Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Ti3C2 Nanosheets
2.3. Tailoring the Self-Assembly of Peptides into PNSs
2.4. Synthesis of CuS-PNSs/Ti3C2 Nanohybrids
2.5. Electrochemical Detection of H2O2
2.6. Characterization Techniques
3. Results
3.1. Characterizations of Ti3C2 and PNSs
3.2. Characterizations of CuS-PNSs/Ti3C2 Nanohybrids
3.3. CuS-PNSs/Ti3C2 Nanohybrid-Based Electrochemical Detection of H2O2
3.4. Selectivity and Stability of CuS-PNS/Ti3C2 Electrochemical Platform
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapeinos, C.; Larranaga, A.; Sarasua, J.R.; Pandit, A. Functionalised collagen spheres reduce H2O2 mediated apoptosis by scavenging overexpressed ROS. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2397–2405. [Google Scholar] [CrossRef]
- Chen, L.F.; Xing, S.H.; Lei, Y.L.; Chen, Q.S.; Zou, Z.; Quan, K.; Qing, Z.H.; Liu, J.W.; Yang, R.H. A Glucose-Powered Activatable Nanozyme Breaking pH and H2O2 Limitations for Treating Diabetic Infections. Angew. Chem. Int. Ed. 2021, 60, 23534–23539. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Cheng, X.W.; Song, H.Y.; Ma, J.H.; Pan, P.P.; Elzatahry, A.A.; Su, J.C.; Deng, Y.H. 3D Interconnected Mesoporous Alumina with Loaded Hemoglobin as a Highly Active Electrochemical Biosensor for H2O2. Adv. Healthc. Mater. 2018, 7, 1800149. [Google Scholar] [CrossRef] [PubMed]
- Seven, F.; Golcez, T.; Sen, M. Nanoporous carbon-fiber microelectrodes for sensitive detection of H2O2 and dopamine. J. Electroanal. Chem. 2020, 864, 114104. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Cirone, J.; Chen, A.C. Fluorescent Fe3O4 Quantum Dots for H2O2 Detection. ACS Appl. Nano Mater. 2019, 2, 2076–2085. [Google Scholar] [CrossRef]
- Tantawi, O.; Baalbaki, A.; El Asmar, R.; Ghauch, A. A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Sci. Total Environ. 2019, 654, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.T.; Ding, Y.M.; Li, M.L.; Ma, C.; Gong, H.X.; Pan, J.L.; Zhang, S.J.; Qian, Y.T.; Bao, K.Y. Synthesis and electrochemical characterization of 2D SnS2/RGO as anode material in sodium-ion batteries. J. Alloys Compd. 2021, 855, 157209. [Google Scholar] [CrossRef]
- Munteanu, R.E.; Moreno, P.S.; Bramini, M.; Gáspár, S. 2D materials in electrochemical sensors for in vitro or in vivo use. Anal. Bioanal. Chem. 2021, 413, 701–725. [Google Scholar] [CrossRef]
- Tapia, M.A.; Gusmão, R.; Serrano, N.; Sofer, Z.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. TrAC Trends Anal. Chem. 2021, 139, 116249. [Google Scholar] [CrossRef]
- Zhu, D.Z.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors 2021, 11, 259. [Google Scholar] [CrossRef]
- Zhu, D.Z.; He, P.; Kong, H.; Yang, G.Z.; Luan, X.; Wei, G. Biomimetic graphene-supported ultrafine platinum nanowires for colorimetric and electrochemical detection of hydrogen peroxide. J. Mater. Chem. B 2022, 10, 9216–9225. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.X.; Wang, C.; Shang, C.; Xu, L.J.; Li, J.B.; Zhang, H. MXenes: MXenes: Synthesis, Optical Properties, and Applications in Ultrafast Photonics. Small 2021, 17, 2170048. [Google Scholar] [CrossRef]
- Huang, H.; Dong, C.H.; Feng, W.; Wang, Y.; Huang, B.C.; Chen, Y. Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliver. Rev. 2022, 184, 114178. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Eom, W.; Lee, K.H.; Jeong, W.; Kang, D.J.; Han, T.H. Highly Electroconductive and Mechanically Strong Ti3C2Tx MXene Fibers Using a Deformable MXene Gel. ACS Nano 2021, 15, 3320–3329. [Google Scholar] [CrossRef] [PubMed]
- Lorencova, L.; Bertok, T.; Filip, J.; Jerigova, M.; Velic, D.; Kasak, P.; Mahmoud, K.A.; Tkac, J. Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens. Actuators B Chem. 2018, 263, 360–368. [Google Scholar] [CrossRef]
