A Chemometric-Assisted Colorimetric-Based Inexpensive Paper Biosensor for Glucose Detection
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Instrumentation
2.2. Selection of Paper as a Base Substrate
2.3. Characterization Techniques
2.4. Fabrication of the Paper-Based Sensor and Colorimetric Detection
2.5. Reagent Preparation
2.6. Optimization of the Volume and Concentration
2.7. Method of the Digitization of the Obtained Result
3. Results and Discussion
3.1. Sample and Reagent Volume Optimization
3.2. Characterization of the Detection Pad
3.3. Optimization of the Concentration
3.4. Glucose Detection
3.5. Digitization of the Obtained Results
3.6. Shelf-Life Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burtis, C.A.; Bruns, D.E. Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014; Available online: https://books.google.co.in/books?hl=en&lr=&id=p7XwAwAAQBAJ&oi=fnd&pg=PP1&ots=jnY1koXc_t&sig=mqjS4v8LliPV92jc5kZ1pd1CB4c&redir_esc=y#v=onepage&q&f=false (accessed on 6 January 2022).
- IDF Diabetes Atlas|Tenth Edition. Available online: https://diabetesatlas.org/ (accessed on 6 January 2022).
- Soni, A.; Jha, S.K. Smartphone based non-invasive salivary glucose biosensor. Anal. Chim. Acta 2017, 996, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Jena, S.; Gupta, A.; Pippara, R.K.; Pal, P.; Adit. Wireless Sensing Systems: A Review. In Sensors for Automotive and Aerospace Applications; Springer: Singapore, 2019; pp. 143–192. [Google Scholar] [CrossRef]
- Gupta, A.; Pal, P. Micro-electro-mechanical system-based drug delivery devices. In Bioelectronics and Medical Devices: From Materials to Devices—Fabrication, Applications and Reliability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 183–210. ISBN 9780081024201. [Google Scholar]
- Gupta, A.; Pal, P. Flexible Sensors for Biomedical Application. In Environmental, Chemical and Medical Sensors; Springer: Singapore, 2018; pp. 287–314. [Google Scholar] [CrossRef]
- Müller, R.H.; Clegg, D.L. Automatic Paper Chromatography. Anal. Chem. 2002, 21, 1123–1125. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chemie Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent developments in paper-based microfluidic devices. Anal. Chem. 2015, 87, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Morbioli, G.G.; Mazzu-Nascimento, T.; Stockton, A.M.; Carrilho, E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)—A review. Anal. Chim. Acta 2017, 970, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ballerini, D.R.; Shen, W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 2012, 6, 011301. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef]
- Gupta, A.; Geeta, B.; Bhattacharya, S. Novel Dipstick model for Portable Bio-sensing Application. J. Energy Environ. Sustain. 2019, 7, 36–41. [Google Scholar] [CrossRef]
- Gupta, A.; Nayak, M.; Singh, D.; Bhattacharya, S. Antibody immobilization for ZnO nanowire based biosensor application. MRS Online Proc. Libr. 2014, 1675, 33–39. [Google Scholar] [CrossRef]
- Gupta, A.; Patel, V.K.; Pandey, C. Functional characterization of nano-porous silicate-polymer composite for bovine serum albumin immobilization. Sens. Int. 2021, 2, 100080. [Google Scholar] [CrossRef]
- Gupta, A.; Patel, V.K.; Kant, R.; Bhattacharya, S. Surface Modification Strategies for Fabrication of Nano-Biodevices. In Progress in Adhesion and Adhesives; Mittal, K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 161–185. [Google Scholar] [CrossRef]
- Atwe, A.; Gupta, A.; Kant, R.; Das, M.; Sharma, I.; Bhattacharya, S. A novel microfluidic switch for pH control using Chitosan based hydrogels. Microsyst. Technol. 2014, 20, 1373–1381. [Google Scholar] [CrossRef]
- Kishnani, V.; Park, S.; Nakate, U.T.; Mondal, K.; Gupta, A. Nano-functionalized paper-based IoT enabled devices for point-of-care testing: A review. Biomed. Microdevices 2021, 24, 2. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, A.Y.; Kiliç, V.; Özdemir, G.K.; Bayram, A.; Horzum, N.; Solmaz, M.E. Smartphone-based colorimetric detection via machine learning. Analyst 2017, 142, 2434–2441. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.Y.; Wu, Q.S.; Li, H.; Zhang, Y.; Guan, Y.F.; Feng, L. The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine. Biosens. Bioelectron. 2015, 74, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.K.; Zór, K.; Kostesha, N.; Alstrøm, T.S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H.; et al. Development and validation of a colorimetric sensor array for fish spoilage monitoring. Food Control 2016, 60, 346–352. [Google Scholar] [CrossRef]
- Lopez-Ruiz, N.; Curto, V.F.; Erenas, M.M.; Benito-Lopez, F.; Diamond, D.; Palma, A.J.; Capitan-Vallvey, L.F. Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices. Anal. Chem. 2014, 86, 9554–9562. [Google Scholar] [CrossRef]
