Phosphoprotein Detection in Sweat Realized by Intercalation Structure 2D@3D g-C3N4@Fe3O4 Wearable Sensitive Motif
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the g-C3N4@Fe3O4 Composite
2.2. Phosphoprotein Sensing
2.3. The Sensing Mechanism Analysis
2.4. Selectivity, Reproducibility, and Stability
2.4.1. Selectivity
2.4.2. Reproducibility
2.4.3. Stability
2.5. Practical Application Sensor Evaluation
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, W.; Shao, Z.; Shu, D.; Dong, L.; Lie, M.; Xia, P.; Hong, X.; Umar, F.; Wei, G.; Ji, L. Stretchable Optical Sensing Patch System Integrated Heart Rate, Pulse Oxygen Saturation and Sweat pH Detection. IEEE Trans. Biomed. Eng. 2019, 66, 1000–1005. [Google Scholar]
- Mohan, V.; Rajendran, V.; Mishra, R.K.; Jayaraman, M. Recent Advances and Perspectives in Sweat based Wearable Electrochemical Sensors. Trends Anal. Chem. 2020, 131, 116024. [Google Scholar] [CrossRef]
- Herrmann, W.P.; Habbig, J. Immunological studies on the protems of human eccrine sweat. Arch. Dermatol. Res. 1976, 255, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Serag, A.; Shakkour, Z.; Halboup, A.M.; Kobeissy, F.; Farag, M.A. Sweat metabolome and proteome: Recent trends in analytical advances and potential biological functions. J. Proteom. 2021, 246, 104310. [Google Scholar] [CrossRef]
- Tramutola, A.; Tramutol, A.; Lanzillotta, C.; Perluigi, M.; Butterfield, D.A. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 2017, 133, 88–96. [Google Scholar] [CrossRef]
- Engholm-Keller, K.; Martin, R.L. Technologies and challenges in large-scale phosphoproteomics. Proteomics 2013, 13, 910–931. [Google Scholar] [CrossRef]
- Hwang, L.; Ayaz-Guner, S.; Gregorich, Z.R.; Cai, W.; Valeja, S.G.; Jin, S.; Ge, Y. Specific Enrichment of Phosphoproteins Using Functionalized Multivalent Nanoparticles. J. Am. Chem. Soc. 2015, 137, 2432–2435. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P. The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur. J. Biochem. 2001, 268, 5001–5010. [Google Scholar] [CrossRef]
- Hubbard, M.J.; Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 1993, 18, 172–177. [Google Scholar] [CrossRef]
- Lassen, P.S.; Thygesen, C.; Larsen, M.R.; Kempf, S.J. Understanding Alzheimer’s disease by global quantification of protein phosphorylation and sialylated N-linked glycosylation profiles: A chance for new biomarkers in neuroproteomics? J. Proteom. 2017, 161, 11–25. [Google Scholar] [CrossRef]
- Molinaro, L.; Hui, P.; Tan, M.; Mishra, R.K. Role of presynaptic phosphoprotein synapsin II in schizophrenia. World J. Psychiatry 2015, 5, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Martin, I. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease. Cell 2014, 157, 472–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashman, K.; Villar, E.L. Phosphoproteomics and cancer research. Clin. Transl. Oncol. 2009, 11, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Kotlo, K.; Johnson, K.R.; Grillon, J.M.; Geenen, J.M.; Tombe, P.; Danziger, R.S. Phosphoprotein abundance changes in hypertensive cardiac remodeling. J. Proteom. 2012, 77, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.M.; Quinton, P.M. CAMP-independent phosphorylation activation of CFTR by G proteins in native human sweat duct. Am. J. Physiol. Cell Physiol. 2001, 280, 604–613. [Google Scholar] [CrossRef]