- Zhang, C.F. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 2021, 60, 417–434. [Google Scholar] [CrossRef]
- Vallee, A.; Humblot, V.; Pradier, C.M. Peptide Interactions with Metal and Oxide Surfaces. Acc. Chem. Res. 2010, 43, 1297–1306. [Google Scholar] [CrossRef]
- Zou, R.F.; Wang, Q.; Wu, J.C.; Wu, J.X.; Schmuck, C.; Tian, H. Peptide self-assembly triggered by metal ions. Chem. Soc. Rev. 2015, 44, 5200–5219. [Google Scholar] [CrossRef]
- Tõugu, V.; Tiiman, A.; Palumaa, P. Interactions of Zn(Ⅱ) and Cu(Ⅱ) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 2011, 3, 250–261. [Google Scholar] [CrossRef]
- Liu, B.; Yao, J.L.; Xing, J.; Yang, M.; Zhu, D.Z.; Ren, W.Z.; Xiang, L.C.; Wang, Y.; Wu, A.G.; Wei, G. Design, biomimetic synthesis, and tumor photothermal therapy of peptide-based two-dimensional photothermal conversion nanomaterials. Mol. Syst. Des. Eng. 2022, 7, 1549–1560. [Google Scholar] [CrossRef]
- Yang, G.Z.; He, P.; Zhu, D.Z.; Wan, K.M.; Kong, H.; Luan, X.; Fang, L.; Wang, Y.; Wei, G. Functional regulation of polymer aerogels by graphene doping and peptide nanofiber-induced biomineralization as sustainable adsorbents of contaminants. Environ. Sci. Nano 2022, 9, 4497–4507. [Google Scholar] [CrossRef]
- Gu, S.T.; Shi, X.M.; Zhang, D.; Fan, G.C.; Luo, X.L. Peptide-Based Photocathodic Biosensors: Integrating a Recognition Peptide with an Antifouling Peptide. Anal. Chem. 2021, 93, 2706–2712. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Liu, B.; Yang, G.Z.; Chen, Y.; Wei, G. Tailoring Peptide Self-Assembly and Formation of 2D Nanoribbons on Mica and HOPG Surface. Materials 2022, 15, 310. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Yang, G.; Zhu, D.; Kong, H.; Corrales-Ureña, Y.R.; Colombi Ciacchi, L.; Wei, G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J. Nanobiotechnol. 2022, 20, 483. [Google Scholar] [CrossRef]
- Mohammed, S.; Hegab, H.M.; Ou, R.W. Nanofiltration performance of glutaraldehyde crosslinked graphene oxide-cellulose nanofiber membrane. Chem. Eng. Res. Des. 2022, 183, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.H.; Yang, P. 2D bio-nanostructures fabricated by supramolecular self-assembly of protein, peptide, or peptoid. Adv. Compos. Hybrid Mater. 2019, 2, 201–213. [Google Scholar] [CrossRef]
- Magnotti, E.; Conticello, V. Two-Dimensional Peptide and Protein Assemblies. Protein Eng. Nanostruct. 2016, 940, 29–60. [Google Scholar]
- Jia, B.H.; Sun, Y.; Yang, L.J.; Yu, Y.; Fan, H.R.; Ma, G. A structural model of the hierarchical assembly of an amyloid nanosheet by an infrared probe technique. Phys. Chem. Chem. Phys. 2018, 20, 27261–27271. [Google Scholar] [CrossRef]
- Saxena, A.; Liyanage, W.; Masud, J.; Kapila, S.; Nath, M. Selective electroreduction of CO2 to carbon-rich products with a simple binary copper selenide electrocatalyst. J. Mater. Chem. A 2021, 9, 7150–7161. [Google Scholar] [CrossRef]
- Masud, J.; Liyanage, W.P.R.; Cao, X.; Saxena, A.; Nath, M. Copper Selenides as High-Efficiency Electrocatalysts for Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2018, 1, 4075–4083. [Google Scholar] [CrossRef]
- Jin, W.; Fu, Y.Q.; Cai, W.Q. In situ growth of CuS decorated graphene oxide-multiwalled carbon nanotubes for ultrasensitive H2O2 detection in alkaline solution. New J. Chem. 2019, 43, 3309–3316. [Google Scholar] [CrossRef]
- Li, X.Y.; Du, X.Z. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2017, 239, 536–543. [Google Scholar] [CrossRef]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016, 2, 1600255. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Klausen, L.H.; Dong, M.D. Two-dimensional peptide based functional nanomaterials. Nano Today 2018, 23, 40–58. [Google Scholar] [CrossRef]
