A Competitive “On-Off-Enhanced On” AIE Fluorescence Switch for Detecting Biothiols Based on Hg2+ Ions and Gold Nanoclusters
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Apparatus
2.2. Synthesis of AuNCs
2.3. Synthesis of AuNCs@ZIF-8 Nanocomposites
2.4. Characterization of AuNCs and AuNCs@ZIF-8
2.5. Optimization of Reaction Conditions
2.6. Fluorescent Detection of Cys and GSH Molecules
2.7. Real Sample Analysis
3. Result and Discussion
3.1. Characterization of GSH-AuNCs and AuNCs@ZIF-8
3.2. Optimization of Experimental Conditions
3.3. Sensitivity and Selectivity of AuNCs@ZIF-8/Hg2+ Probes on Cys and GSH Molecules
3.4. Quantitative Sensing on Trace Amount of Cys and GSH Molecules
3.5. Detection Performance in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Townsend, D.M.; Tew, K.D.; Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003, 57, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, A. Molecular mechanisms of homocysteine toxicity and possible protection against hyperhomocysteinemia. Free Radic. Biol. Med. 2009, 47, 138–139. [Google Scholar]
- Kalra, D.K. Homocysteine and cardiovascular disease. Clin. Appl. Immunol. Rev. 2004, 6, 101–106. [Google Scholar] [CrossRef]
- Baszczuk, A.; Kopczyński, Z. Hyperhomocysteinemia in patients with cardiovascular disease. Postep. Ostep. Hig. Med. Dosw. 2014, 68, 579–589. [Google Scholar] [CrossRef]
- Perry, I.J. Homocysteine, hypertension and stroke. J. Hum. Hypertens. 1999, 13, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.; Ly, J.; Chi, P.T.; Daliva, J.; Nguyen, T.; Soofer, C.; Chen, Y.C.; Lagman, M.; Venketaraman, V. Glutathione synthesis is compromised in erythrocytes from individuals with HIV. Front Pharmacol. 2014, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.D.; Zhang, R.; Han, X.; Kang, K.A.; Piao, M.J.; Maeng, Y.H.; Chang, W.Y.; Hyun, J.W. Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Mol. Med. Rep. 2015, 12, 4314–4319. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Chauhan, V.; Chauhan, A. Glutathione redox imbalance in brain disorders. Curr. Opin. Clin. Nutr. Metab. Care 2014, 18, 89–95. [Google Scholar]
- Yuan, X.; Tay, Y.; Dou, X.; Luo, Z.; Leong, D.T.; Xie, J. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem. 2013, 85, 1913–1919. [Google Scholar] [CrossRef]
- Shahrokhian, Saeed, Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem. 2013, 85, 1913–1919.
- Li, R.; Li, W.; Chen, R.; Lin, W. An activatable water-soluble photoacoustic probe for real-time imaging of endogenous cysteine in the mouse tumor model. Sens. Actuators B Chem. 2021, 347, 130616. [Google Scholar] [CrossRef]
- Isokawa, M.; Kanamori, T.; Funatsu, T.; Tsunoda, M. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 964, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Manda, K.R.; Adams, C.; Ercal, N. Biologically important thiols in aqueous extracts of spices and evaluation of their in vitro antioxidant properties. Food Chem. 2010, 118, 589–593. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Huang, X.; Li, Y.; Zhang, H.; Zhong, X. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Analyst 2012, 137, 924–931. [Google Scholar] [CrossRef]
- Tsai, C.J.; Liao, F.Y.; Weng, J.R.; Feng, C.H. Tandem derivatization combined with salting-out assisted liquid-liquid microextraction for determination of biothiols in urine by gas chromatography-mass spectrometry. J. Chromatogr. A 2017, 1524, 29–36. [Google Scholar] [CrossRef]
- Pandith, A.; Seo, Y.J. Label-free sensing platform for miRNA-146a based on chromo-fluorogenic pyrophosphate recognition. J. Inorg. Biochem. 2020, 203, 110867. [Google Scholar] [CrossRef]
- Kim, B.Y.; Pandith, A.; Cho, C.S.; Kim, H.S. Highly selective fluorescent probe based on 2-(2′-dansylamidophenyl)-thiazole for sequential sensing of copper(ii) and iodide ions. Bulletin Korean. Chem. Soc. 2019, 40, 163–168. [Google Scholar]