- Bae, E.; Regnier, F.; Kim, H.; Kim, J.; Awofeso, O.; Jung, Y. Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Appl. Opt. 2015, 54, 9183–9189. [Google Scholar] [CrossRef]
- Kuşçuoğlu, C.K.; Güner, H.; Söylemez, M.A.; Güven, O.; Barsbay, M. A smartphone-based colorimetric PET sensor platform with molecular recognition via thermally initiated RAFT-mediated graft copolymerization. Sens. Actuators B Chem. 2019, 296, 126653. [Google Scholar] [CrossRef]
- Shen, L.; Hagen, J.A.; Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chip 2012, 12, 4240–4243. [Google Scholar] [CrossRef]
- Sumriddetchkajorn, S.; Chaitavon, K.; Intaravanne, Y. Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water. Sens. Actuators B Chem. 2013, 182, 592–597. [Google Scholar] [CrossRef]
- Intaravanne, Y.; Sumriddetchkajorn, S. Android-based rice leaf color analyzer for estimating the needed amount of nitrogen fertilizer. Comput. Electron. Agric. 2015, 116, 228–233. [Google Scholar] [CrossRef]
- Heidari-Bafroui, H.; Ribeiro, B.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. Portable infrared lightbox for improving the detection limits of paper-based phosphate devices. Meas. J. Int. Meas. Confed. 2021, 173, 108607. [Google Scholar] [CrossRef]
- Charbaji, A.; Heidari-Bafroui, H.; Anagnostopoulos, C.; Faghri, M. Sensitive Detection of Nitrate using a Paper-based Microfluidic Device. In Proceedings of the Innovations in Microfluidics 2020, Boston, MA, USA, 17–18 August 2020. [Google Scholar]
- Solmaz, M.E.; Mutlu, A.Y.; Alankus, G.; Kılıç, V.; Bayram, A.; Horzum, N. Quantifying colorimetric tests using a smartphone app based on machine learning classifiers. Sens. Actuators B Chem. 2018, 255, 1967–1973. [Google Scholar] [CrossRef]
- Huang, Z.-J.J.; Luo, J.-y.; Zheng, F.-Y.Y.; Li, S.-X.X.; Liu, F.-J.J.; Lin, L.-X.X.; Huang, Y.-J.J.; Man, S.; Cao, G.-X.X.; Huang, X.-G.G. Long-term stable, high accuracy, and visual detection platform for In-field analysis of nitrite in food based on colorimetric test paper and deep convolutional neural networks. Food Chem. 2022, 373, 131593. [Google Scholar] [CrossRef]
- Min, H.J.; Mina, H.A.; Deering, A.J.; Bae, E. Development of a smartphone-based lateral-flow imaging system using machine-learning classifiers for detection of Salmonella spp. J. Microbiol. Methods 2021, 188, 106288. [Google Scholar] [CrossRef]
- Mercan, Ö.B.; Kılıç, V.; Şen, M. Machine learning-based colorimetric determination of glucose in artificial saliva with different reagents using a smartphone coupled μPAD. Sens. Actuators B Chem. 2021, 329, 129037. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Martinez-Hurtado, J.L.; Garcia-Melendrez, A.; Da Cruz Vasconcellos, F.; Lowe, C.R. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens. Actuators B Chem. 2014, 196, 156–160. [Google Scholar] [CrossRef]
- Berg, B.; Cortazar, B.; Tseng, D.; Ozkan, H.; Feng, S.; Wei, Q.; Chan, R.Y.L.; Burbano, J.; Farooqui, Q.; Lewinski, M.; et al. Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays. ACS Nano 2015, 9, 7857–7866. [Google Scholar] [CrossRef]
- Helfer, G.A.; Magnus, V.S.; Böck, F.C.; Teichmann, A.; Ferrão, M.F.; Da Costa, A.B. PhotoMetrix: An Application for Univariate Calibration and Principal Components Analysis Using Colorimetry on Mobile Devices. J. Braz. Chem. Soc. 2017, 28, 328–335. [Google Scholar] [CrossRef]
Attribute | Description |
---|---|
Y | Luma, also known as picture brightness. Values fall between [0, 1], where [0] designates black and [1] designates white. As Y grows, colors get brighter. |
I | The proportion of blue or orange tones in the picture is known as in-phase. The values of “I” fall between [−0.5959, 0.5959], where a negative number represents a blue tone, and a positive number represents an orange tone. The intensity of the color grows as I’s magnitude rises. |
Q | The proportion of green or purple tones in the picture is known as quadrature. Q contains a value of between (−0.5229) and (0.5229), where (−) denotes a green tone and (+) denotes a purple tone. The intensity of the color grows as Q’s magnitude rises. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishnani, V.; Kumari, S.; Gupta, A. A Chemometric-Assisted Colorimetric-Based Inexpensive Paper Biosensor for Glucose Detection. Biosensors 2022, 12, 1008. https://doi.org/10.3390/bios12111008
Kishnani V, Kumari S, Gupta A. A Chemometric-Assisted Colorimetric-Based Inexpensive Paper Biosensor for Glucose Detection. Biosensors. 2022; 12(11):1008. https://doi.org/10.3390/bios12111008
Chicago/Turabian StyleKishnani, Vinay, Shrishti Kumari, and Ankur Gupta. 2022. "A Chemometric-Assisted Colorimetric-Based Inexpensive Paper Biosensor for Glucose Detection" Biosensors 12, no. 11: 1008. https://doi.org/10.3390/bios12111008
APA StyleKishnani, V., Kumari, S., & Gupta, A. (2022). A Chemometric-Assisted Colorimetric-Based Inexpensive Paper Biosensor for Glucose Detection. Biosensors, 12(11), 1008. https://doi.org/10.3390/bios12111008