C-undecylcalix[4]resorcinarene Langmuir–Blodgett/Porous Reduced Graphene Oxide Composite Film as a Electrochemical Sensor for the Determination of Tryptophan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Preparation of Porous Reduced Graphene Oxide
2.4. Fabrication of the Composite Film-Modified Electrode
3. Results and Discussion
3.1. Characteristics of CUCR-LB Film
3.2. Characteristics of CUCR-LB/PrGO/GCE
3.3. Electrochemical Behavior of Trp on CUCR-LB/PrGO/GCE
3.4. Analytical Method Validations
3.4.1. Optimization of Analysis and Detection Conditions
3.4.2. Analytical Performances
3.4.3. Interference Studies
3.4.4. Electrode Renewal
3.5. Determination of Trp in Amino Acid Injection Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedman, M. Analysis, nutrition, and health benefits of tryptophan. Int. J. Tryptophan. Res. 2018, 11, 117–128. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Li, J.J.; Qu, L.B.; Harrington, P.D. A highly selective and sensitive electrochemical sensor for tryptophan based on the excellent surface adsorption and electrochemical properties of PSS functionalized graphene. Talanta 2019, 196, 309–316. [Google Scholar] [CrossRef]
- Lian, W.; Ma, D.J.; Xu, X.; Chen, Y.; Wu, Y.L. Rapid high-performance liquid chromatography method for determination of tryptophan in gastric juice. J. Digest. Dis. 2012, 13, 100–106. [Google Scholar] [CrossRef]
- Reynolds, D.M. Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy. Water Res. 2003, 37, 3055–3060. [Google Scholar] [CrossRef]
- Altria, K.D.; Harkin, P.; Hindson, M.G. Quantitative determination of tryptophan enantiomers by capillary electrophoresis. J. Chromatogr. B. 1996, 686, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Marklova, E.; Fojtaskova, A.; Makovickova, H. HPLC methods for determination of tryptophan and its metabolites. Chem. Listy 1996, 90, 732–733. [Google Scholar]
- Ozcan, A.; Sahin, Y. A novel approach for the selective determination of tryptophan in blood serum in the presence of tyrosine based on the electrochemical reduction of oxidation product of tryptophan formed in situ on graphite electrode. Biosens. Bioelectron. 2012, 31, 26–31. [Google Scholar] [CrossRef]
- Karimian, N.; Hashemi, P.; Khanmohammadi, A.; Afkhami, A.; Bagheri, H. The principles and recent applications of bioelectrocatalysis. Anal. Bioanal. Chem. Re 2020, 7, 281–301. [Google Scholar]
- Xu, C.; Huang, K.; Fan, Y.; Wu, Z.; Li, J.; Can, T. Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly(4-aminobenzenesulfonic acid) composite film based platform. Mat. Sci. Eng. C-Mater. 2012, 32, 969–974. [Google Scholar] [CrossRef]
- Arroquia, A.; Acosta, I.; Garcia Armada, M.P. Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. Mat. Sci. Eng. C-Mater. 2020, 109, 110602. [Google Scholar] [CrossRef]
- Zhang, Y.; Waterhouse, G.I.N.; Xiang, Z.P.; Che, J.; Chen, C.; Sun, W.Z. A highly sensitive electrochemical sensor containing nitrogen-doped ordered mesoporous carbon (NOMC) for voltammetric determination of L-tryptophan. Food Chem. 2020, 326, 126976. [Google Scholar] [CrossRef]
- Ratautaite, V.; Brazys, E.; Ramanaviciene, A.; Ramanavicius, A. Electrochemical sensors based on L-tryptophan molecularly imprinted polypyrrole and polyaniline. J. Electroanal. Chem. 2022, 917, 116389. [Google Scholar] [CrossRef]
- Prinith, N.S.; Manjunatha, J.G. Electrochemical analysis of L-Tryptophan at highly sensitive poly(Glycine) modified carbon nanotube paste sensor. Mater. Res. Innovations 2022, 26, 134–143. [Google Scholar] [CrossRef]
