Effects of Boric Acid and Storage Temperature on the Analysis of Microalbumin Using Aptasensor-Based Fluorescent Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Urine Sample Collection and Processing
2.3. In Silico Protease Digestion Study of Subdomain IIIB of the HSA Protein
2.4. Optimization of Aptamer Concentration
2.5. Performance of HSA Analysis Using GO-Based Fluorescent Assay
2.6. Determination of HSA in Pooled Urine Samples Using the Standard Method
2.7. Data Analysis
3. Results and Discussions
3.1. In Silico Protease Digestion of HSA Subdomain IIIB
3.2. Characteristics and Performance of the GO-Based Fluorescent Assay
3.3. Effects of Boric Acid Preservative, Storage Temperature, and Freeze–Thawing on Urine Microalbumin Stability
3.3.1. Effect of Short-Term Storage on Urine Microalbumin Stability
3.3.2. Effect of Long-Term Storage Conditions on the Stability of Microalbumin
3.3.3. Effect of the Freeze–Thawing Cycle on the Stability of Urine Microalbumin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moman, R.N.; Gupta, N.; Varacallo, M. Physiology, Albumin; StatPearls Publishing: Treasure Island, FL, USA. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459198/ (accessed on 15 September 2021).
- Paar, M.; Rossmann, C.; Nusshold, C.; Wagner, T.; Schlagenhauf, A.; Leschnik, B.; Oettl, K.; Koestenberger, M.; Cvirn, G.; Hallström, S. Anticoagulant action of low, physiologic, and high albumin levels in whole blood. PLoS ONE 2017, 12, e0182997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, M.F.; Temte, J.L. Proteinuria in adults: A diagnostic approach. Am. Fam. Physician 2000, 62, 1333–1340. [Google Scholar] [PubMed]
- Hong, D.S.C.; Oh, I.H.; Park, J.-S.; Lee, C.H.; Kang, C.M.; Kim, G.-H. Evaluation of Urinary Indices for Albuminuria and Proteinuria in Patients with Chronic Kidney Disease. Kidney Blood Press. Res. 2016, 41, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Tsui, J.I.; Vittinghoff, E.; Shlipak, M.G.; O’Hare, A.M. Relationship between Hepatitis C and Chronic Kidney Disease: Results from the Third National Health and Nutrition Examination Survey. J. Am. Soc. Nephrol. 2006, 17, 1168–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, K.; Lin, D.; Li, F.; Qi, Y.; Feng, W.; Yan, L.; Chen, C.; Ren, M.; Liu, D. Fatty liver index, albuminuria and the association with chronic kidney disease: A population-based study in China. BMJ Open 2018, 8, e019097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koroshi, A. Microalbuminuria, is it so important? Hippokratia 2007, 11, 105–107. [Google Scholar] [PubMed]
- Yang, C.-J.; Chen, D.-P.; Wen, Y.-H.; Lai, N.-C.; Ning, H.-C. Evaluation the diagnostic accuracy of albuminuria detection in semi-quantitative urinalysis. Clin. Chim. Acta 2020, 510, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Busby, D.E.; Bakris, G.L. Comparison of Commonly Used Assays for the Detection of Microalbuminuria. J. Clin. Hypertens. 2004, 6 (Suppl. S3), 8–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitekenov, S.; Gaipov, A.; Bukasov, R. Review: Detection and quantification of proteins in human urine. Talanta 2020, 223, 121718. [Google Scholar] [CrossRef] [PubMed]
- Kania, K.; Byrnes, E.A.; Beilby, J.P.; Webb, S.A.R.; Strong, K.J. Urinary proteases degrade albumin: Implications for measurement of albuminuria in stored samples. Ann. Clin. Biochem. Int. J. Lab. Med. 2010, 47, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, S.; Cairns, D.A.; Jackson, D.; Craven, R.A.; Riley, B.; Hutchinson, M.; Wood, S.; Smith, M.W.; Thompson, D.; Banks, R.E. An analysis of the impact of pre-analytical factors on the urine proteome: Sample processing time, temperature, and proteolysis. Proteom.–Clin. Appl. 2015, 9, 507–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giesen, C.; Lieske, J.C. The Influence of Processing and Storage Conditions on Renal Protein Biomarkers. Clin. J. Am. Soc. Nephrol. 