- Reddy, M.M.; Quinton, P.M. ENaC Activity Requires CFTR Channel Function Independently of Phosphorylation in Sweat Duct. J. Membr. Biol. 2005, 207, 23–33. [Google Scholar] [CrossRef]
- Murota, H.; Matsui, S.; Ono, E.; Kijima, A.; Kikuta, J.; Ishii, M.; Katayama, I. Sweat, the driving force behind normal skin: An emerging perspective on functional biology and regulatory mechanisms. J. Dermatol. Sci. 2015, 77, 3–10. [Google Scholar] [CrossRef]
- Reddy, M.M.; Quinton, P.M. PKA Mediates Constitutive Activation of CFTR in Human Sweat Duct. J. Membr. Biol. 2009, 231, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Sun, Z.; Liu, M.; Zhang, L.; Liu, Y.; Qu, Y.; Jin, L. Electrochemistry and Electrocatalytic Properties of Hemoglobin in Layer-by-Layer Films of SiO2 with Vapor—Surface Sol—Gel Deposition. Anal. Chem. 2007, 79, 3581–3588. [Google Scholar] [CrossRef]
- Li, Q.; Luo, G.; Feng, J. Direct Electron Transfer for Heme Proteins Assembled on Nanocrystalline TiO2 Film. Electroanalysis 2001, 13, 359–363. [Google Scholar] [CrossRef]
- Yao, Z.; Jin, Y.; Yun, D.; Bo, L. Research progress on g-C3N4-based photocatalysts for organic pollutants degradation in wastewater: From exciton and carrier perspectives. Ceram. Int. 2021, 172, 682–711. [Google Scholar]
- Gong, Y.; Li, M.; Li, H.; Wang, Y. Graphitic carbon nitride polymers: Promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 2015, 17, 715–736. [Google Scholar] [CrossRef]
- Min, C.; Li, R.; Li, Y.; Qin, J.; Yang, X. In-Situ fabrication of Ag/g-C3N4 composite materials with improved photocatalytic activity by coordination-driven assembly of precursors. Ceram. Int. 2016, 42, 5575–5581. [Google Scholar] [CrossRef]
- Lei, L.; Qiang, H.; Wu, L.; Xi, X.; Peng, L.; Dong, S.; Xin, W.; Xu, Y. Well-Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogen-Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction. Small 2016, 11, 5833–5843. [Google Scholar]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, H.; Yan, Y.; Tang, K.; Ding, C. In Situ synthesis of a novel metal oxide affinity chromatography affinity probe for the selective enrichment of low-abundance phosphopeptides. Rapid Commun. Mass Spectrom. 2020, 34, e881. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Wang, X.; Zhu, A.; Gong, J.; Liu, F.; Wang, Y.; Zhao, C. Cl/S co-doped carbon nitride nanotube clusters effectively drive the metal-free photo-Fenton reaction under visible light: A new ROS conversion mechanism. Carbon 2022, 190, 32–46. [Google Scholar] [CrossRef]
- Lotfi, Z.; Gholivand, M.B.; Shamsipur, M. Introduction of a non-enzymatic glucose sensor based on a g-C3N4/NiO/CuO nanocomposite. Anal. Biochem. 2020, 616, 114062. [Google Scholar] [CrossRef]
- Li, J.; Cao, C.; Zhu, H. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology 2007, 18, 11. [Google Scholar] [CrossRef]
- Bi, L.; Wen, S.; Wen, Z.; Xiao, Z.; Shun, P.; Hai, W.; Yong, S.; Yan, X. Fe3O4@CNT as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxydisulfate activation: Performance and mechanism. Sep. Purif. Technol. 2021, 173, 118705. [Google Scholar]