- Pandith, A.; Bhattarai, K.R.; Siddappa, R.K.G.; Chae, H.J.; Seo, Y.J. Novel fluorescent C-2-symmetric sequential on-off-on switch for Cu2+ and pyrophosphate and its application in monitoring of endogenous alkaline phosphatase activity. Sens. Actuator B 2019, 282, 730–742. [Google Scholar] [CrossRef]
- Li, H.J. A Review of Off-On Fluorescent nanoprobes: Mechanisms, properties, and applications. J. Biomed. Nanotechnol. 2021, 17, 1249–1272. [Google Scholar]
- Bigdeli, A.; Ghasemi, F.; Abbasi-Moayed, S.; Shahrajabian, M.; Fahimi-Kashani, N.; Jafarinejad, S.; Farahmand Nejad, M.A.; Hormozi-Nezhad, M.R. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances-A review. Anal. Chim. Acta 2019, 1079, 30–58. [Google Scholar] [CrossRef] [PubMed]
- Halawa, M.I.; Lai, J.; Xu, G. Gold nanoclusters: Synthetic strategies and recent advances in fluorescent sensing. Mater. Today Nano 2018, 3, 9–27. [Google Scholar] [CrossRef]
- Chen, L.Y.; Wang, C.W.; Yuan, Z.; Chang, H.T. Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Anal. Chem. 2015, 87, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Zhang, S.T.; Li, M.W.; Zhou, Y.Q.; Lu, B.; Yan, D.P.; Wei, M.; Evans, D.G.; Duan, X. Localization of Au nanoclusters on layered double hydroxides nanosheets: Nonfinement-induced emission enhancement and temperature-responsive luminescence. Adv. Funct. Mater. 2015, 25, 5006–5015. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Zhang, T.; Chen, J.; Ji, W.; Wei, Y. Fabrication of an efficient ZIF-8 alginate composite hydrogel material and its application to enhanced copper(ii) adsorption from aqueous solutions. N. J. Chem. 2021, 45, 15876–15886. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, M.; Lu, L.; Lou, X.; Dong, M.; Zhu, L. Metal-organic framework/enzyme coated optical fibers as waveguide-based biosensors. Sens. Actuators B Chem. 2019, 288, 12–19. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, R.; Zhang, G.; Liu, X.; Qu, F.; Lu, L. Embedding carbon dots and gold nanoclusters in metal-organic frameworks for ratiometric fluorescence detection of Cu(2). Anal. Bioanal. Chem. 2020, 412, 1317–1324. [Google Scholar] [CrossRef]
- Dai, X.Q.; Hang, Y.H.; Zhao, X.; Sun, C.; Ju, L.N.; Gui, X.J.; Sun, S.; Xu, Y.B.; Wang, Y.R.; Li, Y.F. ZIF-8 as an adsorbent of aqueous phase for Eu and Tb ions. Micro Nano Lett. 2016, 12, 187–190. [Google Scholar] [CrossRef]
- Chi, J.; Guo, M.; Zhang, C.; Zhang, Y.; Ai, S.; Hou, J.; Wu, P.; Li, X. Glucose oxidase and Au nanocluster co-encapsulated metal-organic frameworks as a sensitive colorimetric sensor for glucose based on a cascade reaction. N. J. Chem. 2020, 44, 13344–13349. [Google Scholar] [CrossRef]
- Khataee, A.; Jalili, R.; Dastborhan, M.; Karimi, A.; Azar, A.E.F. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters, Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 242, 118715. [Google Scholar] [CrossRef]
- Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D.T.; Lee, J.Y.; Xie, J. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.H.; Shi, X.Q.; Wang, F.F.; Peng, H.P.; Liu, A.L.; Xia, X.H.; Chen, W. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host-guest recognition. Chem. Mater. 2017, 29, 1362–1369. [Google Scholar] [CrossRef]
- Xie, M.; Wang, Y.; Liu, L.; Wang, X.; Jiang, H. Luminescent gold-peptide spheric aggregates: Selective and effective cellular targeting. J. Colloid. Interface Sci. 2022, 614, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Sui, Y.; Guo, Y.; Zhang, Y. Aggregation-induced emission enhancement of gold nanoclusters in metal-organic frameworks for highly sensitive fluorescent detection of bilirubin. Analyst 2021, 146, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Yang, L.; Dong, X.; Zhou, L.; Wei, Q.; Ju, H. Cysteine modification of glutathione-stabilized Au nanoclusters to red-shift and enhance the electrochemiluminescence for sensitive bioanalysis. Anal. Chem. 2022, 94, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.; Liu, Q.; Huang, Z.; Yang, J.; Jiang, S. Gold nanoclusters-decorated zeolitic imidazolate frameworks with reactive oxygen species generation for photoenhanced antibacterial study. Bioconjug. Chem. 2020, 31, 2439–2445. [Google Scholar] [CrossRef]