- Rajendran, K.; Nallal, M.; Ganesan, M.; Shanmugasundaram, M.; Hira, S.A.; Gopalakrishnan, G.; Murugan, S.; Aharon, G.; Park, K.H. Fabrication of dual functional 3D-CeVO4/MWNT hybrid nanocomposite as a high-performance electrode material for supercapacitor and L-Tryptophan detection. Electrochim. Acta 2023, 445, 142020–142031. [Google Scholar] [CrossRef]
- Nasimi, H.; Madsen, J.S.; Zedan, A.H.; Malmendal, A.; Osther, P.J.S.; Alatraktchi, F.A. Electrochemical sensors for screening of tyrosine and tryptophan as biomarkers for diseases: A narrative review. Microchem. J. 2023, 190, 108737. [Google Scholar] [CrossRef]
- Walcarius, A. Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. Trac-Trend. Anal. Chem. 2012, 38, 79–97. [Google Scholar] [CrossRef]
- Demon, S.Z.N.; Kamisan, A.I.; Abdullah, N.; Noor, S.A.M.; Khim, O.K.; Kasim, N.A.M.; Yahya, M.Z.A.; Manaf, N.A.A.; Azmi, A.F.M.; Halim, N.A. Graphene-based materials in gas sensor applications: A review. Sensor. Mater. 2020, 32, 759–777. [Google Scholar] [CrossRef]
- Wu, S.X.; He, Q.Y.; Tan, C.L.; Wang, Y.D.; Zhang, H. Graphene-based electrochemical sensors. Small 2013, 9, 1160–1172. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Wang, H.; Li, F.; Zhang, Y.; Zhang, N. Three-dimensional porous reduced graphene oxide modified electrode for highly sensitive detection of trace rifampicin in milk. Anal. Methods 2022, 14, 2304–2310. [Google Scholar] [CrossRef]
- Chekin, F.; Singh, S.K.; Vasilescu, A.; Dhavale, V.M.; Kurungot, S.; Boukherroub, R.; Szunerits, S. Reduced graphene oxide modified electrodes for sensitive sensing of gliadin in food samples. ACS Sens. 2016, 1, 1462–1470. [Google Scholar] [CrossRef]
- Ikeda, A.; Shinkai, S. Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding. Chem. Rev. 1997, 97, 1713–1734. [Google Scholar] [CrossRef] [PubMed]
- Gissawong, N.; Srijaranai, S.; Nanan, S.; Mukdasai, K.; Uppachai, P.; Teshima, N.; Mukdasai, S. Electrochemical detection of methyl parathion using calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode. Microchim. Acta 2022, 189, 461–472. [Google Scholar] [CrossRef]
- Xu, Y.J.; Hao, Q.L.; Mandler, D. Electrochemical detection of dopamine by a calixarene-cellulose acetate mixed Langmuir-Blodgett monolayer. Anal. Chim. Acta 2018, 1042, 29–36. [Google Scholar] [CrossRef]
- Wang, F.; Chi, C.L.; Yu, B.; Ye, B.X. Simultaneous voltammetric determination of dopamine and uric acid based on Langmuir-Blodgett film of calixarene modified glassy carbon electrode. Sensor. Actuat. B-Chem. 2015, 221, 1586–1593. [Google Scholar] [CrossRef]
- Xin, C.Z.; Gao, S.S.; Din, Y.X.; Wu, Y.J.; Wang, F. Direct electrodeposition to fabricate 3D graphene network modified glassy carbon electrode for sensitive determination of tadalafil. Nano 2019, 14, 93–102. [Google Scholar] [CrossRef]
- Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-reduction of graphite- and graphene oxide. Carbon 2011, 49, 3019–3023. [Google Scholar] [CrossRef]
- Van der Heyden, A.; Regnouf-de-Vains, J.B.; Warszyński, P.; Dalbavie, J.O.; Żywociński, A.; Rogalska, E. Probing inter- and intramolecular interactions of six new p-tert-butylcalix[4]arene-based bipyridyl podands with langmuir monolayers. Langmuir 2002, 18, 8854–8861. [Google Scholar] [CrossRef]
- Kämmerer, H.; Happel, G.; Mathiasch, B. Schrittweise synthesen und eigenschaften einiger cyclopentamerer aus methylenverbrückten (5-alkyl-2-hydroxy-1,3-phenylen)-bausteinen. Makromol. Chem. 1981, 182, 1685–1694. [Google Scholar] [CrossRef]
- Pei, R.J.; Cheng, Z.L.; Wang, E.K.; Yang, X.R. Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. Biosens. Bioelectron. 2001, 16, 355–361. [Google Scholar] [CrossRef]