2016, 11, 1726–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrington, W.; Illingworth, N.; Staplin, N.; Kumar, A.; Storey, B.; Hrusecka, R.; Judge, P.; Mahmood, M.; Parish, S.; Landray, M.; et al. Effect of Processing Delay and Storage Conditions on Urine Albumin-to-Creatinine Ratio. Clin. J. Am. Soc. Nephrol. 2016, 11, 1794–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawjiraphan, W.; Apiwat, C.; Segkhoonthod, K.; Treerattrakoon, K.; Pinpradup, P.; Sathirapongsasuti, N.; Pongprayoon, P.; Luksirikul, P.; Isarankura-Na-Ayudhya, P.; Japrung, D. Sensitive detection of albuminuria by graphene oxide-mediated fluorescence quenching aptasensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 231, 118128. [Google Scholar] [CrossRef] [PubMed]
- Chawjiraphan, W.; Apiwat, C.; Segkhoonthod, K.; Treerattrakoon, K.; Pinpradup, P.; Sathirapongsasuti, N.; Pongprayoon, P.; Luksirikul, P.; Isarankura-Na-Ayudhya, P.; Japrung, D. Albuminuria detection using graphene oxide-mediated fluorescence quenching aptasensor. MethodsX 2020, 7, 101114. [Google Scholar] [CrossRef] [PubMed]
- Panman, W.; Japrung, D.; Pongprayoon, P. Exploring the interactions of a DNA aptamer with human serum albumins: Simulation studies. J. Biomol. Struct. Dyn. 2016, 35, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Jumpathong, W.; Jakmunee, J.; Ounnunkad, K. A Sensitive and Disposable Graphene Oxide Electrochemical Immunosensor for Label-free Detection of Human Immunoglobulin G. Anal. Sci. 2016, 32, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keil, B. Specificity of Proteolysis, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Kragh-Hansen, U. Possible Mechanisms by Which Enzymatic Degradation of Human Serum Albumin Can Lead to Bioactive Peptides and Biomarkers. Front. Mol. Biosci. 2018, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Liu, H.K.; Huang, Z. Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 18860–18866. [Google Scholar] [CrossRef] [PubMed]
HSA subdomain IIIB residue | SEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL |
Aptamer-binding position | SEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL |
Asp-N endopeptidase cleavage | SEKERQIKKQTALVELVKHKPKATKEQLKAVM/D/DFAAFVEKCCKA/D/DKETCFAEEGKKLVAASQAALGL |
Possible Protease | Cleavage Rules | No. of Cleavages | Position of Cleavage Site | Peptide Mass (Dalton) | Peptide Fragment |
---|---|---|---|---|---|
Asp-N endopeptidase | N-terminal side of D | 4 | 548, 549, 561, 562 | 3717.15,1331.61, 2379.22 | (1) SEKERQIKKQTALVELVKHK PKATKEQLKAVM (2) DFAAFVEKCCKA (3) DKETCFAEEGKKLVAASQAA LGL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sompark, C.; Chawjiraphan, W.; Sukmak, M.; Cha’on, U.; Anutrakulchai, S.; Pongprayoon, P.; Putnin, T.; Pimalai, D.; Pinrod, V.; Japrung, D. Effects of Boric Acid and Storage Temperature on the Analysis of Microalbumin Using Aptasensor-Based Fluorescent Detection. Biosensors 2022, 12, 915. https://doi.org/10.3390/bios12110915
Sompark C, Chawjiraphan W, Sukmak M, Cha’on U, Anutrakulchai S, Pongprayoon P, Putnin T, Pimalai D, Pinrod V, Japrung D. Effects of Boric Acid and Storage Temperature on the Analysis of Microalbumin Using Aptasensor-Based Fluorescent Detection. Biosensors. 2022; 12(11):915. https://doi.org/10.3390/bios12110915
Chicago/Turabian StyleSompark, Chalermwoot, Wireeya Chawjiraphan, Manatsaphon Sukmak, Ubon Cha’on, Sirirat Anutrakulchai, Prapasiri Pongprayoon, Thitirat Putnin, Dechnarong Pimalai, Visarute Pinrod, and Deanpen Japrung. 2022. "Effects of Boric Acid and Storage Temperature on the Analysis of Microalbumin Using Aptasensor-Based Fluorescent Detection" Biosensors 12, no. 11: 915. https://doi.org/10.3390/bios12110915
APA StyleSompark, C., Chawjiraphan, W., Sukmak, M., Cha’on, U., Anutrakulchai, S., Pongprayoon, P., Putnin, T., Pimalai, D., Pinrod, V., & Japrung, D. (2022). Effects of Boric Acid and Storage Temperature on the Analysis of Microalbumin Using Aptasensor-Based Fluorescent Detection. Biosensors, 12(11), 915. https://doi.org/10.3390/bios12110915