A New Biorecognition-Element-Free IDμE Sensor for the Identification and Quantification of E. coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Impedance Analyzer and IDμE Sensor
2.3. Experimental Setup and Impedance-Capacitance Spectrum Measurements of the Pathogen Samples
2.4. Evaluation of the Biorecognition-Element-Free IDμE Sensor
3. Results and Discussion
3.1. Identification Test of the Biorecognition-Element-Free IDμE Sensor for the Detection of E. coli
3.2. Optimum Measurement Frequency, Linearity, and Repeatability Test of the Biorecognition-element-Free IDμE Sensor for the Detection of E. coli O157:H7
3.3. Equivalent Circuit Model for the Interpretation of the IDμE Sensor
3.4. Comparison of Different Sensors for E. coli Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Reports of Selected Salmonella Outbreak Investigations. 2020. Available online: http://www.cdc.gov/salmonella/outbreaks.html (accessed on 30 July 2021).
- Buck, J.W.; Walcott, R.R.; Beuchat, L.R. Recent Trends in Microbiological Safety of Fruits and Vegetables. Plant Health Prog. 2003, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Delaquis, P.; Bach, S.; Dinu, L.-D. Behavior of Escherichia coli O157:H7 in Leafy Vegetables. J. Food Prot. 2007, 70, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Doyle, M.P.; Shere, J.; Garber, L. Prevalence of Enterohemorrhagic Escherichia coli O157:H7 in a Survey of Dairy Herds. Appl. Environ. Microbiol. 1995, 61, 1290–1293. [Google Scholar] [CrossRef] [Green Version]
- Chapman, P.A.; Siddons, C.A.; Malo, A.T.C.; Harkin, M.A. A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry. Epidemiol. Infect. 1997, 119, 245–250. [Google Scholar] [CrossRef]
- Manges, A.R.; Johnson, J.R. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin. Infect. Dis. 2012, 55, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Scharff, R.L. Economic burden from health losses due to foodborne illness in the United States. J. Food Prot. 2012, 75, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Dastider, S.G.; Barizuddin, S.; Dweik, M.; Almasri, M. A micromachined impedance biosensor for accurate and rapid detection of E. coli O157:H7. RSC Adv. 2013, 3, 26297–26306. [Google Scholar] [CrossRef]
- Park, S.; Worobo, R.W.; Durst, R.A. Escherichia coli O157:H7 as an emerging foodborne pathogen: A literature review. Crit. Rev. Biotechnol. 2001, 21, 27–48. [Google Scholar] [CrossRef]
- Murphy, C.; Carroll, C.; Jordan, K.N. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 2006, 100, 623–632. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Doyle, M.P. Foodborne disease significance of Escherichia coli O157:H7 and other enterohemorrhagic E. coli. Food Technol. 1997, 51, 69–76. [Google Scholar]
- Gould, L.H.; Bopp, C.; Strockbine, N.; Atkinson, R.; Baselski, V.; Body, B.; Carey, R.; Crandall, C.; Hurd, S.; Kaplan, R.; et al. Recommendations for diagnosis of shiga toxin—Producing Escherichia coli infections by clinical laboratories. MMWR Recomm. Rep. 2009, 58, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, B.; Feng, P. Rapid detection of food-borne pathogenic bacteria. Annu. Rev. Microbiol. 1994, 48, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254. [Google Scholar] [CrossRef]