- Yim, J.H.; Kim, J.; Gidley, D.W.; Vallery, R.S.; Peng, H.G.; An, D.K.; Choi, B.K.; Park, Y.K.; Jeon, J.K. Calixarene derivatives as novel nanopore generators for templates of nanoporous thin films. Macromol. Mater. Eng. 2006, 291, 369–376. [Google Scholar] [CrossRef]
- Wang, H.; Robinson, J.T.; Li, X.L.; Dai, H.J. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ganesan, K.; Polaki, S.R.; Ravindran, T.R.; Krishna, N.G.; Kamruddin, M.; Tyagi, A.K. Evolution and defect analysis of vertical graphene nanosheets. J. Raman. Spectrosc. 2014, 45, 642–649. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods, Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Gosser, D.K. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms; VCH: New York, NY, USA, 1993; p. 154. [Google Scholar]
- Anson, F.C. Application of potentiostatic current integration to the study of the adsorption of cobalt(iii)-(ethylenedinitrilo(tetraacetate) on mercury electrodes. Anal. Chem. 1964, 36, 932–934. [Google Scholar] [CrossRef]
- Pournaghi-Azar, M.H.; Sabzi, R. Electrochemical characteristics of a cobalt pentacyanonitrosylferrate film on a modified glassy carbon electrode and its catalytic effect on the electrooxidation of hydrazine. J. Electroanal. Chem. 2003, 543, 115–125. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education Limited: London, UK, 2010. [Google Scholar]
- Deng, K.; Zhou, J.; Li, X. Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine. Colloids Surf. B 2013, 101, 183–188. [Google Scholar] [CrossRef]
- Tig, G.A. Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and L-tryptophan based on Ag nanoparticles and poly(L-arginine)-graphene oxide composite. J. Electroanal. Chem. 2017, 807, 19–28. [Google Scholar] [CrossRef]
- Beitollahi, H.; Safaei, M.; Shishehbore, M.R.; Tajik, S. Application of Fe3O4@SiO2/GO nanocomposite for sensitive and selective electrochemical sensing of tryptophan. J. Electrochem. Sci. En. 2019, 9, 45–53. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, Z.; Wu, Z.; Xie, M.; Tian, Y.; Wu, Y.; Liu, J.; Li, G.; He, Q. Ta2O5/rGO nanocomposite modified electrodes for detection of tryptophan through electrochemical route. Nanomaterials 2019, 9, 811. [Google Scholar] [CrossRef]
- Murugan, E.; Kumar, K. Fabrication of SnS/TiO2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal. Chem. 2019, 91, 5667–5676. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, A.A.; Elseman, A.M.; Alotaibi, N.F.; Nassar, A.M. Simultaneous voltammetric determination of ascorbic acid, dopamine, acetaminophen and tryptophan based on hybrid trimetallic nanoparticles-capped electropretreated graphene. Microchem. J. 2020, 156, 104927. [Google Scholar] [CrossRef]
- Nazarpour, S.; Hajian, R.; Sabzvari, M.H. A novel nanocomposite electrochemical sensor based on green synthesis of reduced graphene oxide/gold nanoparticles modified screen printed electrode for determination of tryptophan using response surface methodology approach. Microchem. J. 2020, 154, 104634. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, R.; Tang, Z.; Wang, H.; Deng, P.; Tang, Y. Sensitive and selective determination of tryptophan using a glassy carbon electrode modified with nano-CeO2/reduced graphene oxide composite. Microchem. J. 2020, 159, 105367. [Google Scholar] [CrossRef]
- Sangili, A.; Vinothkumar, V.; Chen, S.-M.; Veerakumar, P.; Chang, C.-W.; Muthuselvam, I.P.; Lin, K.-C. Highly selective voltammetric sensor for l-tryptophan using composite-modified electrode composed of CuSn(OH)6 microsphere decorated on reduced graphene oxide. J. Phys. Chem. C 2020, 124, 25821–25834. [Google Scholar] [CrossRef]
