Improvement of Seed-Mediated Growth of Gold Nanoparticle Labels for DNA Membrane-Based Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of Gold Nanoparticles and Their Conjugate with Streptavidin
2.3. Membrane Microarray Fabrication
2.4. Hybridization of Target DNA on Microarrays
2.5. Scanometric Detection and Data Processing
2.6. Signal Amplification
3. Results and Discussion
3.1. Principle of Determining Nucleic Acids on Membrane-Based Microarrays with Signal Amplification
3.2. Effect of pH on the AuNP Growth during Au3+ Reduction in Solution
3.3. Effect of pH on the Growth of AuNP in a Conjugate with Streptavidin during Au3+ Reduction in Solution
3.4. Effect of pH on the AuNP Label Growth during Au3+ Reduction on Nitrocellulose Membrane
3.5. Optimization of the Ratio of Reagent Concentrations for AuNP Enhancement on the Membrane Support
3.6. Seed-Mediated Growth of Nanoparticle Labels in Hybridization Membrane Analysis of DNA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, W.; Wang, X.; Liu, J.; Lin, C.; Liu, J.; Wang, J. The integration of gold nanoparticles with polymerase chain reaction for constructing colorimetric sensing platforms for detection of health-related DNA and proteins. Biosensors 2022, 12, 421. [Google Scholar] [CrossRef] [PubMed]
- Borse, V.B.; Konwar, A.N.; Jayant, R.D.; Patil, P.O. Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug Deliv. Transl. Res. 2020, 10, 878–902. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Xu, W.; Chen, X.; Liang, Y. Colorimetric assay for ultrasensitive detection of Ag(I) ions based on the formation of gold nanoparticle oligomers. Anal. Bioanal. Chem. 2019, 411, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ma, W.; Gao, Z.; Huang, J.; Hou, Y.; Xu, C.; Yang, W.; Gao, M. Upconversion luminescence nanoparticles-based lateral flow immunochromatographic assay for cephalexin detection. J. Mater. Chem. C. 2014, 2, 9637–9642. [Google Scholar] [CrossRef]
- Wang, X.; Niessner, R.; Knopp, D. Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles. Sensors 2014, 14, 21535–21548. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.M. Fabrication and characterization of gold nano particles for DNA biosensor applications. Chin. Chem. Lett. 2016, 27, 801–806. [Google Scholar] [CrossRef]
- Gribanyov, D.; Zhdanov, G.; Olenin, A.; Lisichkin, G.; Gambaryan, A.; Kukushkin, V.; Zavyalova, E. SERS-based colloidal aptasensors for quantitative determination of influenza virus. Int. J. Mol Sci. 2021, 22, 1842. [Google Scholar] [CrossRef]
- Bai, T.; Wang, M.; Cao, M.; Zhang, J.; Zhang, K.; Zhou, P.; Liu, Z.; Liu, Y.; Guo, Z.; Lu, X. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Anal. Bioanal. Chem. 2018, 410, 2291–2303. [Google Scholar] [CrossRef]
- Antiochia, R.; Bollella, P.; Favero, G.; Mazzei, F. Nanotechnology-based surface plasmon resonance affinity biosensors for in vitro diagnostics. Int. J. Anal. Chem. 2016, 2016, 2981931. [Google Scholar] [CrossRef]
- Fathi, F.; Rashidi, M.R.; Omidi, Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta 2019, 192, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Dharanivasan, G.; Jesse, D.M.I.; Rajamuthuramalingam, T.; Rajendran, G.; Shanthi, S.; Kathiravan, K. Scanometric detection of tomato leaf curl New Delhi viral DNA using mono- and bifunctional AuNP-conjugated oligonucleotide probes. ACS Omega 2019, 4, 0094–10107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Cheng, Y.; Sun, M. Functionalized gold nanoparticles: Synthesis. Properties and biomedical applications. Chem. Rec. 2020, 20, 1474–1504. [Google Scholar] [CrossRef] [PubMed]