- Wang, M.; Cui, S.; Yang, X.; Bi, W. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples. Talanta 2015, 132, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Imran, H.; Manikandan, N.; Dharuman, V. Highly selective and rapid non-enzymatic glucose sensing at ultrathin layered Nb doped C3N4 for extended linearity range. Microchem. J. 2020, 160, 105774. [Google Scholar] [CrossRef]
- Li, C.; Xu, J.; Zhang, Y.; Cheng, Z.; Lei, W.; Hao, Q. g-C3N4 nanofibers doped poly(3,4-ethylenedioxythiophene) modified electrode for simultaneous determination of ascorbic acid and acetaminophen. J. Electroanal. Chem. 2018, 824, 52–59. [Google Scholar] [CrossRef]
- Zheng, H.; Ding, J.; Zheng, S.; Zhu, G.; Feng, Y. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples. Talanta 2016, 148, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Zhu, Y. Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. Catal. Commun. 2013, 29, 10566–10572. [Google Scholar]
- Xiang, Q.; Zhang, J.; Jaroniec, M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. J. Phys. Chem. C 2011, 115, 8915–8923. [Google Scholar] [CrossRef]
- Jie, Y.; Fang, C.; Yu, S.; Jun, G.; Xian, L. Assembled porous Fe3O4@g-C3N4 hybrid nanocomposites with multiple interface polarization for stable microwave absorption. Ceram. Int. 2018, 44, 19207–19216. [Google Scholar]
- Kailasam, K.; Schmidt, J.; Bildirir, H.; Gui, Z.; Blechert, S.; Xin, W.; Thomas, A. Room Temperature Synthesis of Heptazine-Based Microporous Polymer Networks as Photocatalysts for Hydrogen Evolution. Macromol. Rapid Commun. 2013, 34, 1008–1013. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, C.; Wang, L.; Zhang, S.; Ding, Y.; Xu, Y.; Liu, Y.; Luo, S. A three-dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution. J. Mater. Chem. A 2016, 4, 19003–19010. [Google Scholar] [CrossRef]
- Dan, Z.; Lu, P.; Ke, L.; Hermenegildo, G.; Chuan, S. Cobalt nanoparticle with tunable size supported on nitrogen-deficient graphitic carbon nitride for efficient visible light driven H2 evolution reaction. Chem. Eng. J. 2020, 381, 122576. [Google Scholar]
- Mousavi, M.; Habibi-Yangjeh, A.; Seifzadeh, D. Novel ternary g-C3N4/Fe3O4/MnWO4 nanocomposites: Synthesis, characterization, and visible-light photocatalytic performance for environmental purposes. J. Mater. Sci. Technol. 2018, 34, 1638–1651. [Google Scholar] [CrossRef]
- Jin, C.; Yun, Q.; Wang, M.; Jie, H.; Rong, G. Aqueous Solution-Based Fe3O4 Seed-Mediated Route to Hydrophilic Fe3O4-Au Janus Nanoparticles. Langmuir 2016, 32, 4595–4601. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, T.; Anandaram, S. Spectroscopic and DFT investigations on the corrosion inhibition behavior of tris (5-methyl-2-thioxo-1,3,4-thiadiazole) borate on high carbon steel and aluminium in HCl media. RSC Adv. 2013, 3, 23681–23691. [Google Scholar]
- Stoch, J.; Gablankowskakgukucz, J. The effect of carbonate contaminations on the XPS O 1s band structure in metal oxides. Surf. Interface Anal. 2010, 17, 165–167. [Google Scholar] [CrossRef]
- Karakecili, A.G.; Demirtas, T.T.; Satriano, C.; Gümüsderelioglu, M.; Marletta, G. Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser (RGDS)-immobilized chitosan in serum-containing/serum-free cultures. J. Biosci. Bioeng. 2007, 104, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Afsaneh, D.; Mohammad, M.; Fatemeh, M.; Reza, Z. Electrochemical deposition of gold nanoparticles on reduced graphene oxide modified glassy carbon electrode for simultaneous determination of levodopa, uric acid and folic acid. J. Electroanal. Chem. 2015, 736, 22–29. [Google Scholar]