- He, Y.; Ren, Y.; Guo, B.; Yang, Y.; Ji, Y.; Zhang, D.; Wang, J.; Wang, Y.; Wang, H. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chem. 2020, 310, 125942. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, S.; Fratamico, P.M.; Kamisaki-Horikoshi, N.; Okada, Y.; Takeshita, K.; Sameshima, T.; Kawamoto, S. Development of the Multiplex PCR Detection Kit for Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7. JARQ Jpn. Agric. Res. Q. 2011, 45, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Li, H.; Jiang, X. Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluid. Nanofluidics 2008, 5, 571. [Google Scholar] [CrossRef]
- Lampel, K.A.; Orlandi, P.A.; Kornegay, L. Improved template preparation for PCR-based assays for detection of food-borne bacterial pathogens. Appl. Environ. Microbiol. 2000, 66, 4539–4542. [Google Scholar] [CrossRef] [Green Version]
- Si, C.-Y.; Ye, Z.-Z.; Wang, Y.-X.; Gai, L.; Wang, J.-P.; Ying, Y.-B. Rapid detection of Escherichia coli O157:H7 using surface plasmon resonance (SPR) biosensor. Guang Pu Xue Yu Guang Pu Fen Xi 2011, 31, 2598–2601. [Google Scholar]
- Cai, J.; Yao, C.; Xia, J.; Wang, J.; Chen, M.; Huang, J.; Chang, K.; Liu, C.; Pan, H.; Fu, W. Rapid parallelized and quantitative analysis of five pathogenic bacteria by ITS hybridization using QCM biosensor. Sens. Actuators B Chem. 2011, 155, 500–504. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Li, M.; Qu, X.; Zhang, K.; Rong, Z.; Xiao, R.; Wang, S. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 2016, 141, 6226–6238. [Google Scholar] [CrossRef]
- Fan, C.; Hu, Z.; Mustapha, A.; Lin, M. Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Appl. Microbiol. Biotechnol. 2011, 92, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Massad-Ivanir, N.; Shtenberg, G.; Zeidman, T.; Segal, E. Construction and Characterization of Porous SiO2/Hydrogel Hybrids as Optical Biosensors for Rapid Detection of Bacteria. Adv. Funct. Mater. 2010, 20, 2269–2277. [Google Scholar] [CrossRef]
- Nandakumar, V.; Bishop, D.; Alonas, E.; LaBelle, J.; Joshi, L.; Alford, T.L. A Low-Cost Electrochemical Biosensor for Rapid Bacterial Detection. IEEE Sens. J. 2011, 11, 210–216. [Google Scholar] [CrossRef]
- Suehiro, J.; Hamada, R.; Noutomi, D.; Shutou, M.; Hara, M. Selective detection of viable bacteria using dielectrophoretic impedance measurement method. J. Electrost. 2003, 57, 157–168. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- De Dieu Habimana, J.; Ji, J.; Sun, X. Minireview: Trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics. Anal. Lett. 2018, 51, 2933–2966. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Lee, C.-K.; Lin, C.-T. Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes. Biosens. Bioelectron. 2018, 103, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-C.; Chen, C.-S.; Chang, K.-N.; Lin, C.-T.; Lee, C.-K. Sensitivity improvement of a miniaturized label-free electrochemical impedance biosensor by electrode edge effect. J. Micro/Nanolithogr. MEMS MOEMS 2014, 13, 033019. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Whitesides, G.M. ω-Terminated Alkanethiolate Monolayers on Surfaces of Copper, Silver and Gold Have Similar Wettabilities. J. Am. Chem. Soc. 1992, 114, 1990–1995. [Google Scholar] [CrossRef]
- Laibinis, P.E.; Whitesides, G.M.; Allara, D.L.; Tao, Y.T.; Parikh, A.N.; Nuzzo, R.G. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 1991, 113, 7152–7167. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, J.; Gan, C.; Wang, Y.; Wang, D.; Xiong, Y.; Lai, W.; Li, Y.; Wang, M. A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosens. Bioelectron. 2015, 74, 504–511. [Google Scholar] [CrossRef]