- Plascencia-Villa, G.; Mendoza-Cruz, R.; Bazán-Díaz, L.; José-Yacamán, M. Gold Nanoclusters, Gold Nanoparticles, and Analytical Techniques for Their Characterization. Methods Mol. Biol. 2020, 2118, 351–382. [Google Scholar] [CrossRef]
- Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2018, 10, 18–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, M.O.; Covián, L.B.; García, A.C.; Blanco-López, M.C. Silver and gold enhancement methods for lateral flow immunoassays. Talanta 2016, 148, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.T.; Svedberg, G.; Nystrand, M.; Andersson-Svahn, H.; Gantelius, J. Rapid nanoprobe signal enhancement by in situ gold nanoparticle synthesis. J. Vis. Exp. 2018, 133, 57297. [Google Scholar] [CrossRef] [Green Version]
- Serebrennikova, K.; Samsonova, J.; Osipov, A. Hierarchical Nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett. 2018, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Zhang, Y.; Zhang, S.; Qiu, W.; Gao, Y. Silver Enhancement of gold nanoparticles for biosensing: From qualitative to quantitative. Appl. Spectrosc. Rev. 2014, 49, 121–138. [Google Scholar] [CrossRef]
- Khlebtsov, N.G. Determination of size and concentration of gold nanoparticles from extinction spectra. Anal. Chem. 2008, 80, 6620–6625. [Google Scholar] [CrossRef]
- Rahbar, M.; Wu, Y.; Subramony, J.; Liu, G. Sensitive colorimetric detection of interleukin-6 via Lateral low Assay incorporated silver amplification method. Front. Bioeng. Biotechnol. 2021, 9, 778269. [Google Scholar] [CrossRef] [PubMed]
- Panferov, V.G.; Safenkova, I.V.; Byzova, N.A.; Varitsev, Y.A.; Zherdev, A.V.; Dzantiev, B.B. Silver-enhanced lateral flow immunoassay for highly-sensitive detection of potato leafroll virus. Food Agricul. Immunol. 2018, 29, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Anfossi, L.; Di Nardo, F.; Giovannoli, C.; Passini, C.; Baggiani, C. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement. Anal. Bioanal. Chem. 2013, 405, 9859–9867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byzova, N.A.; Zherdev, A.V.; Sveshnikov, P.G.; Sadykhov, E.G.; Dzantiev, B.B. Development of an immunochromatographic test system for the detection of Helicobacter pylori antigens. Appl. Biochem. Microbiol. 2015, 51, 608–617. [Google Scholar] [CrossRef]
- Karimadom, B.R.; Kornweitz, H. Mechanism of Producing Metallic Nanoparticles, with an Emphasis on Silver and Gold Nanoparticles, Using Bottom-Up Methods. Molecules 2021, 26, 2968. [Google Scholar] [CrossRef]
- Prodan, E.; Radloff, C.; Halas, N.J.; Nordlander, P. A Hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422. [Google Scholar] [CrossRef]
- Fan, X.; Shen, Z.; Luk’yanchuk, B. Huge light scattering from active anisotropic spherical particles. Opt. Express 2010, 18, 24868–24880. [Google Scholar] [CrossRef]
- Guo, L.; Jackman, J.A.; Yang, H.-H.; Chen, P.; Cho, N.-J.; Kim, D.-H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 2015, 10, 213–239. [Google Scholar] [CrossRef] [Green Version]
- Murph, S.E.H.; Larsen, G.K.; Lascola, R.J. Multifunctional hybrid Fe2O3-Au nanoparticles for efficient plasmonic heating. J. Vis. Exp. 2016, 108, e53598. [Google Scholar] [CrossRef] [Green Version]