- Gao, J.; Li, H.; Li, M.; Wang, G.; Long, Y.; Li, P.; Li, C.; Yang, B. Polydopamine/graphene/MnO2 composite-based electrochemical sensor for in situ determination of free tryptophan in plants. Anal. Chim. Acta 2021, 1145, 103–113. [Google Scholar] [CrossRef]
- Faridan, A.; Bahmaei, M.; Sharif, A.M. Simultaneous determination of trace amounts ascorbic acid, melatonin and tryptophan using modified glassy carbon electrode based on Cuo-CeO2-rGO-MWCNTS nanocomposites. Anal. Bioanal. Electro. 2022, 14, 201–215. [Google Scholar]
- Zhang, S.; Ling, P.; Chen, Y.; Liu, J.; Yang, C. 2D/2D porous Co3O4/rGO nanosheets act as an electrochemical sensor for voltammetric tryptophan detection. Diamond Relat. Mater. 2023, 135, 109811. [Google Scholar] [CrossRef]
N | Cdl (F) | W (Ω cm−2) | RΩ(Ω) | Rct (Ω) | d (nm) |
---|---|---|---|---|---|
1 | 3.967 × 10−8 | 0.003273 | 22.99 | 336.5 | 4.4 |
2 | 9.726 × 10−9 | 0.002009 | 32.32 | 540.6 | 9.0 |
3 | 4.388 × 10−9 | 0.001972 | 40.23 | 778.4 | 13.3 |
Electrode | CV | CC and CA | ||
---|---|---|---|---|
Epa (V) | ipa (μA) | Γ* × 109 (mol cm−2) | kcat × 10−3 (mol L−1 s−1) | |
bare GCE | 0.755 | 0.58 | 0.23 | 0.39 |
rGO/GCE | 0.635 | 9.97 | 3.78 | 6.09 |
PrGO/GCE | 0.621 | 17.89 | 9.17 | 10.9 |
CUCR-LB/PrGO/GCE | 0.619 | 29.54 | 11.7 | 20.7 |
Electrode | Methods | Linear Range (mol L−1) | Detection Limit (mol L−1) | Reference |
---|---|---|---|---|
TiO2-GR/4-ABSA/GCE | DPV | 1.0 × 10−6~3.0 × 10−5 | 3.0 × 10−7 | [9] |
ErGO/GCE | DPV | 2.0 × 10−7~4.0 × 10−5 | 1.0 × 10−7 | [38] |
AgNPs/P(Arg)-GO/GCE | DPV | 1.0 × 10−6~1.5 × 10−4 | 1.22 × 10−7 | [39] |
Fe3O4@SiO2/GO/SPE | DPV | 1.0 × 10−6~4.0 × 10−4 | 2.0 × 10−7 | [40] |
Ta2O5-rGO/GCE | LSV | 1.0 × 10−6~8.0 × 10−6 8.0 × 10−6~8.0 × 10−5 8.0 × 10−5~8.0 × 10−4 | 8.4 × 10−7 | [41] |
SnS/TiO2@GO/GCE | DPV | 1.33 × 10−8~1.57 × 10−4 | 7.8 × 10−9 | [42] |
(Au/Ag/Pd)NPs/EPGrO/GCE | DPV | 1.0 × 10−6~6.0 × 10−4 | 3.0 × 10−8 | [43] |
rGO/AuNPs/SPE | DPV | 5.0 × 10−7~5.0 × 10−4 | 3.9 × 10−7 | [44] |
nano-CeO2/rGO/GCE | LSV | 1.0 × 10−8~1.0 × 10−5 | 6.0 × 10−9 | [45] |
CSOH/rGO/GCE | DPV | 5.0 × 10−8~1.758 × 10−5 | 2.0 × 10−9 | [46] |
PDA/rGO-MnO2/GCE | DPV | 1.0 × 10−6~3.0 × 10−4 | 2.2 × 10−7 | [47] |
CuO-CeO2-rGO-MWCNTs/GCE | DPV | 1.0 × 10−8~1.35 × 10−5 | 7.3 × 10−9 | [48] |
Co3O4/rGO/GCE | LSV | 1.0 × 10−6~8.0 × 10−4 | 2.6 × 10−7 | [49] |
CUCR-LB/PrGO/GCE | LSV | 1.0 × 10−7~3.0 × 10−5 | 3.0 × 10−8 | This work |
Sample | LSV | HPLC | |||||
---|---|---|---|---|---|---|---|
Labeled (μmol L−1) | Detected (μmol L−1) | Added (μmol L−1) | Total Detected (μmol L−1) | RSD (%) | Recovery (%) | Detected (μmol L−1) | |
1 a | 5.00 | 5.10 (±0.14) | 2.0 | 7.18 (±0.21) | 2.9 | 104.0 | 5.08 (±0.05) |
20.0 | 24.83 (±0.30) | 3.8 | 98.7 | ||||
2 b | 2.50 | 2.56 (±0.09) | 2.0 | 4.61 (±0.13) | 3.1 | 102.5 | 2.54 (±0.08) |
20.0 | 22.47 (±0.24) | 3.9 | 99.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, K.; Wang, F. C-undecylcalix[4]resorcinarene Langmuir–Blodgett/Porous Reduced Graphene Oxide Composite Film as a Electrochemical Sensor for the Determination of Tryptophan. Biosensors 2023, 13, 1024. https://doi.org/10.3390/bios13121024
Wu Y, Chen K, Wang F. C-undecylcalix[4]resorcinarene Langmuir–Blodgett/Porous Reduced Graphene Oxide Composite Film as a Electrochemical Sensor for the Determination of Tryptophan. Biosensors. 2023; 13(12):1024. https://doi.org/10.3390/bios13121024
Chicago/Turabian StyleWu, Yanju, Keyu Chen, and Fei Wang. 2023. "C-undecylcalix[4]resorcinarene Langmuir–Blodgett/Porous Reduced Graphene Oxide Composite Film as a Electrochemical Sensor for the Determination of Tryptophan" Biosensors 13, no. 12: 1024. https://doi.org/10.3390/bios13121024