Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors
Abstract
:1. Introduction
- √-
- The people who treat patients and raise public knowledge of the condition and its management strategies are healthcare professionals. They are also worried about how a certain initiative may affect the environment, for example. high levels of noise, poor air quality, etc. They are also worried about the long-term and short-term impacts of pollution on the ecosystem and human health.
- √-
- When engineers design the new seaside motorway, they should be aware of potential sea level rise, the degree of vibration at the ocean’s bottom, and any other environmental elements that could have an impact on the strength of the bridge, so that they may take safety precautions when building a bridge.
- √-
- It is crucial to disseminate precise information about the location, timing, and severity level when a tsunami or earthquake strikes in a certain region so that aid may be sent promptly to the designated time and location. The advantages of environmental monitoring also include the ability to anticipate and respond to such incidents.
- √-
- Environmental monitoring data such as severe rainfall, cyclones, and tsunami may be used by farmers, foresters, hunters, and fishermen to plan their activities. The intensity of the natural danger can be reduced if they are warned. Additionally, farmers may learn about their soil’s fertility so they can utilize the necessary fertilizers to increase production.
- √-
- Big industries must be aware of the kinds of pollutants and quantities released from their facilities. They require environmental monitoring data and take environmental pollution reduction measures; hence, they should be included in benchmarks.
- √-
- Data from population monitoring are used by the government to make community mobilization decisions. The government may opt to relocate some industrial districts to low-density regions if a specific city has a high population density and is experiencing issues with the availability of water, energy, and, most crucially, space and land. Additionally, the government builds new communities by utilizing the information gathered through environmental monitoring.
2. Types of Environmental Monitoring Optical Sensors
2.1. Toxic Gas Monitoring Sensors
2.1.1. Optical Fiber-Based Gas Sensors
2.1.2. Optical Waveguide-Based Gas Sensors
2.2. Water Quality Monitoring Sensors
2.2.1. Categories of Water Quality
- Potable water: it is suitable for drinking, tasting well, and being used in residential settings.
- Palatable water: it is aesthetically appealing and considers the presence of substances that do not endanger human health.
- Contaminated (polluted) water is water that is inappropriate for drinking or domestic use because it contains undesired physical, chemical, biological, or radioactive contaminants.
- Infected water: this water contains harmful organisms. Water quality criteria can be classified as physical, chemical, or biological. Table 3 has an overview of them.
2.2.2. Optical Sensors for Water Quality Monitoring
2.3. Indoor Environment Monitoring
2.3.1. Volatile Organic Compounds Monitoring
2.3.2. Indoor Gas Monitoring
Grating Type | Sensing Material | Target VOC | Sensitivity | Operating Range | Reference |
---|---|---|---|---|---|
LPG | Zeolite imidazolate framework | Ethanol, acetone, and methanol | 0.015 ± 0.001 nm/RIU for acetone and 0.018 ± 0.0015 nm/ppm for ethanol | 987–19,700 ppm for acetone 1240 to 24,800 ppm for ethanol | [154] |
LPG | PDMS | Xylene and cyclohexane | 19 nm/50% for xylene | - | [155] |
FBG | Diphenilalanine nanotubes | Methanol | (−7:3 ± 0:8) pm/(%v/v) | - | [156] |
LPG | ZnO nanorod | Ethanol | Measure in refractive index variation | 100 min exposure time | [157] |
FBG | PMMA | Ethanol | Linear response for 3% concentration | - | [158] |
D-shape FBG | PDMS | Dichloromethane, Acetone | 4000 ppm, 6000 ppm | 0–90,000 ppm | [159] |
TFBG | Molecularly imprinted polymer | Ethanol, acetone, toluene | 0.44 pm/ppm, 0.38 pm/ppm, 0.28 pm/ppm | 0–17 ppm | [160] |
LPG | PDMS | Acetone | 9.4 × 10−4 ppm−1 | - | [161] |
4 FBG | Hydrophobic siloxane co-polymer | Hydrocarbons | - | - | [162] |
2.4. Natural Disaster Monitoring
2.4.1. Flood Monitoring
2.4.2. Earthquake Monitoring
2.4.3. Volcanic Eruptions
2.4.4. Storms Monitoring
2.4.5. Landslide Monitoring
3. Outlook and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shammas, M.I. Environmental monitoring and assessment: A case in Salalah, Oman. Environ. Monit. Assess. 2021, 193, 700. [Google Scholar] [CrossRef] [PubMed]
- McCormack, A.J.; Tong, S.C.; Cooke, W.D. Sensitive Selective Gas Chromatography Detector Based on Emission Spectrometry of Organic Compounds. Anal. Chem. 1965, 37, 1470–1476. [Google Scholar] [CrossRef]
- Sibillano, T.; Ancona, A.; Berardi, V.; Lugarà, P.M. A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes. Sensors 2009, 9, 3376–3385. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Zhu, X.; Abbas, S.; Kwok, C.; Wang, M. Optical Remote Sensing. In Urban Informatics. The Urban Book Series; Shi, W., Goodchild, M.F., Batty, M., Kwan, M.P., Zhang, A., Eds.; Springer: Singapore, 2021; pp. 315–344. [Google Scholar]
- Omranian, E.; Sharif, H.; Tavakoly, A. How Well Can Global Precipitation Measurement (GPM) Capture Hurricanes? Case Study: Hurricane Harvey. Remote Sens. 2018, 10, 1150. [Google Scholar] [CrossRef] [Green Version]
- Rizal, Y.; Aswan; Zaim, Y.; Santoso, W.; Rochim, N.; Daryono; Anugrah, S.; Wijayanto; Gunawan, I.; Yatimantoro, T. Tsunami evidence in south coast java, case study: Tsunami deposit along south coast of Cilacap. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 2nd Transdisciplinary Research on Environmental Problems in Southeast Asia, Bandung, Indonesia, 20–22 September 2017; Volume 71. [Google Scholar]