- Bromley, K.M.; Patil, A.J.; Perriman, A.W.; Stubbs, G.; Mann, S. Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J. Mater. Chem. 2008, 18, 4796–4801. [Google Scholar] [CrossRef]
- Panda, B.R.; Chattopadhyay, A. Synthesis of Au nanoparticles at “all” pH by H2O2 reduction of HAuCl. J. Nanosci. Nanotechnol. 2007, 7, 1911–1915. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Huang, W.; Li, J.; Li, M.; Liang, A.; Zhang, S.; Chen, B. Nanogold catalysis–based immunoresonance-scattering spectral assay for trace complement component. Clin. Chem. 2008, 54, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Li, J.; Pei, H.; Zhao, Y.; Zuo, X.; Fan, C.; Huang, Q. DNA–gold nanoparticle conjugates-based nanoplasmonic probe for specific differentiation of cell types. Anal. Chem. 2014, 86, 3227–3231. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hu, X.; Tan, L.; Liao, Q.; Chen, Z. Colorimetric detection of lysozyme based on its effect on the growth of gold nanoparticles induced by the reaction of chloroauric acid and hydroxylamine. Microchim. Acta 2016, 183, 3135–3141. [Google Scholar] [CrossRef]
- Zhao, Y.; Gui, L.; Chen, Z. Colorimetric detection of Hg2+ based on target-mediated growth of gold nanoparticles. Sens. Actuators B Chem. 2017, 241, 262–267. [Google Scholar] [CrossRef]
- Coutinho, C.; Somoza, Á. MicroRNA sensors based on gold nanoparticles. Anal. Bioanal. Chem. 2019, 411, 1807–1824. [Google Scholar] [CrossRef]
- Liu, H.H.; Cao, X.; Yang, Y.; Liu, M.G.; Wang, Y.F. Array-based nano-amplification technique was applied in detection of hepatitis E virus. J. Biochem. Mol. Biol. 2006, 39, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.R.; Saleh, F.S.; Okajima, T.; Ohsaka, T. pH Dependence of the size and crystallographic orientation of the gold nanoparticles prepared by seed-mediated growth. Langmuir 2011, 27, 5126–5135. [Google Scholar] [CrossRef]
- Cao, L.; Zhu, T.; Liu, Z. Formation mechanism of nonspherical gold nanoparticles during seeding growth: Roles of anion adsorption and reduction rate. J. Colloid Interface Sci. 2006, 293, 69–76. [Google Scholar] [CrossRef]
- Wang, Z.; Bharathi, M.S.; Hariharaputran, R.; Xing, H.; Tang, L.; Li, J.; Zhang, Y.-W.; Lu, Y. pH-Dependent Evolution of Five-Star Gold Nanostructures: An Experimental and Computational Study. ACS Nano 2013, 7, 2258–2265. [Google Scholar] [CrossRef]
- Bush, K. Past and present perspectives of β-lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubtsova, M.Y.; Ulyashova, M.M.; Edelstein, M.V.; Egorov, A.M. Oligonucleotide microarrays with horseradish peroxidase-based detection for the identification of extended-spectrum β-lactamases. Biosens. Bioelectron. 2010, 26, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, I.P.; Grigorenko, V.G.; Egorov, A.M.; Osipov, A.P. Quantitative lateral flow immunoassay for total prostate specific antigen in serum. Anal. Lett. 2015, 494, 579–588. [Google Scholar] [CrossRef]
- Presnova, G.V.; Rubtsova, M.Y.; Presnov, D.E.; Grigorenko, V.G.; Yaminsky, I.V. and Egorov, A.M. Streptavidin conjugates with gold nanoparticles for visualization of single DNA interactions on the silicon surface. Biochem. Suppl. Ser. B Biomed. Chem. 2014, 8, 164–167. [Google Scholar] [CrossRef]
- Presnova, G.V.; Presnov, D.E.; Filippova, A.A.; Tsiniaikin, I.I.; Ulyashova, M.M.; Rubtsova, M.Y. Multiplex digital quantification of β-lactamase genes in antibiotic-resistant bacteria by counting gold nanoparticle labels on silicon microchips. Biosensors 2022, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size. Shape and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [Green Version]
