A Paper-Based Electrochemical Sensor Based on PtNP/COFTFPB−DHzDS@rGO for Sensitive Detection of Furazolidone
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Instruments
2.3. Synthesis of rGO−NH2, COFTFPB−DHzDS, COFTFPB−DHzDS@rGO, and PtNP/COFTFPB−DHzDS@rGO
2.4. Preparation COFTFPB−DHzDS and PtNP/COFTFPB−DHzDS@rGO/GCE
2.5. Preparation of Paper-Based Electrodes (ePADs)
2.6. Preparation of PtNP/COFTFPB−DHzDS@rGO/ePAD
3. Results and Discussion
3.1. Characterization of COFTFPB−DHzDs
3.2. Characterization of PtNP/COFTFPB−DHzDS@rGO
3.3. Electrochemical Behaviors of PtNP/COFTFPB−DHzDS@rGO/GCE
3.4. Optimization of the Experimental Conditions
3.5. Electrochemical Sensors Based on PtNP/COFTFPB−DHzDS@rGO for Furazolidone
3.6. Determination of Furazolidone in Human Serum and Fish Sample
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Dou, L.; Yao, X.; Zhang, W.; Zhao, B.; Wang, Z.; Ji, Y.; Sun, J.; Xu, B.; Zhang, D.; et al. Polydopamine nanospheres as high-affinity signal tag towards lateral flow immunoassay for sensitive furazolidone detection. Food Chem. 2020, 315, 126310. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, I.; Mori, B.; Santos, A.; Villanova, J.; Teles, C.; Costa, A. What are the immunopharmacological effects of furazolidone? A systematic review. Immunopharm. Immunot. 2021, 43, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Rajakumaran, R.; Anupriya, J.; Chen, S.-M. 2D-Titanium carbide MXene/RGO composite modified electrode for selective detection of carcinogenic residue furazolidone in food and biological samples. Mater. Lett. 2021, 297, 129979. [Google Scholar] [CrossRef]
- Su, L.; Wang, L.; Yao, X.; Yin, X.; Zhang, H.; Zhao, M.; Liu, S.; Wang, Z.; Wang, J.; Zhang, D. Small size nanoparticles-Co3O4 based lateral flow immunoassay biosensor for highly sensitive and rapid detection of furazolidone. Talanta 2020, 211, 120729. [Google Scholar] [CrossRef]
- Sun, Y.; Waterhouse, G.; Xu, L.; Qiao, X.; Xu, Z. Three-dimensional electrochemical sensor with covalent organic framework decorated carbon nanotubes signal amplification for the detection of furazolidone. Sen. Actuators B 2020, 321, 128501. [Google Scholar] [CrossRef]
- Xu, J.; Dou, L.; Liu, S.; Su, L.; Yin, X.; Ren, J.; Hu, H.; Zhang, D.; Sun, J.; Wang, Z.; et al. Lateral flow immunoassay for furazolidone point-of-care testing: Cater to the call of saving time, labor, and cost by coomassie brilliant blue labeling. Food Chem. 2021, 352, 129415. [Google Scholar] [CrossRef]
- Meng, Y.; Luo, Y.; Shi, J.; Ding, H.; Lang, X.; Chen, W.; Zheng, A.; Sun, J.; Wang, C. 2D and 3D porphyrinic covalent organic frameworks: The influence of dimensionality on functionality. Angew. Chem. Int. Ed. 2020, 59, 3624–3629. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Q.; Zheng, Q.Q.; Xiao, S.J.; Zhang, L.; Liang, R.P.; Ouyang, G.; Qiu, J.D. Construction of two-dimensional fluorescent covalent organic framework nanosheets for the detection and removal of nitrophenols. Anal. Chem. 2022, 94, 2517–2526. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Wang, L.; Xie, Y.; Du, Y.; Song, Y.; Wang, L. Double signal ratiometric electrochemical riboflavin sensor based on macroporous carbon/electroactive thionine-contained covalent organic framework. J. Colloid Interface Sci. 2022, 608, 219–226. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Shan, J.; Bai, X. Novel electrochemical acetylcholinesterase biosensor based on core-shell covalent organic framework@multi-walled carbon nanotubes (COF@MWCNTs) composite for detection of malathion. Int. J. Electrochem. Sci. 2022, 17, 220543. [Google Scholar] [CrossRef]
- Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron. 2019, 130, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Itsoponpan, T.; Thanachayanont, C.; Hasin, P. Sponge-like CuInS2 microspheres on reduced graphene oxide as an electrocatalyst to construct an immobilized acetylcholinesterase electrochemical biosensor for chlorpyrifos detection in vegetables. Sens. Actuators B 2021, 337, 129775. [Google Scholar] [CrossRef]
- Kudr, J.; Zhao, L.; Nguyen, E.P.; Arola, H.; Nevanen, T.K.; Adam, V.; Zitka, O.; Merkoci, A. Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing. Biosens. Bioelectron. 2020, 156, 112109. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, S.; Xia, Y.; Zhao, W.; Easton, C.D.; Selomulya, C.; Zhang, X. Mild annealing reduced graphene oxide membrane for nanofiltration. J. Membr. Sci. 2020, 601, 117900. [Google Scholar] [CrossRef]
- Li, Z.; Wu, D.; Ouyang, Y.; Wu, H.; Jiang, M.; Wang, F.; Zhang, L.Y. Synthesis of hollow cobalt phosphide nanocrystals with ultrathin shells anchored on reduced graphene oxide as an electrocatalyst toward hydrogen evolution. Appl. Surf. Sci. 2020, 506, 144975. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, B.; Cui, L. Electrochemical analysis of carbaryl in fruit samples on graphene oxide-ionic liquid composite modified electrode. J. Food Compos. Anal. 2015, 40, 14–18. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Zhao, Y.; Sun, X.; Gandara, F.; Furukawa, H.; Liu, Z.; Zhu, H.; Zhu, C.; Suenaga, K.; et al. Weaving of organic threads into a crystalline covalent organic framework. Science 2016, 351, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Zamarchi, F.; Silva, T.; Winiarsk, J.; Santana, E.; Vieira, I. Polyethylenimine-based electrochemical sensor for the determination of caffeic acid in aromatic herbs. Chemosensors 2022, 10, 375. [Google Scholar] [CrossRef]
- Liu, X.; Gao, X.; Yang, L.; Zhao, Y.; Li, F. Metal-organic framework-functionalized paper-based electrochemical biosensor for ultrasensitive exosome assay. Anal. Chem. 2021, 93, 11792–11799. [Google Scholar] [CrossRef]
- Pesaran, S.; Rafatmah, E.; Hemmateenejad, B. An all-in-one solid state thin-layer potentiometric sensor and biosensor based on three-dimensional origami paper microfluidics. Biosensors 2021, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Calvo, A.; Blanco-Lopez, M.C.; Costa-Garcia, A. Paper-based working electrodes coated with mercury or bismuth films for heavy metals determination. Biosensors 2020, 10, 52. [Google Scholar] [CrossRef]
- Huang, Y.; Song, Y.; Gou, L.; Zou, Y. A Novel Wearable Flexible Dry Electrode Based on Cowhide for ECG Measurement. Biosensors 2021, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.; Santana, R.; Spinelli, A. Electrochemical paper-based analytical devices containing magnetite nanoparticles for the determination of vitamins B2 and B6. Microchem. J. 2022, 179, 107588. [Google Scholar] [CrossRef]