- Colosio, P.; Tedesco, M.; Tellman, E. Flood Monitoring Using Enhanced Resolution Passive Microwave Data: A Test Case over Bangladesh. Remote Sens. 2022, 14, 1180. [Google Scholar] [CrossRef]
- Tortajada, C.; Rensburg, P. Drink more recycled wastewater. Nature 2020, 577, 26–28. [Google Scholar] [CrossRef] [Green Version]
- Awoke, A.; Beyene, A.; Kloos, H.; Goethals, P.; Triest, L. River water pollution status and water policy scenario in Ethopia: Raising awareness for better implementation in developing countries. Environ. Manag. 2016, 58, 694–706. [Google Scholar] [CrossRef]
- Li, W.-W.; Yu, H.-Q.; Rittmann, B.E. Chemistry: Reuse water pollutants. Nature 2015, 528, 29–31. [Google Scholar] [CrossRef] [Green Version]
- Dehbandi, R.; Abbasnejad, A.; Karimi, Z.; Herath, I.; Bundschuh, J. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Environ. Pollut. 2019, 249, 910–922. [Google Scholar] [CrossRef]
- Buysschaert, B.; Vermijs, L.; Naka, A.; Boon, N.; De Gusseme, B. Online flow cytometric monitoring of microbial water quality in a full-scale water treatment plant. npj Clean Water 2018, 1, 16. [Google Scholar] [CrossRef]
- Lu, R.; Li, W.-W.; Mizaikoff, B.; Katzir, A.; Raichlin, Y.; Sheng, G.-P.; Yu, H.-Q. High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nat. Protoc. 2016, 11, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Modelling of rib channel waveguides based on silicon-on-sapphire at 4.67 um wavelength for evanescent field gas absorption sensor. Optik 2018, 168, 692–697. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. J. Mod. Opt. 2018, 65, 174–178. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A. Evanescent Field Ratio Enhancement of a Modified Ridge Waveguide Structure for Methane Gas Sensing Application. IEEE Sensors J. 2020, 20, 8469–8476. [Google Scholar] [CrossRef]
- Butt, M.A.; Degtyarev, S.A.; Khonina, S.N.; Kazanskiy, N.L. An evanescent field absorption gas sensor at mid-IR 3.39 um wavelength. J. Mod. Opt. 2017, 64, 1892–1897. [Google Scholar] [CrossRef] [Green Version]
- Hwang, R.-B. A theoretical design of evanescent wave biosensors based on gate-controlled graphene surface plasmon resonance. Sci. Rep. 2021, 11, 1999. [Google Scholar] [CrossRef]
- AzarGoshasb, T.; Navid, H.A.; Parvizi, R.; Heidari, H. Evanescent Wave Optical Trapping and Sensing on Polymer Optical Fibers for Ultra-Trace Detection of Glucose. ACS Omega 2020, 5, 22046–22056. [Google Scholar] [CrossRef]
- Mazhorova, A.; Markov, A.; Ng, A.; Chinnappan, R.; Skorobogata, O.; Zourob, M.; Skorobogatiy, M. Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber. Opt. Express 2012, 20, 5344–5355. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.; Robinson, A.; Miller, D.; Davis, M. Overview of Sensors and needs for environmental monitoring. Sensors 2005, 5, 4–37. [Google Scholar] [CrossRef]
- Timmer, B.; Olthuis, W.; Van Den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Han, S.D.; Stetter, J.R. Review of Electrochemical Hydrogen Sensors. Chem. Rev. 2009, 109, 1402–1433. [Google Scholar] [CrossRef] [PubMed]
- Rheaume, J.M.; Pisano, A.P. A review of recent progress in sensing of gas concentration by impedance change. Ionics 2011, 17, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: A review. Microchim. Acta 2016, 183, 1033–1054. [Google Scholar] [CrossRef]
- Jiang, G.; Goledzinowski, M.; Comeau, F.J.E.; Zarrin, H.; Lui, G.; Lenos, J.; Veileux, A.; Liu, G.; Zhang, J.; Hemmati, S.; et al. Free-Standing Functionalized Graphene Oxide Solid Electrolytes in Electrochemical Gas Sensors. Adv. Funct. Mater. 2016, 26, 1729–1736. [Google Scholar] [CrossRef]
- Stetter, J.R.; Li, J. Amperometric Gas SensorsA Review. Chem. Rev. 2008, 108, 352–366. [Google Scholar] [CrossRef]
- Kimmel, D.; LeBlanc, G.; Meschievitz, M.; Cliffel, D. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef] [Green Version]
- Hanrahan, G.; Patil, D.; Wang, J. Electrochemical sensors for environmental monitoring: Design, development and applications. J. Environ. Monit. 2004, 6, 657–664. [Google Scholar] [CrossRef]
- Lu, J.G.; Lee, J.J.; Gino, F.; Galinsky, A.D. Polluted Morality: Air Pollution Predicts Criminal Activity and Unethical Behavior. Psychol. Sci. 2018, 29, 340–355. [Google Scholar] [CrossRef] [Green Version]
- Hautefeuille, M.; O’Flynn, B.; Peters, F.H.; O’Mahony, C. Development of a Microelectromechanical System (MEMS)-Based Multisensor Platform for Environmental Monitoring. Micromachines 2011, 2, 410–430. [Google Scholar] [CrossRef]
- Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.; Garcia-Sanchez, F.; Garcia-Haro, J. Wireless sensor network depolyment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Comput. Electron. Argric. 2011, 75, 288–303. [Google Scholar] [CrossRef]
- Barton, J.; Hynes, G.; O’Flynn, B.; Aherne, K.; Norman, A.; Morrissey, A. 25 mm sensor-actuator layer: A miniature, highly adaptable interface layer. Sens. Actuat. A 2006, 132, 362–369. [Google Scholar] [CrossRef]
- Xu, Z.; Koltsov, D.; Richardson, A.; Le, L.; Begbie, M. Design and simulation of a multi-function MEMS sensor for health and usage monitoring. In Proceedings of the 2010 Prognostics and System Health Management Conference, Macao, China, 12–14 January 2010; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Kazanskiy, N.L.; Karpeev, S.V.; Butt, M.A. Bessel Beam: Significance and Applications—A Progressive Review. Micromachines 2020, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Khonina, S.; Kazanskiy, N. Plasmonics: A Necessity in the Field of Sensing-A Review (Invited). Fiber Integr. Opt. 2021, 40, 14–47. [Google Scholar] [CrossRef]
- Kasinathan, M.; Sosamma, S.; Baburao, C.; Murali, N.; Jayakumar, T. Fiber optic sensors for nuclear power plant applications. AIP Conf. Proc. 2012, 1430, 1013–1020. [Google Scholar] [CrossRef]
- Ferdinand, P.; Magne, S.; Laffont, G. Optical fiber sensors to improve the safety of nuclear power plants. In Proceedings of the Fourth Asia Pacific Optical Sensors Conference, Wuhan, China, 15–18 October 2013. [Google Scholar] [CrossRef]