- Schulz, F.; Homolka, T.; Bastús, N.G.; Puntes, V.; Weller, H.; Vossmeyer, T. Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles. Langmuir 2014, 30, 10779–10784. [Google Scholar] [CrossRef]
- Panferov, V.G.; Samokhvalov, A.V.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Study of growth of bare and protein-modified gold nanoparticles in the presence of hydroxylamine and tetrachloroaurate. Nanotechnol. Russ. 2018, 13, 614–622. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Li, J.; Zou, M.; Chen, Y.; Xue, Q.; Zhang, F.; Li, B.; Wang, Y.; Qi, X.; Yang, Y. Gold immunochromatographic strips for enhanced detection of Avian influenza and Newcastle disease viruses. Anal. Chim. Acta 2013, 782, 54–58. [Google Scholar] [CrossRef]
- Grigorenko, V.; Rubtsova, M.; Uporov, I.; Ishtubaev, I.; Andreeva, I.; Shcherbinin, D.; Veselovsky, A.; Egorov, A. Bacterial TEM type beta-lactamases: Structure and analysis of mutations. Biochem. Suppl B Biomed. Chem. 2018, 12, 87–95. [Google Scholar] [CrossRef]
- Park, S.-J.; Taton, T.A.; Mirkin, C.A. Array-Based Electrical Detection of DNA with Nanoparticle Probes. Science 2002, 295, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Cho, H.; Jeong, J.; Kwon, J.N.; Jung, Y.; Chung, B.H. Label-free and naked eye detection of PNA/DNA hybridization using enhancement of gold nanoparticles. Chem. Commun. 2010, 46, 3315–3317. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Jung, J.; Chung, B.H. Scanometric analysis of DNA microarrays using DNA intercalator-conjugated gold nanoparticles. Chem. Commun. 2012, 48, 7601–7603. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Y.; Tang, L.; Li, J. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 2011, 136, 4732–4737. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Shi, X.; He, Y.; Zhou, J.; Li, Y. Novel plastic biochips for colorimetric detection of biomolecules. Anal. Bioanal. Chem. 2012, 404, 1935–1944. [Google Scholar] [CrossRef]
- Ulyashova, M.M.; Rubtsova, M.Y.; Egorov, A.M. Colorimetric detection of immobilized horseradish peroxidase based on the co-oxidation of benzidine derivatives and 4-chloro-1-naphthol. Russ. Chem. Bull. 2011, 60, 656–661. [Google Scholar] [CrossRef]
- Kanokudom, S.; Assawakongkarat, T.; Akeda, Y.; Ratthawongjirakul, P.; Chuanchuen, R.; Chaichanawongsaroj, N. Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS ONE 2021, 16, e0248536. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, X.; Kumar, A.; Zou, G.; Zhang, X.; Liang, X.-J. Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis. Chem. Commun. 2013, 49, 51–53. [Google Scholar] [CrossRef]
- Rizzi, G.; Lee, J.-R.; Guldberg, P.; Dufva, M.; Wang, S.X.; Hansen, M.F. Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array. Biosens. Bioelectron. 2017, 93, 155–160. [Google Scholar] [CrossRef]
pH Value | 3.5 | 4.5 | 5.5 | 6.5 | 7.5 | |
---|---|---|---|---|---|---|
Object | ||||||
AuNPs | −22.4 ± 1.8 | −32.5 ± 2.5 | −43.2 ± 1.5 | −45.8 ± 3.9 | −50.6 ± 3.3 | |
Conjugate Str−AuNPs | +28.3 ± 1.2 | −1.6 ± 0.2 | −22.5 ± 1.7 | −30.8 ± 3.1 | −37.8 ± 0.6 |
Method/ Detection Principle | DNA Target Size | Label/ Enhancement | Limit of Detection (pM) | Reference |
---|---|---|---|---|
Determination of short oligonucleotides | ||||
