Silver-Based SERS Pico-Molar Adenine Sensor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Silver Crystals on Copper Bumps under Laser Illumination in Multi-Directions
3.2. Adenine Molecular Structures and Raman and SERS Spectra
3.3. Effects of pH Value on SERS Spectra of Adenine
3.4. Effects of Adenine Concentration and Reproducibility of SERS Spectra
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jain, P.K.; El-Sayed, M.A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010, 487, 153–164. [Google Scholar] [CrossRef]
- Anderson, W.J.; Nowinska, K.; Hutter, T.; Mahajan, S.; Fischlechner, M. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy. Nanoscale 2018, 10, 7138–7146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harroun, S.G. The controlversial orientation of adenine on gold and silver. ChemPhysChem 2018, 19, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- El Amri, C.; Baron, M.-H.; Maurel, M.-C. Adenine and RNA in mineral samples. Surface-enhanced Raman spectroscopy (SERS) for picomole detections. Spectrochim. Acta Part A 2003, 59, 2645–2654. [Google Scholar] [CrossRef]
- Wei, H.; Li, J.; Wang, Y.; Wang, E. Silver nanoparticles coated with adenine: Preparation, self-assembly and application in surface-enhanced Raman scattering. Nanotechnology 2007, 18, 175610-14. [Google Scholar] [CrossRef]
- Pinheiro, P.C.; Fateixa, S.; Nogueira, H.I.S.; Trindade, T. SERS study on adenine using a Ag/poly(t-butylacrylate) nanocomposite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 101, 36–39. [Google Scholar] [CrossRef]
- Radziuk, D.; Moehwald, H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Phys. Chem. Chem. Phys. 2015, 17, 21072. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, Y.; Chen, Y.-R.; Lai, J.-C.; Huang, B. Silver nanoparticles SERS sensors using rapid thermal CVD nanoscale graphene islands as templates. IEEE Trans. Nanotechnol. 2020, 19, 25–33. [Google Scholar] [CrossRef]
- Tzeng, Y.; Chen, Y.-R. Carrier for Raman Spectroscopy and Method of Manufacturing the Same. U.S. Patent 10,429,308, 1 October 2019. [Google Scholar]
- Tzeng, Y.; Lin, B.-Y. Silver SERS adenine sensors with a very low detection limit. Biosensors 2020, 10, 53. [Google Scholar] [CrossRef]
- Giese, B.; McNaughton, D. Surface-enhanced raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces. J. Phys. Chem. B 2002, 106, 101–112. [Google Scholar] [CrossRef]
- Xiao, Y.-J.; Chen, Y.-F.; Gao, X.-X. Comparative study of the surface enhanced near infrared Raman spectra of adenine and NAD+ on a gold electrode. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1209–1218. [Google Scholar] [CrossRef]
- Mirajkar, S.; Dhayagude, A.; Maiti, N.; Suprasanna, P.; Kapoor, S. Distinguishing genomic DNA of brassica juncea and arabidopsis thaliana using surface-enhanced raman scattering. J. Raman Spectrsc. 2019. [Google Scholar] [CrossRef]
- Kim-Suda, H.; Petrovykh, D.Y.; Tarlov, M.J.; Whitman, L.J. Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 2003, 125, 9014–9015. [Google Scholar] [CrossRef]
- Chen, S.-T.; Chu, Y.-C.; Liu, C.-Y.; Huang, C.-H.; Tzeng, Y. Surface-enhanced raman spectroscopy for characterization of nanodiamond seeded substrates and ultrananocrystalline diamond at the early-stage of plasma cvd growth process. Diamond Relat. Mater. 2012, 24, 61–166. [Google Scholar] [CrossRef]
- Liu, C.; Liang, K.; Chen, W.; Tu, C.; Liu, C.; Tzeng, Y. Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Opt. Express 2011, 19, 17092–17098. [Google Scholar] [CrossRef]
- Huang, C.; Lin, H.; Chen, S.; Liu, C.; Chui, H.; Tzeng, Y. Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors. Opt. Express 2011, 19, 11441–11450. [Google Scholar] [CrossRef]
- Huang, C.; Lin, H.; Lau, B.; Liu, C.; Chui, H.; Tzeng, Y. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays. Opt. Express 2010, 18, 27891–27899. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Cheng, H.-W.; Chang, K.-W.; Shiue, J.; Wang, J.-K.; Wang, Y.-L.; Huang,, N.-T. A particle-based microfluidic molecular separation integrating surface-enhanced Raman scattering sensing for purine derivatives analysis. Microfluid Nanofluid 2019, 23, 48. [Google Scholar] [CrossRef]