- Inaudi, D.; Glisic, B. Fiber Optic Sensing for Innovative Oil and Gas Production and Transport Systems. In Proceedings of the Optical Fiber Sensors, Cancun, Mexico, 23–27 October 2006. [Google Scholar] [CrossRef] [Green Version]
- Nadporozhskaya, M.; Kovsh, N.; Paolesse, R.; Lvova, L. Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors 2022, 10, 35. [Google Scholar] [CrossRef]
- Long, F.; Zhu, A.; Shi, H. Recent Advances in Optical Biosensors for Environmental Monitoring and Early Warning. Sensors 2013, 13, 13928–13948. [Google Scholar] [CrossRef]
- Bauerova, P.; Sindelarova, A.; Rychlik, S.; Novak, Z.; Keder, J. Low-cost air quality sensors: One-year field comparative measurement of different gas sensors and particle counters with reference monitors at Tusimice Observatory. Atmosphere 2020, 11, 492. [Google Scholar] [CrossRef]
- Stewart, G.; Jin, W.; Culshaw, B. Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared. Sens. Actuators B Chem. 1997, 38, 42–47. [Google Scholar] [CrossRef]
- Chan, K.; Ito, H.; Inaba, H.; Furuya, T. 10 km-long fibre-optic remote sensing of CH4 gas by near infrared absorption. Appl. Phys. A 1985, 38, 11–15. [Google Scholar] [CrossRef]
- Uehara, K.; Tai, H. Remote detection of methane with a 1.66 micron diode laser. Appl. Opt. 1992, 31, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.; Yamamoto, K.; Uchida, M.; Osawa, S.; Uehara, K. Long distance simultaneous detection of methane and acethylene by using diode lasers coupled with optical fibres. IEEE Photon. Technol. Lett. 1992, 4, 804–807. [Google Scholar] [CrossRef]
- Weldon, V.; O’Gorman, J.; Phelan, P.; Tanbun-Ek, T. Gas sensing with wavelength=1.57 microns distributed feedback laser diodes using overtone and combination band absorption. Opt. Eng. 1994, 33, 3867–3870. [Google Scholar] [CrossRef]
- Wang, G.; Li, S.; An, G.; Wang, X.; Zhao, Y.; Zhang, W. Design of a polarized filtering photonic-crystal fiber with gold-coated air holes. Appl. Opt. 2015, 54, 8817–8820. [Google Scholar] [CrossRef]
- Cui, K.; Zhao, Q.; Feng, X.; Huang, Y.; Li, Y.; Wang, D.; Zhang, W. Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide. Appl. Phys. Lett. 2012, 100, 201102. [Google Scholar] [CrossRef] [Green Version]
- Fasihi, K. High-contrast all-optical controllable switching and routine in nonlinear photonic crystals. J. Light. Technol. 2014, 32, 3126–3131. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Zhang, L.; Shao, Y.; Zhang, F.; Liao, C.; Wang, Y. Tunable Electro-Optical Modulator Based on a Photonic Crystal Fiber Selectively Filled With Liquid Crystal. J. Light. Technol. 2019, 37, 1903–1908. [Google Scholar] [CrossRef]
- Zhang, Z.; Tsuji, Y.; Eguchi, M.; Chen, C. Design of polarization converter based on photonic crystal fiber with anisotropic lattice core consisting of circular holes. J. Opt. Soc. Am. B 2017, 34, 2227–2232. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Li, B.; Cheng, T.; Li, S. Analysis of High Sensitivity Photonic Crystal Fiber Sensor Based on Surface Plasmon Resonance of Refractive Indexes of Liquids. Sensors 2018, 18, 2922. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kaur, V. Photonic crystal fiber sensor based on sensing ring for different blood components: Design and analysis. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 399–403. [Google Scholar] [CrossRef]
- Whitenett, G.; Stewart, G.; Atherton, K.; Culshaw, B.; Johnstone, W. Optical fibre instrumentation for environmental monitoring applications. J. Opt. A Pure Appl. Opt. 2003, 5, S140–S145. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Lehmann, H.; Bartelt, H.; Magalhães, F.; Amezcua-Correa, R.; Santos, J.L.; Van Roosbroeck, J.; Araújo, F.M.; Ferreira, L.A.; Knight, J. Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy. J. Sens. 2009, 2009, 398403. [Google Scholar] [CrossRef]
- Ahmed, F.; Ahsani, V.; Nazeri, K.; Marzband, E.; Bradley, C.; Toyserkani, E.; Jun, M.B.G. Monitoring of Carbon Dioxide Using Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer. Sensors 2019, 19, 3357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-N.; Zhao, Y.; Wang, Q. Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sens. Actuators B Chem. 2015, 209, 431–437. [Google Scholar] [CrossRef]
- Wei, W.; Nong, J.; Zhang, G.; Tang, L.; Jiang, X.; Chen, N.; Luo, S.; Lan, G.; Zhu, Y. Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors 2016, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, Y.; Chen, C.; Bai, B.; Shao, Q.; Wang, H.; Zhang, W.; Chen, C.; Tang, S. Transverse-Stress Compensated Methane Sensor Based on Long-Period Grating in Photonic Crystal Fiber. IEEE Access 2019, 7, 175522–175530. [Google Scholar] [CrossRef]
- Allsop, T.; Arif, R.; Neal, R.; Kalli, K.; Kundrát, V.; Rozhin, A.; Culverhouse, P.; Webb, D. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures. Light. Sci. Appl. 2016, 5, e16036. [Google Scholar] [CrossRef] [PubMed]
- Shanavas, S.; Ahamad, T.; Alshehri, S.M.; Acevedo, R.; Anbarasan, P.M. A facile microwave route for fabrication of NiO/rGO hybrid sensor with efficient CO2 and acetone gas sensing performance using clad modified fiber optic method. Optik 2021, 226, 165970. [Google Scholar] [CrossRef]
- Shivananju, B.N.; Yamdagni, S.; Fazuldeen, R.; Kumar, A.K.S.; Hegde, G.M.; Varma, M.M.; Asokan, S. CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating. Rev. Sci. Instrum. 2013, 84, 065002. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.I.B.; Rocha-Santos, T.A.P.; Duarte, A.C. Optical fiber analyzer for in situ determination of nitrous oxide in workplace environments. J. Environ. Monit. 2009, 11, 852–857. [Google Scholar] [CrossRef]
- Allsop, T.; Al Araimi, M.; Neal, R.; Wang, C.; Culverhouse, P.; Ania-Castañón, J.D.; Webb, D.J.; Davey, P.; Gilbert, J.M.; Rozhin, A. Detection of nitrous oxide using infrared optical plasmonics coupled with carbon nanotubes. Nanoscale Adv. 2020, 2, 4615–4626. [Google Scholar] [CrossRef]