Hybridization on nitrocellulose microarrays/ Scanometric detection | Oligonucleotide (19 b) | Indirect labeling of DNA duplexes with AuNPs via streptavidin-biotin interaction/AuNP enhancement at optimized conditions | 0.2 | This work |
Sandwich hybridization on the microelectrodes/Detection of conductivity | Oligonucleotide (27 b) | Direct labeling of detection oligonucleotide probe with AuNPs/ Silver enhancement | 0.5 | [52] |
DNA hybridization with PNA probes/Colorimetric detection | Oligonucleotide (18 b) | Electrostatic interaction of DNA duplexes with AuNPs/ Gold enhancement | 10 | [53] |
Hybridization on DNA microarrays/Scanometric detection | Oligonucleotide (21 b) | Labeling of the ds-DNA with DNA intercalator (daunorubicin) conjugated to AuNPs/ Gold enhancement | 10 | [54] |
Sandwich hybridization on graphene-modified electrode/Differential pulse voltammetry | Oligonucleotide (30 b) | Direct labeling of a second capture oligonucleotide probe with AuNPs/Silver enhancement | 72 | [55] |
Sandwich hybridization on plastic (polycarbonate) biochips)/Scanometric detection | Oligonucleotide (36 b) | Indirect labeling of DNA duplexes with AuNPs via streptavidin-biotin interaction/Silver enhancement | 10,000 (10 nM) | [56] |
Determination of long DNA | ||||
Hybridization on nitrocellulose microarrays/ Scanometric detection | Full-size gene of β-lactamase blaTEM-1 (860 bp) | Indirect labeling of DNA duplexes with AuNPs via streptavidin-biotin interaction/AuNP enhancement at optimized conditions | 35 | This work |
Hybridization on glass slides/Scanometric detection | Full-size gene of β-lactamase blaCTX-M-5 (870 bp) | Indirect labeling of DNA duplexes with horseradish peroxidase via streptavidin-biotin interaction | 710 (0.40 ng μL−1) | [57] |
Hybridization on membrane chromatographic strips combined with recombinase polymerase amplification/Colorimetric | Fragments of β-lactamase genes (blaCTX-M, blaSHV, and blaOXA) (296–593 bp) | Streptavidin-coatedblue latex | 560–1100 (2.5 ng/25 μL) | [58] |
Hybridization on the microarrays fabricated on silicon wafers/Detection of magnetoresistive ratio | Synthetic ssDNA (120 b) | Indirect labeling of DNA duplexes with magnetic NPs via streptavidin-biotin interaction | 39 | [59] |
Adsorption of long DNA amplicons onto unmodified AuNPs prevents their salt-induced aggregation/Colorimetric | Fragment of B. anthracis genome (508 b) | Without labeling | 10 pg | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Presnova, G.V.; Zhdanov, G.A.; Filatova, L.Y.; Ulyashova, M.M.; Presnov, D.E.; Rubtsova, M.Y. Improvement of Seed-Mediated Growth of Gold Nanoparticle Labels for DNA Membrane-Based Assays. Biosensors 2023, 13, 2. https://doi.org/10.3390/bios13010002
Presnova GV, Zhdanov GA, Filatova LY, Ulyashova MM, Presnov DE, Rubtsova MY. Improvement of Seed-Mediated Growth of Gold Nanoparticle Labels for DNA Membrane-Based Assays. Biosensors. 2023; 13(1):2. https://doi.org/10.3390/bios13010002
Chicago/Turabian StylePresnova, Galina V., Gleb A. Zhdanov, Luibov Yu. Filatova, Mariya M. Ulyashova, Denis E. Presnov, and Maya Yu. Rubtsova. 2023. "Improvement of Seed-Mediated Growth of Gold Nanoparticle Labels for DNA Membrane-Based Assays" Biosensors 13, no. 1: 2. https://doi.org/10.3390/bios13010002
APA StylePresnova, G. V., Zhdanov, G. A., Filatova, L. Y., Ulyashova, M. M., Presnov, D. E., & Rubtsova, M. Y. (2023). Improvement of Seed-Mediated Growth of Gold Nanoparticle Labels for DNA Membrane-Based Assays. Biosensors, 13(1), 2. https://doi.org/10.3390/bios13010002