- Xu, L.; Xu, S.; Xiang, T.Y.; Liu, H.; Chen, L.W.; Jiang, B.P.; Yao, J.H.; Zhu, H.L.; Hu, R.F.; Chen, Z.P. Multifunctional building elements for the construction of peptide drug conjugates. Eng. Regen. 2022, 3, 92–109. [Google Scholar] [CrossRef]
- Dai, B.; Li, D.; Xi, W.; Luo, F.; Zhang, X.; Zou, M.; Cao, M.; Hu, J.; Wang, W.Y.; Wei, G.H.; et al. Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc. Natl. Acad. Sci. USA 2015, 112, 2996–3001. [Google Scholar] [CrossRef]
- Liang, L.J.; Wang, L.W.; Shen, J.W. The self-assembly mechanism of tetra-peptides from the motif of beta-amyloid peptides: A combined coarse-grained and all-atom molecular dynamics simulation. RSC Adv. 2016, 6, 100072–100078. [Google Scholar] [CrossRef]
- Nethravathi, C.; Nath, R.R.; Rajamathi, J.T.; Rajamathi, M. Microwave-Assisted Synthesis of Porous Aggregates of CuS Nanoparticles for Sunlight Photocatalysis. ACS Omega 2019, 4, 4825–4831. [Google Scholar] [CrossRef]
- Pejjai, B.; Reddivari, M.; Kotte, T.R.R. Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: Effect of copper precursors on the properties of CuS. Mater. Chem. Phys. 2020, 239, 122030. [Google Scholar] [CrossRef]
- Riyaz, S.; Parveen, A.; Azam, A. Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspect. Sci. 2016, 8, 632–635. [Google Scholar] [CrossRef]
- Lu, K.C.; Wang, J.K.; Lin, D.H.; Chen, X.; Yin, S.Y.; Chen, G.S. Construction of a novel electrochemical biosensor based on a mesoporous silica/oriented graphene oxide planar electrode for detecting hydrogen peroxide. Anal. Methods 2020, 12, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Salazar, P.; Fernandez, I.; Rodriguez, M.C.; Hernandez-Creus, A.; Gonzalez-Mora, J.L. One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. J. Electroanal. Chem. 2019, 855, 113638. [Google Scholar] [CrossRef]
- Devaraj, M.; Rajendran, S.; Jebaranjitham, J.N.; Ranjithkumar, D.; Sathiyaraj, M.; Manokaran, J.; Sundaravadivel, E.; Santhanalakshmi, J.; Ponce, L.C. Horseradish Peroxidase-Immobilized Graphene Oxide-Chitosan Gold Nanocomposites as Highly Sensitive Electrochemical Biosensor for Detection of Hydrogen Peroxide. J. Electrochem. Soc. 2020, 167, 147517. [Google Scholar] [CrossRef]
- Cheng, D.; Li, P.P.; Zhu, X.H.; Liu, M.L.; Zhang, Y.Y.; Liu, Y. Enzyme-free Electrochemical Detection of Hydrogen Peroxide Based on the Three-Dimensional Flower-like Cu-based Metal Organic Frameworks and MXene Nanosheets(dagger). Chin. J. Chem. 2021, 39, 2181–2187. [Google Scholar] [CrossRef]
- Zhou, K.W.; Li, Y.; Zhuang, S.J.; Ren, J.; Tang, F.; Mu, J.L.; Wang, P. A novel electrochemical sensor based on CuO-CeO2/MXene nanocomposite for quantitative and continuous detection of H2O2. J. Electroanal. Chem. 2022, 921, 116655. [Google Scholar] [CrossRef]
Materials | Linear Range [mM] | Limit of Detection [µM] | Ref. |
---|---|---|---|
CMF/Gox/HRP@MS | 0.0001–0.235 | 10 | [42] |
rGO/AgNPs | 0.002–20 | 0.73 | [43] |
HRP/Au/ERGO-CHIT/GCE | 0.01–6.31 | 4 | [44] |
Cu-MOF/MXene | 0.001–6.12 | 0.35 | [45] |
CuO-CeO2/MXene | 0.005–0.1 | 1.67 | [46] |
CuS-PNS/Ti3C2 | 0.005–15 | 0.226 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, D.; Kong, H.; Yang, G.; He, P.; Luan, X.; Guo, L.; Wei, G. Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide. Biosensors 2023, 13, 14. https://doi.org/10.3390/bios13010014
Zhu D, Kong H, Yang G, He P, Luan X, Guo L, Wei G. Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide. Biosensors. 2023; 13(1):14. https://doi.org/10.3390/bios13010014
Chicago/Turabian StyleZhu, Danzhu, Hao Kong, Guozheng Yang, Peng He, Xin Luan, Lei Guo, and Gang Wei. 2023. "Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide" Biosensors 13, no. 1: 14. https://doi.org/10.3390/bios13010014
APA StyleZhu, D., Kong, H., Yang, G., He, P., Luan, X., Guo, L., & Wei, G. (2023). Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide. Biosensors, 13(1), 14. https://doi.org/10.3390/bios13010014