- Yao, C.; Gao, S.; Wang, Y.; Jin, W.; Ren, W. Heterodyne interferometric photothermal spectroscopy for gas detection in a hollow-core fiber. Sens. Actuators B Chem. 2021, 346, 130528. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Lou, W.; Shentu, F. Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide. Sens. Actuators B Chem. 2016, 234, 503–509. [Google Scholar] [CrossRef]
- D’Amato, R.; Polimadei, A.; Terranova, G.; Caponero, M. Humidity Sensing by Chitosan-Coated Fibre Bragg Gratings (FBG). Sensors 2021, 21, 3348. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tian, W.; Zhang, H.; Yu, X.; Yin, X.; Du, Y.; Li, D. An Easily Fabricated High Performance Fabry-Perot Optical Fiber Humidity Sensor Filled with Graphene Quantum Dots. Sensors 2021, 21, 806. [Google Scholar] [CrossRef]
- Ilev, I.; Waynant, R. Mid-Infrared Biomedical Applications. In Mid-Infrared Semiconductor Optoelectronics; A. Krier, Ed.; Springer: London, UK, 2006. [Google Scholar]
- Popa, D.; Udrea, F. Towards Integrated Mid-Infrared Gas Sensors. Sensors 2019, 19, 2076. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Ozanyan, K.B.; McCann, H. A spectroscopic study for detection of carbon-monoxide using mid-infrared techniques for single-pass measurement. J. Phys. Conf. Ser. 2007, 85, 012020. [Google Scholar] [CrossRef]
- Siebert, R.; Müller, J. Infrared integrated optical evanescent field sensor for gas analysis: Part I: System design. Sens. Actuators A Phys. 2005, 119, 138–149. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Li, L.; Yu, J. Review-electrochemical NOx gas sensors based on stabilized zinconia. J. Electrochem. Soc. 2017, 164, B610–B619. [Google Scholar] [CrossRef]
- Avetisov, V.; Bjoroey, O.; Wang, J.; Geiser, P.; Paulsen, K.G. Hydrogen Sensor Based on Tunable Diode Laser Absorption Spectroscopy. Sensors 2019, 19, 5313. [Google Scholar] [CrossRef] [Green Version]
- Zampolli, S.; Elmi, I.; Stürmann, J.; Nicoletti, S.; Dori, L.; Cardinali, G. Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column. Sens. Actuators B Chem. 2005, 105, 400–406. [Google Scholar] [CrossRef]
- Consani, C.; Ranacher, C.; Tortschanoff, A.; Grille, T.; Irsigler, P.; Jakoby, B. Evanescent-Wave Gas Sensing Using an Integrated Thermal Light Source. Multidiscip. Digit. Publ. Inst. Proc. 2017, 1, 550. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Zhang, J.; Yang, K.; Zhu, Y.; Lu, Q.; Zhuo, N.; Zhai, S.; Liu, J.; Wang, L.; Liu, S.; et al. Monolithically integrated mid-infrared sensor with a millimeter-scale sensing range. Opt. Express. 2022, 30, 40657–40665. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Khonina, S.; Kazanskiy, N. Optical elements based on silicon photonics. Comput. Opt. 2019, 43, 1079–1083. [Google Scholar] [CrossRef]
- Khijwania, S.; Gupta, B. Fiber optic evanescent field absorption sensor: Effect of fiber parameters and geometry of the probe. Opt. Quantum Electron. 1999, 31, 625–636. [Google Scholar] [CrossRef]
- Gupta, B.D.; Singh, C.D. Fiber-optic evanescent field absorption sensor: A theoretical evaluation. Fiber Integr. Opt. 1994, 13, 433–443. [Google Scholar] [CrossRef]
- Ranacher, C.; Consani, C.; Hedenig, U.; Grille, T.; Lavchiev, V.; Jakoby, B. A photonic silicon waveguide gas sensor using evanescent-wave absorption. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor. Photon-Sensors 2021, 11, 279–290. [Google Scholar] [CrossRef]
- Kazanskiy, N.; Butt, M.; Degtyarev, S.; Khonina, S. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index. Comput. Opt. 2020, 44, 295–318. [Google Scholar] [CrossRef]
- Vlk, M.; Datta, A.; Alberti, S.; Yallew, H.D.; Mittal, V.; Murugan, G.S.; Jágerská, J. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci. Appl. 2021, 10, 26. [Google Scholar] [CrossRef]
- Maimaiti, A.; Abdurahman, R.; Kari, N.; Ma, Q.-R.; Wumaier, K.; Nizamidin, P.; Abliz, S.; Yimit, A. Highly sensitive optical waveguide sensor for SO2 and H2S detection in the parts-per-trillion regime using tetraaminophenyl porphyrin. J. Mod. Opt. 2020, 67, 507–514. [Google Scholar] [CrossRef]
- Xie, K.-H.; Zhang, X.; Zhang, X.-W.; Jin, H.; Jian, J.-W. A slot microring sensor with feedback spiral waveguide for trace gas CH4 sensing in mid-infrared region. Optoelectron. Lett. 2019, 15, 1–5. [Google Scholar] [CrossRef]
- Mi, G.; Horvath, C.; Aktary, M.; Van, V. Silicon microring refractometric sensor for atmospheric CO2 gas monitoring. Opt. Express 2016, 24, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Kalyoncu, S.; Zhao, Q.; Torun, R.; Boyraz, O. Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors. Opt. Commun. 2014, 313, 186–194. [Google Scholar] [CrossRef]
- Butt, N.; Kazanskiy, N. SOI Suspended membrane waveguide at 3.39 µm for gas sensing application. Photonics Lett. Pol. 2020, 12, 67–69. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, C.; Pi, M.; Liang, L.; Song, F.; Zhang, Y.; Wang, Y.; Tittel, F.K. On-chip mid-infrared silicon-on-insulator waveguide methane sensor using two measurement schemes at 3.291 μm. Front. Chem. 2022, 10, 1024. [Google Scholar] [CrossRef] [PubMed]
- Zegadi, R.; Lorrain, N.; Bodiou, L.; Guendouz, M.; Ziet, L.; Charrier, J. Enhanced mid-infrared gas absorption spectroscopic detection using chalcogenide or porous germanium waveguides. J. Opt. 2021, 23, 035102. [Google Scholar] [CrossRef]
- Gray, N. Water Technology, 3rd ed.; CRC Press: London, UK, 2017. [Google Scholar]
- Davis, M.; Masten, S. Principles of Environmental Engineering and Science; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Chatterjee, A. Water Supply Waste Disposal and Environmental Pollution Engineering (Including Odour, Noise and Air Pollution and Its Control), 7th ed.; Khanna Publishers: Delhi, India, 2001. [Google Scholar]
