363. [Google Scholar] [CrossRef]
- Sani, E.; Barison, S.; Pagura, C.; Mercatelli, L.; Sansoni, P.; Fontani, D.; Jafrancesco, D.; Francini, F. Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt. Express 2010, 18, 5179–5187. [Google Scholar] [CrossRef] [PubMed]
- Mercatelli, L.; Sani, E.; Giannini, A.; Di Ninni, P.; Martelli, F.; Zaccanti, G. Carbon nanohorn-based nanofluids: characterization of the spectral scattering albedo. Nanoscale Res. Lett. 2012, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Mercatelli, L.; Sani, E.; Zaccanti, G.; Martelli, F.; Di Ninni, P.; Barison, S.; Pagura, C.; Agresti, F.; Jafrancesco, D. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanoscale Res. Lett. 2011, 6, 282. [Google Scholar] [CrossRef] [PubMed]
- Sani, E.; Mercatelli, L.; Barison, S.; Pagura, C.; Agresti, F.; Colla, L.; Sansoni, P. Potential of carbon nanohorn-based suspensions for solar thermal collectors. Solar Energy Mater. Solar Cells 2011, 95, 2994–3000. [Google Scholar] [CrossRef]
- Sani, E.; Di Ninni, P.; Colla, L.; Barison, S.; Agresti, F. Optical properties of mixed nanofluids containing carbon nanohorns and silver nanoparticles for solar energy applications. J. Nanosci. Nanotechnol. 2015, 15, 3568–3573. [Google Scholar]
- Moradi, A.; Sani, E.; Simonetti, M.; Francini, F.; Chiavazzo, E.; Asinari, P. Carbon-nanohorn based nanofluids for a direct absorption solar collector for civil application. J. Nanosci. Nanotechnol. 2015, 15, 3488–3495. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Ding, Y.; Guan, L. A nanocomposite of SnO2 and single-walled carbon nanohorns as a long life and high capacity anode material for lithium ion batteries. RSC Adv. 2011, 1, 852–856. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Ding, Y.; Guan, L. Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem. Commun. 2011, 47, 7416–7418. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Li, J.; Chen, Z.; Huang, Z. Carbon Nanohorns As a High-Performance Carrier for MnO2 Anode in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4, 2325–2328. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, Z.; Guo, Z.; Liu, Y.; Zhou, N.; Niu, B.; Shi, Z.; Zhang, H. Nanoporous anatase TiO2/single-wall carbon nanohorns composite as superior anode for lithium ion batteries. J. Power Sources 2013, 232, 193–198. [Google Scholar] [CrossRef]
- Yuge, R.; Tamura, N.; Manako, T.; Nakano, K.; Nakahara, K. High-rate charge/discharge properties of Li-ion battery using carbon-coated composites of graphites, vapor grown carbon fibers, and carbon nanohorns. J. Power Sources 2014, 266, 471–474. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, Y.; Wu, C.; Guan, L. Single-walled carbon nanohorns with unique horn-shaped structures as a scaffold for lithium-sulfur batteries. RSC Adv. 2014, 4, 28636–28639. [Google Scholar] [CrossRef]
- Wang, N.; Wu, C.; Li, J.; Dong, G.; Guan, L. Binder-Free Manganese Oxide/Carbon Nanomaterials Thin Film Electrode for Supercapacitors. ACS Appl. Mater. Interfaces 2011, 3, 4185–4189. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.M.; Kim, Y.J.; Endo, M.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 2007, 129, 20–21. [Google Scholar] [PubMed]
- Yuge, R.; Manako, T.; Nakahara, K.; Yasui, M.; Iwasa, S.; Yoshitake, T. The production of an electrochemical capacitor electrode using holey single-wall carbon nanohorns with high specific surface area. Carbon 2012, 50, 5569–5573. [Google Scholar] [CrossRef]
- Utsumi, S.; Miyawaki, J.; Tanaka, H.; Hattori, Y.; Itoi, T.; Ichikuni, N.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K. Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J. Phys. Chem. B. 2005, 109, 14319–14324. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Yudasaka, M.; Miyawaki, J.; Ajima, K.; Murata, K.; Iijima, S. Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. J. Phys. Chem. B 2006, 110, 1587–1591. [Google Scholar] [CrossRef] [PubMed]
- Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Sumpter, B.G.; Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry A 2008, 14, 6614–6626. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Kim, Y.J.; Han, J.H.; Yudasaka, M.; Iijima, S.; Kanoh, H.; Kim, Y.A.; Kaneko, K.; Yang, C.M. Thermal-Treatment-Induced Enhancement in Effective Surface Area of Single-Walled Carbon Nanohorns for Supercapacitor Application. J. Phys. Chem. C 2013, 117, 25877–25883. [Google Scholar] [CrossRef]
- Yang, C.M.; Kim, Y.J.; Miyawaki, J.; Kim, Y.A.; Yudasaka, M.; Iijima, S.; Kaneko, K. Effect of the Size and Position of Ion-Accessible Nanoholes on the Specific Capacitance of Single-Walled Carbon Nanohorns for Supercapacitor Applications. J. Phys. Chem. C 2015, 119, 2935–2940. [Google Scholar] [CrossRef]
- Wei, D.; Wang, H.; Hiralal, P.; Andrew, P.; Ryhaenen, T.; Hayashi, Y.; Amaratunga, G.A.J. Template-free electrochemical nanofabrication of polyaniline nanobrush and hybrid polyaniline with carbon nanohorns for supercapacitors. Nanotechnology 2010, 21, 435702. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Khatua, B.B. Polyaniline integrated carbon nanohorn: A superior electrode materials for advanced energy storage. Express Polym. Lett. 2014, 8, 895–907. [Google Scholar] [CrossRef]
- Hiralal, P.; Wang, H.; Unalan, H.E.; Liu, Y.; Rouvala, M.; Wei, D.; Andrew, P.; Amaratunga, G.A.J. Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures. J. Mater. Chem. 2011, 21, 17810–17815. [Google Scholar] [CrossRef]
- Izadi-Najafabadi, A.; Yamada, T.; Futaba, D.N.; Yudasaka, M.; Takagi, H.; Hatori, H.; Iijima, S.; Hata, K. High-Power Supercapacitor Electrodes from Single-Walled Carbon Nanohorn/Nanotube Composite. ACS Nano 2011, 5, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Das, A.K.; Karan, S.K.; Khatua, B.B. Carbon nanohorn-graphene nanoplate hybrid: An excellent electrode material for supercapacitor application. J. Appl. Polym. Sci. 2015, 132, 42118. [Google Scholar] [CrossRef]
- Annamalai, K.P.; Gao, J.; Liu, L.; Mei, J.; Lau, W.; Tao, Y. Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance. J. Mater. Chem. A 2015, 3, 11740–11744. [Google Scholar] [CrossRef]
- Deshmukh, A.B.; Shelke, M.V. Synthesis and electrochemical performance of a single walled carbon nanohorn-Fe3O4 nanocomposite supercapacitor electrode. RSC Adv. 2013, 3, 21390–21393. [Google Scholar] [CrossRef]
- Chen, G.; Peng, Q.; Mizuseki, H.; Kawazoe, Y. Theoretical investigation of hydrogen storage ability of a carbon nanohorn. Comput. Mater. Sci. 2010, 49, S378–S382. [Google Scholar] [CrossRef]
- Pagura, C.; Barison, S.; Mortalo, C.; Comisso, N.; Schiavon, M. Large Scale and Low Cost Production of Pristine and Oxidized Single Wall Carbon Nanohorns as Material for Hydrogen Storage. Nanosci. Nanotechnol. Lett. 2012, 4, 160–164. [Google Scholar] [CrossRef]
- Liu, Y.; Brown, C.M.; Neumann, D.A.; Geohegan, D.B.; Puretzky, A.A.; Rouleau, C.M.; Hu, H.; Styers-Barnett, D.; Krasnov, P.O.; Yakobson, B.I. Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns. Carbon 2012, 50, 4953–4964. [Google Scholar] [CrossRef]
- Sano, N.; Taniguchi, K.; Tamon, H. Hydrogen Storage in Porous Single-Walled Carbon Nanohorns Dispersed with Pd-Ni Alloy Nanoparticles. J. Phys. Chem. C 2014, 118, 3402–3408. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Han, S.; Wang, C.; Li, J.; Xu, G. Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials 2015, 5, 1732-1755. https://doi.org/10.3390/nano5041732
Zhang Z, Han S, Wang C, Li J, Xu G. Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials. 2015; 5(4):1732-1755. https://doi.org/10.3390/nano5041732
Chicago/Turabian StyleZhang, Zhichao, Shuang Han, Chao Wang, Jianping Li, and Guobao Xu. 2015. "Single-Walled Carbon Nanohorns for Energy Applications" Nanomaterials 5, no. 4: 1732-1755. https://doi.org/10.3390/nano5041732
APA StyleZhang, Z., Han, S., Wang, C., Li, J., & Xu, G. (2015). Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials, 5(4), 1732-1755. https://doi.org/10.3390/nano5041732