- Villa, J.E.L.; Afonso, M.A.S.; dos Santos, D.P.; Mercadal, P.A.; Coronado, E.A.; Poppi, R.J. Colloidal gold clusters formation and chemometrics for direct SERS determination of bioanalytes in complex media. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117380. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chiu, C.-W. Immobilization and 3D hot-junction formation of gold nanoparticles on two-dimensional silicate nanoplatelets as substrates for high-efficiency surface-enhanced raman scattering detection. Nanomaterials 2019, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhang, K.; Luo, B.; Hong, W.; Chen, J.; Chen, X. Plasmonic-3D photonic crystals microchip for surface enhanced Raman spectroscopy. Biosens. Bioelectron. 2019, 143, 111596. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Meng, G.; Zhu, C.; Chen, B.; Zhou, Q.; Huo, Y.D. A silver-grafted sponge as an effective surface-enhanced Raman scattering substrate. Sens. Actuators B Chem. 2018, 258, 56–63. [Google Scholar] [CrossRef]
- Juang, R.-S.; Wang, K.-S.; Cheng, Y.-W.; Fu, C.-C.; Chen, W.-T.; Liu, C.-M.; Chien, C.-C.; Jeng, R.-J.; Chen, C.-. Cheung, Liu, T-Y. Floating SERS substrates of silver nanoparticles-graphene based nanosheets for rapid detection of biomolecules and clinical uremic toxins. Colloids Surf. A Physicochem. Eng. Asp. 2019, 576, 36–42. [Google Scholar] [CrossRef]
- Ikegami, K.; Sugano, K.; Isono, Y. Surface-enhanced raman spectroscopy analysis of DNA bases using arrayed and single dimer of gold nanoparticle. In Proceedings of the IEEE MEMS 2017, Las Vegas, NV, USA, 22–26 January 2017; pp. 408–411. [Google Scholar]
- Gondek, C.; Lippold, M.; Röver, I.; Bohmhammel, K.; Kroke, E. Etching silicon with HF-H2O2-based mixtures: Reactivity studies and surface investigations. J. Phys. Chem. C 2014, 118, 2044–2051. [Google Scholar] [CrossRef]
- Yang, T.; Ren, S.; Zhao, H. Introduction of copper ions to regulate silver nanostructures by galvanic displacement reaction. Mater. Res. Express 2019, 6, 095003. [Google Scholar] [CrossRef]
- Laptinskiy, K.A.; Burikov, S.A.; Dolenko, T.A. Determination of type and concentration of DNA nitrogenous bases by Raman spectroscopy. In Proceedings of the Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI, Laser Physics and Photonics XVI, and Computational Biophysics, Saratov, Russia, 19 March 2015. [Google Scholar]
- Yamamoto, Y.S.; Hasegawa, K.; Hasegawa, Y.; Takahashi, N.; Kitahama, Y.; Fukuoka, S.; Murase, N.; Baba, Y.; Ozakid, Y.; Itoh, T. Direct conversion of silver complexes to nanoscale hexagonal columns on a copper alloy for plasmonic applications. Phys. Chem. Chem. Phys. 2013, 15, 14611. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Bell, S.E.J. Structure of adenine on metal nanoparticles: PH equilibria and formation of Ag+ complexes detected by surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2010, 114, 22644–22651. [Google Scholar] [CrossRef]
- Watanabe, H.; Ishida, Y.; Hayazawa, N.; Inouye, Y.; Kawata, S. Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys. Rev. B 2004, 69, 155418. [Google Scholar] [CrossRef]
- Harroun, S.G.; Zhang, Y.; Chen, T.-H.; Hsu, C.-L.; Chang, H.-T. Adsorption orientationof 8-azaadenine on silver nanoparticles determined by SERS and DFT. J. Raman Spectrosc. 2018, 49, 376–382. [Google Scholar] [CrossRef]
- Ruiz-Chica, J.; Medina, M.A.; Sanchez-Jimenez, F.; Ramirez, F.J. Fourier transform raman study of the structural specificities on the interaction between DNA and biogenic polyamines. Biophys. J. 2001, 80, 443–454. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzeng, Y.; Lin, B.-Y. Silver-Based SERS Pico-Molar Adenine Sensor. Biosensors 2020, 10, 122. https://doi.org/10.3390/bios10090122
Tzeng Y, Lin B-Y. Silver-Based SERS Pico-Molar Adenine Sensor. Biosensors. 2020; 10(9):122. https://doi.org/10.3390/bios10090122
Chicago/Turabian StyleTzeng, Yonhua, and Bo-Yi Lin. 2020. "Silver-Based SERS Pico-Molar Adenine Sensor" Biosensors 10, no. 9: 122. https://doi.org/10.3390/bios10090122
APA StyleTzeng, Y., & Lin, B. -Y. (2020). Silver-Based SERS Pico-Molar Adenine Sensor. Biosensors, 10(9), 122. https://doi.org/10.3390/bios10090122