- Gauglitz, G. Optical Sensors in Water Monitoring. In Proceedings of the Biophotonics 2007: Optics in Life Science, Proceedings SPIE-OSA Biomedical Optics, Munich, Germany, 13 July 2007; Volume 6633. [Google Scholar]
- Fadaie, S.; Mehravar, M.; Webb, D.J.; Zhang, W. Nearshore Contamination Monitoring in Sandy Soils Using Polymer Optical Fibre Bragg Grating Sensing Systems. Sensors 2022, 22, 5213. [Google Scholar] [CrossRef]
- Jderu, A.; Dorobantu, D.; Ziegler, D.; Enachescu, M. Swelling-Based Chemical Sensing with Unmodified Optical Fibers. Photon. Sensors 2022, 12, 99–104. [Google Scholar] [CrossRef]
- Teng, P.; Jiang, Y.; Chang, X.; Shen, Y.; Liu, Z.; Copner, N.; Yang, J.; Li, K.; Bowkett, M.; Yuan, L.; et al. Highly sensitive on-line detection of trace Pb2+ based on tapered fiber integrated with black phosphorus. Opt. Fiber Technol. 2021, 66, 102668. [Google Scholar] [CrossRef]
- Dorobantu, D.; Jderu, A.; Enachescu, M.; Ziegler, D. Fabrication of Optical Fibers with Multiple Coatings for Swelling-Based Chemical Sensing. Micromachines 2021, 12, 941. [Google Scholar] [CrossRef]
- Herranz, S.; Bocková, M.; Marazuela, M.D.; Homola, J.; Moreno-Bondi, M.C. An SPR biosensor for the detection of microcystins in drinking water. Anal. Bioanal. Chem. 2010, 398, 2625–2634. [Google Scholar] [CrossRef]
- Murphy, K.; Heery, B.; Sullivan, T.; Zhang, D.; Paludetti, L.; Lau, K.T.; Diamond, D.; Costa, E.; O’connor, N.; Regan, F. A low-cost autonomous optical sensor for water quality monitoring. Talanta 2015, 132, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Zhong, N.; Zhao, X.; Ma, S.; Fu, X.; Dong, D. Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water. TrAC Trends Anal. Chem. 2020, 127, 115892. [Google Scholar] [CrossRef]
- Kao, K.; Hockham, G. Dielectric-fibre surface waveguides for optical frequencies. Proc. IEEE 1966, 113, 115–158. [Google Scholar] [CrossRef] [Green Version]
- Pospíšilová, M.; Kuncová, G.; Trögl, J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef] [PubMed]
- Zajíc, J.; Ripp, S.; Trögl, J.; Kuncová, G.; Pospíšilová, M. Repetitive Detection of Aromatic Hydrocarbon Contaminants with Bioluminescent Bioreporters Attached on Tapered Optical Fiber Elements. Sensors 2020, 20, 3237. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.F.S.; Castro-Camus, E.; Ottaway, D.J.; Lopez-Higuera, J.M.; Feng, X.; Jin, W.; Jeong, Y.; Picqué, N.; Tong, L.; Reinhard, B.M.; et al. Roadmap on optical sensors. J. Opt. 2017, 19, 083001. [Google Scholar] [CrossRef]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Li, T.; Wu, D.; Khyam, M.O.; Guo, J.; Tan, Y.; Zhou, Z. Recent Advances and Tendencies Regarding Fiber Optic Sensors for Deformation Measurement: A Review. IEEE Sensors J. 2020, 22, 2962–2973. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Wang, J.; Li, F. A High Spatial Resolution FBG Sensor Array for Measuring Ocean Temperature and Depth. Photon. Sens. 2020, 10, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.; Bierlich, J.; Kobelke, J.; Pereira, V.; Ferreira, M.S. Optical Fiber Sensor for Monitoring the Evaporation of Ethanol–Water Mixtures. Sensors 2022, 22, 5498. [Google Scholar] [CrossRef]
- Kumari, C.U.; Samiappan, D.; Kumar, R.; Sudhakar, T. Fiber optic sensors in ocean observation: A comprehensive review. Optik 2018, 179, 351–360. [Google Scholar] [CrossRef]
- De Boer, A.M.; Sigman, D.M.; Toggweiler, J.R.; Russell, J.L. Effect of global ocean temperature change on deep ocean ventilation. Paleoceanography 2007, 22, PA2210. [Google Scholar] [CrossRef] [Green Version]
- Swift, C.T.; Mcintosh, R.E. Considerations for Microwave Remote Sensing of Ocean-Surface Salinity. IEEE Trans. Geosci. Remote Sens. 1983, 4, 480–491. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podestá, G.P.; Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. Space Phys. 2001, 106, 9179–9197. [Google Scholar] [CrossRef]
- What is Argo? Available online: http://argo.ucsd.edu/ (accessed on 20 October 2022).
- Zhang, D.; Wang, J.; Wang, Y.; Dai, X. A fast response temperature sensor based on fiber Bragg grating. Meas. Sci. Technol. 2014, 25, 075105. [Google Scholar] [CrossRef]
- Ameen, O.F.; Younus, M.H.; Aziz, M.; Azmi, A.I.; Ibrahim, R.R.; Ghoshal, S. Graphene diaphragm integrated FBG sensors for simultaneous measurement of water level and temperature. Sens. Actuators A Phys. 2016, 252, 225–232. [Google Scholar] [CrossRef]
- Zhang, S.; Mei, Y.; Xia, T.; Cao, Z.; Liu, Z.; Li, Z. Simultaneous Measurement of Temperature and Pressure Based on Fabry-Perot Interferometry for Marine Monitoring. Sensors 2022, 22, 4979. [Google Scholar] [CrossRef]
- Azil, K.; Ferria, K.; Bouzid, S. Cladless optical fiber sensor based on evanescent wave absorption for monitoring methylene blue induced water pollution. J. Opt. Soc. Am. B 2020, 37, A253. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Wilkinson, J.S.; Hua, P.; Song, B.; Shi, H. Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes: Optimization and Analysis. Sci. Rep. 2017, 7, 3655. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.C.; Blackburn, G.J.; Guallar-Hoyas, C.; Moll, V.H.; Bocos-Bintintan, V.; Kaur-Atwal, G.; Howdle, M.D.; Harry, E.L.; Brown, L.J.; Creaser, C.S.; et al. Detection of Volatile Organic Compounds in Breath Using Thermal Desorption Electrospray Ionization-Ion Mobility-Mass Spectrometry. Anal. Chem. 2010, 82, 2139–2144. [Google Scholar] [CrossRef] [Green Version]
- Dewulf, J.; Van Langenhove, H.; Wittmann, G. Analysis of volatile organic compounds using gas chromatography. TrAC Trends Anal. Chem. 2002, 21, 637–646. [Google Scholar] [CrossRef]
- Alwis, K.U.; Blount, B.C.; Britt, A.S.; Patel, D.; Ashley, D.L. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal. Chim. Acta 2012, 750, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, I.; Koley, G. Dual channel microcantilever heaters for selective detection and quantification of a generic mixture of volatile organic compounds. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Leidinger, M.; Sauerwald, T.; Reimringer, W.; Ventura, G.; Schütze, A. Selective detection of hazardous VOCs for indoor air quality applications using a virtual gas sensor array. J. Sensors Sens. Syst. 2014, 3, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Kanda, K.; Maekawa, T. Development of a WO3 thick-film-based sensor for the detection of VOC. Sens. Actuators B Chem. 2005, 108, 97–101. [Google Scholar] [CrossRef]