- Xu, M.; Wang, R.; Li, Y. Rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 2016, 148, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Biscay, J.; García, M.B.G.; García, A.C. Electrochemical biotin determination based on a screen printed carbon electrode array and magnetic beads. Sens. Actuators B Chem. 2014, 205, 426–432. [Google Scholar] [CrossRef]
- Kanayeva, D.A.; Wang, R.; Rhoads, D.; Erf, G.F.; Slavik, M.F.; Tung, S.; Li, Y. Efficient separation and sensitive detection of Listeria monocytogenes using an impedance immunosensor based on magnetic nanoparticles, a microfluidic chip, and an interdigitated microelectrode. J. Food Prot. 2012, 75, 1951–1959. [Google Scholar] [CrossRef]
- Bailey, J.S. Detection of Salmonella cells within 24 to 26 hours in poultry samples with the polymerase chain reaction BAX system. J. Food Prot. 1998, 61, 792–795. [Google Scholar] [CrossRef]
- Xu, M.; Wang, R.; Li, Y. An electrochemical biosensor for rapid detection of E. coli O157:H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. Analyst 2016, 141, 5441–5449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamanna, L.; Rizzi, F.; Bhethanabotla, V.R.; De Vittorio, M. Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film. Biosens. Bioelectron. 2020, 163, 112164. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Erf, G.F. Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal. Chem. 2004, 76, 1107–1113. [Google Scholar] [CrossRef]
- Geng, P.; Zhang, X.; Meng, W.; Wang, Q.; Zhang, W.; Jin, L.; Feng, Z.; Wu, Z. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy. Electrochim. Acta 2008, 53, 4663–4668. [Google Scholar] [CrossRef]
E. coli Concentration (cfu/mL) | Mean (kΩ) | SD (kΩ) | RSD (%) |
---|---|---|---|
0 (DDI water) | 94.76 | 12.28 | 13 |
103 | 57.57 | 7.05 | 12 |
103.5 | 55.55 | 7.69 | 14 |
104 | 46.57 | 4.75 | 10 |
104.5 | 40.10 | 7.74 | 19 |
105 | 26.32 | 0.81 | 3 |
105.5 | 13.92 | 0.46 | 3 |
106 | 7.36 | 1.41 | 19 |
E. coli Concentration | Rct (kΩ) | ZW1 (µΩ) | Cdl (nF) | ZW2 (µΩ) | Cdie (nF) |
---|---|---|---|---|---|
52.04 | 1.74 | 0.29 | 0.12 | 50 | |
41.41 | 1.79 | 0.25 | 0.13 | 42 | |
3.83 | 5.86 | 0.32 | 0.13 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-K.; Wu, H.-J.; Hieu, N.V.; Chu, P.-Y.; Do, T.V.T.; Yao, F.Y.-D.; Phan, T.L.; Ching, C.T.S. A New Biorecognition-Element-Free IDμE Sensor for the Identification and Quantification of E. coli. Biosensors 2022, 12, 561. https://doi.org/10.3390/bios12080561
Lin Y-K, Wu H-J, Hieu NV, Chu P-Y, Do TVT, Yao FY-D, Phan TL, Ching CTS. A New Biorecognition-Element-Free IDμE Sensor for the Identification and Quantification of E. coli. Biosensors. 2022; 12(8):561. https://doi.org/10.3390/bios12080561
Chicago/Turabian StyleLin, Yung-Kai, Hsing-Ju Wu, Nguyen Van Hieu, Pei-Yi Chu, Thi Vien Thao Do, Fiona Yan-Dong Yao, Thien Luan Phan, and Congo Tak Shing Ching. 2022. "A New Biorecognition-Element-Free IDμE Sensor for the Identification and Quantification of E. coli" Biosensors 12, no. 8: 561. https://doi.org/10.3390/bios12080561
APA StyleLin, Y. -K., Wu, H. -J., Hieu, N. V., Chu, P. -Y., Do, T. V. T., Yao, F. Y. -D., Phan, T. L., & Ching, C. T. S. (2022). A New Biorecognition-Element-Free IDμE Sensor for the Identification and Quantification of E. coli. Biosensors, 12(8), 561. https://doi.org/10.3390/bios12080561