- Liang, H.; Wang, L.; Yang, Y.; Song, Y.; Wang, L. A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens. Bioelectron. 2021, 193, 113553. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Wang, Z.; Tang, L.; Zeng, G.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C.; Li, X.; et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, X.; Wu, J.; Dong, Z.; Yan, Y.; Zheng, S.; Fan, J.; Li, X.; Cai, S.; Zhang, W. Transformation of a hydrazone-linked covalent organic framework into a highly stable hydrazide-linked one. ACS Appl. Polym. Mater. 2022, 4, 4624–4631. [Google Scholar] [CrossRef]
- Liang, H.; Xu, M.; Zhu, Y.; Wang, L.; Xie, Y.; Song, Y.; Wang, L. H2O2 ratiometric electrochemical sensors based on nanospheres derived from ferrocence-modified covalent organic frameworks. ACS Appl. Nano Mater. 2019, 3, 555–562. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.; Vanzela, H.; Defavari, L.; Cesarino, I. Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sens. Actuators B. 2018, 277, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Torul, H.; Yarali, E.; Eksin, E.; Ganguly, A.; Benson, J.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Paper-based electrochemical biosensors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MoS2 nanosheets decorated with gold nanoparticle electrodes. Biosensors 2021, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Jack, J.; Hu, Y.; Wan, S.; Huang, S.; Jin, Y.; Maness, P.; Yazdi, S.; Ren, Z.; Zhang, W. Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction. Nanoscale 2020, 12, 2596–2602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite. Bioelectrochemistry 2019, 127, 163–170. [Google Scholar] [CrossRef]
- Han, J.; Yu, J.; Guo, Y.; Wang, L.; Song, Y. COFBTLP-1/three-dimensional macroporous carbon electrode for simultaneous electrochemical detection of Cd2+, Pb2+, Cu2+ and Hg2+. Sen. Actuators B 2020, 321, 128498. [Google Scholar] [CrossRef]
- Wang, L.; Xie, Y.; Yang, Y.; Liang, H.; Wang, L.; Song, Y. Electroactive covalent organic frameworks/carbon nanotubes composites for electrochemical sensing, ACS Appl. Nano Mater. 2020, 3, 1412–1419. [Google Scholar]
- Bai, Y.; Liu, Y.; Liu, M.; Wang, X.; Shang, S.; Gao, W.; Du, C.; Qiao, Y.; Chen, J.; Dong, J.; et al. Near-equilibrium growth of chemically stable covalent organic framework/graphene oxide hybrid materials for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2022, 61, 13067. [Google Scholar]
- Sundaresan, R.; Mariyappan, V.; Chen, S.-M.; Alagarsamy, S.; Akilarasan, M. Fabrication of a new electrochemical sensor based on bimetal oxide for the detection of furazolidone in biological samples. Micromachines 2022, 13, 876. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Liang, H.; Wu, N.; Peng, X.; Wang, L.; Song, Y. A novel N, S-rich COF and its derived hollow N, S-doped carbon@Pd nanorods for electrochemical detection of Hg2+ and paracetamol. J. Hazard. Mater. 2021, 409, 124528. [Google Scholar] [CrossRef]
- Liang, H.; Luo, Y.; Li, Y.; Song, Y.; Wang, L. An immunosensor using electroactive COF as signal probe for electrochemical detection of carcinoembryonic antigen. Anal. Chem. 2022, 94, 5352–5358. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, H.; Pan, Z.; Liu, B.; Zhang, T.; Yang, M.; Wu, N.; Zhang, J.; Yang, F.; Yang, W. In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol. Colloids Surf. A 2022, 635, 128114. [Google Scholar] [CrossRef]
- Huang, X.; Shi, W.; Li, J.; Bao, N.; Yu, C.; Gu, H. Determination of salivary uric acid by using poly(3,4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device. Anal. Chim. Acta 2020, 1103, 75–83. [Google Scholar] [CrossRef]