- Stegmeier, S.; Fleischer, M.; Hauptmann, P. Thermally activated platinum as VOC sensing material for work function type gas sensors. Sens. Actuators B Chem. 2010, 144, 418–424. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, J.G. Chemical Sensing with ZnO Nanowire. In Proceedings of the 5th IEEE Conference on Nanotechnology, Nagoya, Japan, 5–15 July 2005. [Google Scholar] [CrossRef]
- Janeiro, R.; Flores, R.; Viegas, J. Silicon photonics waveguide array sensor for selective detection of VOCs at room temperature. Sci. Rep. 2019, 9, 17099. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Al Husseini, D.; Li, J.; Lin, Z.; Sukhishvili, S.; Coté, G.L.; Gutierrez-Osuna, R.; Lin, P.T. Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors. Sci. Rep. 2022, 12, 5572. [Google Scholar] [CrossRef]
- Fernández, F.; Hegnerová, K.; Piliarik, M.; Sanchez-Baeza, F.; Homola, J.; Marco, M.-P. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens. Bioelectron. 2010, 26, 1231–1238. [Google Scholar] [CrossRef]
- Elosua, C.; Matias, I.R.; Bariain, C.; Arregui, F.J. Volatile Organic Compound Optical Fiber Sensors: A Review. Sensors 2006, 6, 1440–1465. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-S.; Han, Y.; Joo, K.-I.; Lee, Y.W.; Kang, S.-W.; Kim, H.-R. Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating. Opt. Express 2010, 18, 24753–24761. [Google Scholar] [CrossRef]
- Schweizer, G.; Latka, I.; Lehmann, H.; Willsch, R. Optical sensing of hydrocarbons in air or in water using UV absorption in the evanescent field of fibers. Sens. Actuators B Chem. 1997, 38, 150–153. [Google Scholar] [CrossRef]
- Shadaram, M.; Espada, L.; Martinez, J.; Garcia, F. Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors. Opt. Eng. 1998, 37, 1124. [Google Scholar] [CrossRef]
- Barmenkov, Y.O.; Ortigosa-Blanch, A.; Diez, A.; Cruz, J.L.; Andrés, M.V. Time-domain fiber laser hydrogen sensor. Opt. Lett. 2004, 29, 2461–2463. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, S.; Bourbonnais, R.; Gonthier, F.; Bures, J. Tapered monomode optical fibers: Understanding large power transfer. Appl. Opt. 1986, 25, 4421–4425. [Google Scholar] [CrossRef] [PubMed]
- Willer, U.; Scheel, D.; Kostjucenko, I.; Bohling, C.; Schade, W.; Faber, E. Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2002, 58, 2427–2432. [Google Scholar] [CrossRef]
- Topliss, S.; James, S.; Davis, F.; Higson, S.; Tatam, R. Optical fibre long period grating based selective vapour sensing of volatile organic compounds. Sens. Actuators B Chem. 2010, 143, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Konstantaki, M.; Skiani, D.; Vurro, D.; Cucinotta, A.; Selleri, S.; Secchi, A.; Iannotta, S.; Pissadakis, S. Silk Fibroin Enabled Optical Fiber Methanol Vapor Sensor. IEEE Photon. Technol. Lett. 2020, 32, 514–517. [Google Scholar] [CrossRef]
- Boilot, P.; Hines, E.; Gongora, M.; Folland, R. Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. Sens. Actuators B Chem. 2003, 88, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Mechery, S.J.; Singh, J.P. Fiber optic based gas sensor with nanoporous structure for the selective detection of NO2 in air samples. Anal. Chim. Acta 2006, 557, 123–129. [Google Scholar] [CrossRef]
- Giordano, M.; Russo, M.; Cusano, A.; Mensitieri, G. An high sensitivity optical sensor for chloroform vapours detection based on nanometric film of δ-form syndiotactic polystyrene. Sens. Actuators B Chem. 2005, 107, 140–147. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y.; Sucheta, A.; Evans, M.K.; Van Tassell, R. Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring. Adv. Sens. Syst. Appl. 2002, 4920, 193–205. [Google Scholar] [CrossRef]
- Okazaki, S.; Nakagawa, H.; Asakura, S.; Tomiuchi, Y.; Tsuji, N.; Murayama, H.; Washiya, M. Sensing characteristics of an optical fiber sensor for hydrogen leak. Sens. Actuators B Chem. 2003, 93, 142–147. [Google Scholar] [CrossRef]
- Dickinson, T.A.; Michael, K.L.; Kauer, J.S.; Walt, D.R. Convergent, Self-Encoded Bead Sensor Arrays in the Design of an Artificial Nose. Anal. Chem. 1999, 71, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zeng, L.; Du, H.; Dong, X.; Chang, Z.; Hu, Y.; Duan, J. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings. Opt. Laser Technol. 2020, 124, 105969. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Fiber-Bragg-grating-assisted surface plasmon-polariton sensor. Opt. Lett. 2006, 31, 2118–2120. [Google Scholar] [CrossRef]
- Savin, S.; Digonnet, M.J.F.; Kino, G.S.; Shaw, H.J. Tunable mechanically induced long-period fiber gratings. Opt. Lett. 2000, 25, 710–712. [Google Scholar] [CrossRef]
- Arregui, F.; Claus, R.; Cooper, K.; Fernandez-Valdivielso, C.; Matias, I. Optical fiber gas sensor based on self-assembled gratings. J. Light Technol. 2001, 19, 1932–1937. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, K.; Kohnke, G.E. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Phys. Today 2000, 53, 61–62. [Google Scholar] [CrossRef] [Green Version]
- Hromadka, J.; Tokay, B.; Correia, R.; Morgan, S.; Korposh, S. Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8. Sens. Actuators B Chem. 2018, 260, 685–692. [Google Scholar] [CrossRef]
- Barnes, J.; Dreher, M.; Plett, K.; Brown, R.S.; Crudden, C.M.; Loock, H.-P. Chemical sensor based on a long-period fibre grating modified by a functionalized polydimethylsiloxane coating. Analyst 2008, 133, 1541–1549. [Google Scholar] [CrossRef] [Green Version]