- Feng, A.; Jiang, Q.; Song, G.; Xu, Z.; Liu, X. DNA-templated NIR-emitting gold nanoclusters with peroxidase-like activity as a multi-signal probe for Hg2+ detection. Chin. J. Anal. Chem. 2022, 50, 16662–16670. [Google Scholar] [CrossRef]
- Ravichandran, M. Interactions between mercury and dissolved organic matter-a review. Chemosphere 2004, 55, 319–331. [Google Scholar] [CrossRef]
- Yan, F.; Shi, D.; Zheng, T.; Yun, K.; Zhou, X.; Chen, L. Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and L-cysteine by means of fluorescence “Off-On” switching. Sens. Actuators B Chem. 2016, 224, 926–935. [Google Scholar] [CrossRef]
- Li, X.; Qiao, J.; Li, Z.; Qi, L. Fluorescence turn-off-on for highly selective detection of serum l-cysteine based on AuNCs-AuNPs ensembles. Analyst 2020, 145, 2233–2237. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Wang, J.M.; Liang, Q.; Liu, H.; Xu, J.; Shao, S.J. A gold nanocluster-based ratiometric fluorescent probe for cysteine and homocysteine detection in living cells. N. J. Chem. 2017, 41, 4416–4423. [Google Scholar] [CrossRef]
- Wang, Y.W.; Tang, S.; Yang, H.H.; Song, H. A novel colorimetric assay for rapid detection of cysteine and Hg2+ based on gold clusters. Talanta 2016, 146, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lin, B.; Yu, Y.; Cao, Y.; Guo, M.; Shui, L. A ratiometric nanoprobe based on silver nanoclusters and carbon dots for the fluorescent detection of biothiols. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 195, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Liu, P.; Jin, C.; Liu, Q.Y.; Zhang, X.; Zhang, X. Flower-like CeO2/CoO p-n heterojuncted nanocomposites with enhanced peroxidase-mimicking activity for L-cysteine sensing. ACS Sustain. Chem. Eng. 2020, 8, 17540–17550. [Google Scholar] [CrossRef]
Material | Linear Range | LOD | Reference |
---|---|---|---|
CDs | 2–20 μM for Cys | 0.29 μM | [39] |
AuNCs/AuNPs | 1.5–35 μM for Cys | 1.4 μM | [40] |
AuNCs | 8.3–100 μM for Cys | 1.45 μM | [41] |
AuNCs | 0.2–60 μM for Cys | 80 nM | [42] |
AgNCs/NCDs | 20–80 μM for Cys 20–80 μM for GSH | 0.14 μM 0.4 μM | [43] |
CeO2/CoO | 5–10 μM for Cys | 3.71 μM | [44] |
AuNCs@ZIF-8 | 1–10 μM for Cys 1.5–8 μM for GSH | 0.15 μM 0.32 μM | Our work |
Types of Biothiols | Detected (μM) | Spiked (μM) | Found (μM) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|---|
Cys | 2 | 3.25 ± 0.06 | 111.94 ± 2.86 | 2.56 | |
1.008 | 4 | 4.90 ± 0.15 | 97.36 ± 3.83 | 3.94 | |
8 | 10.39 ± 0.12 | 115.31 ± 3.37 | 2.92 | ||
GSH | 1.567 | 2 | 3.64 ± 0.14 | 115.46 ± 4.24 | 3.67 |
4 | 6.09 ± 0.01 | 113.04 ± 0.36 | 0.32 | ||
6 | 7.88 ± 0.20 | 105.29 ± 3.40 | 3.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wan, Y.; Li, Y.; Liu, J.; Pi, F.; Liu, L. A Competitive “On-Off-Enhanced On” AIE Fluorescence Switch for Detecting Biothiols Based on Hg2+ Ions and Gold Nanoclusters. Biosensors 2023, 13, 35. https://doi.org/10.3390/bios13010035
Li S, Wan Y, Li Y, Liu J, Pi F, Liu L. A Competitive “On-Off-Enhanced On” AIE Fluorescence Switch for Detecting Biothiols Based on Hg2+ Ions and Gold Nanoclusters. Biosensors. 2023; 13(1):35. https://doi.org/10.3390/bios13010035
Chicago/Turabian StyleLi, Shuqi, Yuqi Wan, Yu Li, Jinghan Liu, Fuwei Pi, and Ling Liu. 2023. "A Competitive “On-Off-Enhanced On” AIE Fluorescence Switch for Detecting Biothiols Based on Hg2+ Ions and Gold Nanoclusters" Biosensors 13, no. 1: 35. https://doi.org/10.3390/bios13010035
APA StyleLi, S., Wan, Y., Li, Y., Liu, J., Pi, F., & Liu, L. (2023). A Competitive “On-Off-Enhanced On” AIE Fluorescence Switch for Detecting Biothiols Based on Hg2+ Ions and Gold Nanoclusters. Biosensors, 13(1), 35. https://doi.org/10.3390/bios13010035