- Niu, X.; Bo, X.; Guo, L. MOF-derived hollow NiCo2O4/C composite for simultaneous electrochemical determination of furazolidone and chloramphenicol in milk and honey. Food Chem. 2021, 364, 130368. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Wang, Z.; Qiao, L. Nitrogen-doped graphdiyne quantum dots for electrochemical chloramphenicol quantification in water. ACS Appl. Nano Mater. 2021, 4, 12755–12765. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Naderi, L.; Ghalkhani, M. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone. Mater. Sci. Eng. C 2016, 61, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Jaysiva, G.; Manavalan, S.; Chen, S. MoN nanorod/sulfur-doped graphitic carbon nitride for electrochemical determination of chloramphenicol. ACS Sustain. Chem. Eng. 2020, 8, 11088–11098. [Google Scholar] [CrossRef]
- Melekhin, A.O.; Tolmacheva, V.V.; Shubina, E.G. Determination of nitrofuran metabolites in honey using a new derivatization reagent, magnetic solid−phase extraction and LC−MS/MS. Talanta 2021, 230, 122310. [Google Scholar] [CrossRef]
- Piao, H.; Choi, G.; Jin, X.; Hwang, S.; Song, Y.; Cho, S.; Choy, J. Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 2022, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Veerakumar, P.; Sangili, A.; Chen, S.M. Fabrication of platinum−rhenium nanoparticles−decorated porous carbons: Voltammetric sensing of furazolidone. ACS Sustain. Chem. Eng. 2020, 132, 132210. [Google Scholar] [CrossRef]
- Fotouhi, L.; Heravi, M.M. Heravi. Electrochemistry and voltammetric determination of furazolidone with a multi−walled nanotube composite film-glassy carbon electrode. J. Appl. Electrochem. 2011, 41, 137–142. [Google Scholar] [CrossRef]
- Kdr, A.; Mgb, F.; Twcac, D. Porous-coral-like cerium doped tungsten oxide/graphene oxide micro balls: A robust electrochemical sensing platform for the detection of antibiotic residue. Colloids Surf. A 2021, 628, 127275. [Google Scholar]
Electrode | LOD (μM) | Linear Range (μM) | References |
---|---|---|---|
NiCo2O4@C/GCE | 7.05 × 10−3 | 0.5–300 | [41] |
NGDYQD/GCE | 0.0126 | 0.14–400 | [42] |
RGO/GCE | 0.3 × 10−3 | 2–10.0 | [43] |
MoN@S−GCN/GCE | 6.9 × 10−3 | 0.5–2405 | [44] |
NH−MnO2−NAuF−FTO | 6.6 × 10−3 | 0.01–10 | [45] |
Pt−Re NP/PAC | 0.75 | 0.2–117.7 | [46] |
MWCNT/GCE | 2.3 | 3–800 | [47] |
CeW/GO/GCE | 5.4 × 10−3 | 1–120 | [48] |
COF@NH2−CNT/GCE | 7.5 × 10−3 | 0.2–100 | [49] |
PtNP/COFTFPB−DHzDS@rGO/ePAD | 0.23 | 0.69–100 | This work |
PtNP/COFTFPB−DHzDS@rGO/GCE | 5 × 10−3 | 0.015–110 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Peng, X.; Song, Y.; Du, Y. A Paper-Based Electrochemical Sensor Based on PtNP/COFTFPB−DHzDS@rGO for Sensitive Detection of Furazolidone. Biosensors 2022, 12, 904. https://doi.org/10.3390/bios12100904
Chen R, Peng X, Song Y, Du Y. A Paper-Based Electrochemical Sensor Based on PtNP/COFTFPB−DHzDS@rGO for Sensitive Detection of Furazolidone. Biosensors. 2022; 12(10):904. https://doi.org/10.3390/bios12100904
Chicago/Turabian StyleChen, Rongfang, Xia Peng, Yonghai Song, and Yan Du. 2022. "A Paper-Based Electrochemical Sensor Based on PtNP/COFTFPB−DHzDS@rGO for Sensitive Detection of Furazolidone" Biosensors 12, no. 10: 904. https://doi.org/10.3390/bios12100904
APA StyleChen, R., Peng, X., Song, Y., & Du, Y. (2022). A Paper-Based Electrochemical Sensor Based on PtNP/COFTFPB−DHzDS@rGO for Sensitive Detection of Furazolidone. Biosensors, 12(10), 904. https://doi.org/10.3390/bios12100904