- Corotti, R.D.P.; Cunha, B.B.; Barreto, R.C.; Conceicao, A.L.C.; Kamikawachi, R.C. Diphenylalanine Nanotube Coated Fiber Bragg Grating for Methanol Vapor Detection. IEEE Sens. J. 2020, 20, 1290–1296. [Google Scholar] [CrossRef]
- Konstantaki, M.; Klini, A.; Anglos, D.; Pissadakis, S. An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating. Opt. Express 2012, 20, 8472–8484. [Google Scholar] [CrossRef] [PubMed]
- Latino, M.; Montanini, R.; Donato, N.; Neri, G. Ethanol Sensing Properties of PMMA-Coated Fiber Bragg Grating. Procedia Eng. 2012, 47, 1263–1266. [Google Scholar] [CrossRef]
- Lowder, T.L.; Gordon, J.D.; Schultz, S.M.; Selfridge, R.H. Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer. Opt. Lett. 2007, 32, 2523–2525. [Google Scholar] [CrossRef] [PubMed]
- González-Vila, A.; Debliquy, M.; Lahem, D.; Zhang, C.; Mégret, P.; Caucheteur, C. Molecularly imprinted electropolymerization on a metal-coated optical fiber for gas sensing applications. Sens. Actuators B Chem. 2017, 244, 1145–1151. [Google Scholar] [CrossRef]
- Rodríguez-Garciapiña, J.; Beltrán-Pérez, G.; Castillo-Mixcóatl, J.; Muñoz-Aguirre, S. Application of the principal components analysis technique to optical fiber sensors for acetone detection. Opt. Laser Technol. 2021, 143, 107314. [Google Scholar] [CrossRef]
- Wales, D.J.; Parker, R.M.; Quainoo, P.; Cooper, P.A.; Gates, J.C.; Grossel, M.C.; Smith, P.G. An integrated optical Bragg grating refractometer for volatile organic compound detection. Sens. Actuators B Chem. 2016, 232, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Khanna, A.; Majumdar, S. Disaster management in flash floods in Leh (Ladakh): A case study. Indian J. Community Med. 2012, 37, 185–190. [Google Scholar] [CrossRef]
- Magnan, A.K.; Pörtner, H.-O.; Duvat, V.K.E.; Garschagen, M.; Guinder, V.A.; Zommers, Z.; Hoegh-Guldberg, O.; Gattuso, J.-P. Estimating the global risk of anthropogenic climate change. Nat. Clim. Chang. 2021, 11, 879–885. [Google Scholar] [CrossRef]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.B.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Huang, W.; Zhao, B.; Zhang, J.; Li, Z.; Li, L.; Li, F. Fiber optic jerk sensor in monitoring earthquake response of high-rise building. In Proceedings of the 27th International Conference on Optical Fiber Sensors, Alexandria, VA, USA, 8 June 2020. Paper No. Th4.15. [Google Scholar] [CrossRef]
- Yang, C.; Chen, S.; Yang, G. Fiber optical liquid level sensor under cryogenic environment. Sens. Actuators A 2001, 94, 69–75. [Google Scholar] [CrossRef]
- Vázquez, C.; Gonzalo, A.; Vargas, S.; Montalvo, J. Multi-sensor system using plastic optical fibers for intrinsically safe level measurements. Sens. Actuators A Phys. 2004, 116, 22–32. [Google Scholar] [CrossRef]
- Iwamoto, K.; Kamata, I. Liquid-level sensor with optical fibers. Appl. Opt. 1992, 31, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Pitt, G. Fiber optic sensors. Electron. Commun. 1982, 57, 102–106. [Google Scholar]
- Raatikainen, P.; Kassamakov, I.; Kakanakov, R.; Luukkala, M. Fiber-optic liquid-level sensor. Sens. Actuators A Phys. 1997, 58, 93–97. [Google Scholar] [CrossRef]
- Wang, A.; Gunther, M.F.; Murphy, K.A.; Claus, R.O. Fiber-optic liquid-level sensor. Sens. Actuators A Phys. 1992, 35, 161–164. [Google Scholar] [CrossRef]
- Bottacini, M.; Burani, N.; Foroni, M.; Poli, F.; Selleri, S. All-plastic optical-fiber level sensor. Microw. Opt. Technol. Lett. 2005, 46, 520–522. [Google Scholar] [CrossRef]
- Sharma, M.; Brooks, R. Fiber-optic sensing in cryogenic environments. In Proceedings of the SPIE Conference on Fiber Optics for Communications and Control, Washington, DC, USA, 8–9 April 1980; Volume 224, pp. 46–52. [Google Scholar]
- Spenner, K.; Singh, M.; Schult, H.; Boehnel, H. Experimental investigation of fiber optic liquid level sensors and refractometers. In Proceedings of the OFS 1, London, UK, 26–28 April 1983; Volume 1, pp. 96–99. [Google Scholar]
- Khijwania, S.; Gupta, B. Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe. Opt. Commun. 2000, 175, 135–137. [Google Scholar] [CrossRef]
- Otsuki, S.; Adachi, K.; Taguchi, T. A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection. Sens. Actuators B Chem. 1998, 53, 91–96. [Google Scholar] [CrossRef]
- Kuang, K.S.C.; Quek, S.T.; Maalej, M. Remote flood monitoring system based on plastic optical fibres and wireless motes. Sens. Actuators A Phys. 2008, 147, 449–455. [Google Scholar] [CrossRef]
- Zhan, Z.; Cantono, M.; Kamalov, V.; Mecozzi, A.; Müller, R.; Yin, S.; Castellanos, J.C. Optical polarization–based seismic and water wave sensing on transoceanic cables. Science 2021, 371, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Dunkerley, D. Acoustic methods in geophysics. Preview 2022, 2022, 42–47. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Coelho, L.; Barbosa, S.M.; Guimarães, D. Development of a New System for Real-Time Detection of Radon Using Scintillating Optical Fibers. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018; p. WD5. [Google Scholar] [CrossRef]
- Fernandez, R.; Maria, R. Distributed acoustic sensing for seismic activity monitoring. APL Photonics 2020, 5, 030901. [Google Scholar] [CrossRef]
- Bogris, A.; Nikas, T.; Simos, C.; Simos, I.; Lentas, K.; Melis, N.; Fichtner, A.; Bowden, D.; Smolinski, K.; Mesaritakis, C.; et al. Sensitive seismic sensors based on microwave frequency fiber interferometers in commercially deployed cables. Sci. Rep. 2022, 12, 14000. [Google Scholar] [CrossRef]
- Allil, R.C.S.B.; Lima, L.A.C.; Allil, A.S.; Werneck, M.M. FBG-Based Inclinometer for Landslide Monitoring in Tailings Dams. IEEE Sens. J. 2021, 21, 16670–16680. [Google Scholar] [CrossRef]
- Wang, W.; Xue, X.; Chen, W.; Xue, X. Study on the characteristic mechanisms of infrasonic precursors during the damage process of impending earthquake sources. PLoS ONE 2021, 16, e0257345. [Google Scholar] [CrossRef]