- Jin, W.; Bei, Y.; Hui, W.; Ping, Y.; Yu, D. Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode. Anal. Chim. Acta 2015, 893, 41–48. [Google Scholar]
- Hatamie, A.; Jalilian, P.; Rezvani, E.; Kakavand, A.; Simchi, A. Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier. Measurement 2019, 134, 679–687. [Google Scholar] [CrossRef]
- Ning, K.; Li, J.; Jun, Z.; Xian, Z.; Xian, W.; Hui, L.; Xin, Z.; Feng, Y. Uniform growth of Fe3O4 nanocubes on the single-walled carbon nanotubes as an electrosensor of organic dyes and the study on its catalytic mechanism. J. Electroanal. Chem. 2019, 833, 70–78. [Google Scholar]
- Chinnapaiyan, S.; Chen, T.; Chen, S.; Alothman, Z.; Chang, W. Ultrasonic-assisted Preparation and Characterization of Magnetic ZnFe2O4/g-C3N4 Nanomaterial and their Applications towards Electrocatalytic Reduction of 4-Nitrophenol. Ultrason. Sonochem. 2020, 68, 105071. [Google Scholar] [CrossRef]
- Kokkin, L.; Ruo, Z.; Steimle, T.; Wyse, I.; Pearlman, W.; Varberg, D. Au-S Bonding Revealed from the Characterization of Diatomic Gold Sulfide, AuS. J. Phys. Chem. A 2015, 119, 11659–11667. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Zhao, H.; Yang, Y.; He, Y.; Nan, D.; Jian, W.; Wu, Z.; Xiang, K.; Wang, G. Electrochemical immunosensor for casein based on gold nanoparticles and poly(L-Arginine)/multi-walled carbon nanotubes composite film functionalized interface. Biosens. Bioelectron. 2011, 26, 3469–3474. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chun, L.; Ting, C.; Wen, L.; Sha, Z.; Ye, P.; Yong, L.; Huan, P. MXene-Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angew. Chem. 2021, 60, 25318–25322. [Google Scholar]
- Shu, C.; Jing, X.; Min, S.; Yong, Y.; Quan, X.; Xue, D.; Yan, G.; Li, L. Polydopamine bridged MXene and NH2-MWCNTs nanohybrid for high-performance electrochemical sensing of Acetaminophen. Appl. Surf. Sci. 2021, 570, 151149. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Qiao, L.; Zhao, P.; Zhang, P.; Wu, F.; Zhang, J.; Gao, L.; Liu, B.; Zhang, L. Phosphoprotein Detection in Sweat Realized by Intercalation Structure 2D@3D g-C3N4@Fe3O4 Wearable Sensitive Motif. Biosensors 2022, 12, 361. https://doi.org/10.3390/bios12060361
Qiao Y, Qiao L, Zhao P, Zhang P, Wu F, Zhang J, Gao L, Liu B, Zhang L. Phosphoprotein Detection in Sweat Realized by Intercalation Structure 2D@3D g-C3N4@Fe3O4 Wearable Sensitive Motif. Biosensors. 2022; 12(6):361. https://doi.org/10.3390/bios12060361
Chicago/Turabian StyleQiao, Yuting, Lijuan Qiao, Peize Zhao, Peng Zhang, Fanbin Wu, Jiahui Zhang, Li Gao, Bingxin Liu, and Lei Zhang. 2022. "Phosphoprotein Detection in Sweat Realized by Intercalation Structure 2D@3D g-C3N4@Fe3O4 Wearable Sensitive Motif" Biosensors 12, no. 6: 361. https://doi.org/10.3390/bios12060361
APA StyleQiao, Y., Qiao, L., Zhao, P., Zhang, P., Wu, F., Zhang, J., Gao, L., Liu, B., & Zhang, L. (2022). Phosphoprotein Detection in Sweat Realized by Intercalation Structure 2D@3D g-C3N4@Fe3O4 Wearable Sensitive Motif. Biosensors, 12(6), 361. https://doi.org/10.3390/bios12060361