- Liu, D.-L.; Leng, X.-P.; Wei, F.-Q.; Zhang, S.-J.; Hong, Y. Monitoring and recognition of debris flow infrasonic signals. J. Mt. Sci. 2015, 12, 797–815. [Google Scholar] [CrossRef]
- Schenato, L.; Palmieri, L.; Camporese, M.; Bersan, S.; Cola, S.; Pasuto, A.; Galtarossa, A.; Salandin, P.; Simonini, P. Distributed optical fibre sensing for early detection of shallow landslides triggering. Sci. Rep. 2017, 7, 14686. [Google Scholar] [CrossRef] [Green Version]
- Weber, S.; Faillettaz, J.; Meyer, M.; Beutel, J.; Vieli, A. Acoustic and microseismic characterization in steep bedrock permafrost on Matterhorn (CH). J. Geophys. Res. Earth Surf. 2018, 123, 1363–1385. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Saito, O.; Okabe, Y. An ultrasonic visualization system using a fiber-optic Bragg grating sensor and its application to damage detection at a temperature of 1000 °C. Mech. Syst. Signal Process. 2021, 147, 107140. [Google Scholar] [CrossRef]
- Ouyang, B.; Haverdings, M.; Horsten, R.; Kruidhof, M.; Kat, P.; Caro, J. Integrated photonics interferometric interrogator for a ring-resonator ultrasound sensor. Opt. Express 2019, 27, 23408–23421. [Google Scholar] [CrossRef] [PubMed]
- Rodal, Y.; Shemer, A.; Schwarz, A.; Ozana, N.; Zafrir, H.; Zalevsky, Z. Usage of fiber optics as an underground deployable radon gas detector. OSA Contin. 2021, 4, 3026. [Google Scholar] [CrossRef]
- Jousset, P.; Currenti, G.; Schwarz, B.; Chalari, A.; Tilmann, F.; Reinsch, T.; Zuccarello, L.; Privitera, E.; Krawczyk, C.M. Fibre optic distributed acoustic sensing of volcanic events. Nat. Commun. 2022, 13, 1753. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Xie, W.; Min, L.; Cai, S.; Chen, X.; Guo, T. Optical Fiber Sensing System for Online Monitoring Wind-induced Vibration on Power Transmission Tower Survey. In Proceedings of the Asia Communications and Photonics Conference, Hangzhou China, 26–29 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Briggs, M.A.; Lautz, L.K.; McKenzie, J.M. A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrol. Process. 2012, 26, 1277–1290. [Google Scholar] [CrossRef]
- Bense, V.F.; Read, T.; Bour, O.; Le Borgne, T.; Coleman, T.; Krause, S.; Chalari, A.; Mondanos, M.; Ciocca, F.; Selker, J.S. Distributed Temperature Sensing as a downhole tool in hydrogeology. Water Resour. Res. 2016, 52, 9259–9273. [Google Scholar] [CrossRef] [Green Version]
- Hurtig, E.; Großwig, S.; Jobmann, M.; Kühn, K.; Marschall, P. Fibre-optic temperature measurements in shallow boreholes: Experimental application for fluid logging. Geothermics 1994, 23, 355–364. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, Y.; Wu, Q.-L.; Yang, Y. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuators B Chem. 2017, 260, 86–105. [Google Scholar] [CrossRef]
- Palmieri, L.; Schenato, L. Distributed optical fiber sensing based on Rayleigh scattering. Open Opt. J. 2013, 7, 104–127. [Google Scholar] [CrossRef]
Material for Selective Sensing | Gas Detection | Sensitivity | LOD (%) | Range (%) | References |
---|---|---|---|---|---|
Crytophane E | Methane | −1.6 nm/% | 0.06 | 0–5 | [59] |
Graphene + Ag | Methane | 0.34 nm/% | 0.1 | 0–3.5 | [60] |
Crytophane A | Methane | 6.39 nm/% | 0.015 | 0–3.5 | [61] |
Carbon nanotubes | Carbon dioxide | 0.04 nm/% | 0.05 | 0–100 | [62] |
Nickel oxide and reduced graphene oxide | Carbon dioxide | 1400 a.u/% | 0.0005 | 0–0.05 | [63] |
Carbon nanotubes and polyallylamine | Carbon dioxide | 0.1 nm/% | 0.01 | 0.1–0.4 | [64] |
Divinylbenzne and siloxane polymer | Nitrous oxides | 5 × 107 dB/% | 107 | 0–1.8 × 10−6 | [65] |
Carbon nanotubes, polyethyleneimine, Au | Nitrous oxides | 0.05 nm/% | 0.0109 | 0–100 | [66] |
Nitrous oxides | 82 μV/% | 0.001 | 0–2.5 | [67] | |
Graphene oxide | Water vapor | 0.349 dB/% | 0.2 | 30–77 | [68] |
Chitosan | Water vapor | 0.107 nm/% | 0.1 | 30–77 | [69] |
Graphene quantum dots | Water vapor | 0.567 nm/% | 0.05 | 11–85 | [70] |
Platform | Sensing Mechanism | Waveguide Type | Target Gas | Wavelength (μm) | Reference |
---|---|---|---|---|---|
SOI | Evanescent field absorption | Strip, rib, slot | Carbon dioxide | 4.23 | [90] |
SOI | Evanescent field absorption | Hybrid plasmonic | Methane | 3.392 | [16] |
SOI | Evanescent field absorption | Suspended membrane | Methane | 3.39 | [91] |
SOS | Evanescent field absorption | Rib | Carbon monoxide | 4.67 | [14] |
SOI | Evanescent field absorption | Strip | Methane | 3.39 | [17] |
SOI | Evanescent field absorption | Ridge | Methane | 3.291 | [92] |
Chalcogenide or porous germanium | Evanescent field absorption | Ridge | Carbon dioxide and methane | 4.7 and 7.7 | [93] |
Biological Parameters | Chemical Parameters | Physical Parameters |
---|---|---|
Bacteria | Acidity | Temperature |
Algae | Alkalinity | Color |
Viruses | Chloride | Odor |
Protozoa | pH | Taste |
Hardness | Electrical conductivity | |
Fluoride | Turbidity | |
Copper and Zinc | ||
Radioactive substances | ||
Toxic (organic or inorganic) substances | ||
Dissolved oxygen |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, M.A.; Voronkov, G.S.; Grakhova, E.P.; Kutluyarov, R.V.; Kazanskiy, N.L.; Khonina, S.N. Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors. Biosensors 2022, 12, 1038. https://doi.org/10.3390/bios12111038
Butt MA, Voronkov GS, Grakhova EP, Kutluyarov RV, Kazanskiy NL, Khonina SN. Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors. Biosensors. 2022; 12(11):1038. https://doi.org/10.3390/bios12111038
Chicago/Turabian StyleButt, Muhammad A., Grigory S. Voronkov, Elizaveta P. Grakhova, Ruslan V. Kutluyarov, Nikolay L. Kazanskiy, and Svetlana N. Khonina. 2022. "Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors" Biosensors 12, no. 11: 1038. https://doi.org/10.3390/bios12111038
APA StyleButt, M. A., Voronkov, G. S., Grakhova, E. P., Kutluyarov, R. V., Kazanskiy, N. L., & Khonina, S. N. (2022). Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors. Biosensors, 12(11), 1038. https://doi.org/10.3390/bios12111038