An Innovative Polymer-Based Electrochemical Sensor Encrusted with Tb Nanoparticles for the Detection of Favipiravir: A Potential Antiviral Drug for the Treatment of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Standard and Reagent Solutions
2.4. Fabrication of TbNPS@ Poly m-THB/PGE
2.5. Analytical Procedures for Estimation of FAV
2.5.1. General Analytical Procedure
2.5.2. Procedure for Estimation of FAV in Tablets
2.5.3. Estimation of FAV in Human Plasma
2.6. Characterization of TbNPs@ Poly m-THB/PGE
2.7. Validation Data
3. Results
3.1. Preparation of TbNPS@ Poly m-THB/PGE
3.2. Electrochemical Performance of FAV at Bare and Modified PGE
3.3. Characterization of TbNPs@ Poly m-THB/PGE
3.4. Investigation of Scan Rate
3.5. Electrochemical Characterization of TbNPs@ Poly m-THB/PGE
3.6. Optimization of Method’s Parameters
3.6.1. Effect of pH
3.6.2. SWV Parameters
3.7. Validation Study
3.7.1. Linearity and Sensitivity Limits
3.7.2. Accuracy and Precision
3.7.3. Selectivity
3.8. Method Applications
3.8.1. Estimation of FAV in Pharmaceutical Tablet
3.8.2. Estimation of FAV in Human Plasma
3.9. Stability and Reproducibility of the Fabricated Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021, 102, 501–508. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering 2020, 6, 1192–1198. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. The end of the COVID-19 pandemic. Eur. J. Clin. Investig. 2022, 52, e13782. [Google Scholar] [CrossRef]
- Murray, C.J. COVID-19 will continue but the end of the pandemic is near. Lancet 2022, 399, 417–419. [Google Scholar] [CrossRef]
- Sharaf, Y.A.; El Deeb, S.; Ibrahim, A.E.; Al-Harrasi, A.; Sayed, R.A. Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen. Molecules 2022, 27, 2330. [Google Scholar] [CrossRef]
- Megahed, S.M.; Habib, A.A.; Hammad, S.F.; Kamal, A.H. Experimental design approach for development of spectrofluorimetric method for determination of favipiravir; a potential therapeutic agent against COVID-19 virus: Application to spiked human plasma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 249, 119241. [Google Scholar] [CrossRef]
- Mikhail, I.E.; Elmansi, H.; Belal, F.; Ehab Ibrahim, A. Green micellar solvent-free HPLC and spectrofluorimetric determination of favipiravir as one of COVID-19 antiviral regimens. Microchem. J. 2021, 165, 106189. [Google Scholar] [CrossRef]
- El Sharkasy, M.E.; Tolba, M.M.; Belal, F.; Walash, M.; Aboshabana, R. Quantitative analysis of favipiravir and hydroxychloroquine as FDA-approved drugs for treatment of COVID-19 using synchronous spectrofluorimetry: Application to pharmaceutical formulations and biological fluids. Luminescence 2022, 37, 953–964. [Google Scholar] [CrossRef]
- Ibrahim, A.E.; Sharaf, Y.A.; El Deeb, S.; Sayed, R.A. Analytical Performance and Greenness Evaluation of Five Multi-Level Design Models Utilized for Impurity Profiling of Favipiravir, a Promising COVID-19 Antiviral Drug. Molecules 2022, 27, 3658. [Google Scholar] [CrossRef]
- Noureldeen, D.A.M.; Boushra, J.M.; Lashien, A.S.; Hakiem, A.F.A.; Attia, T.Z. Novel environment friendly TLC-densitometric method for the determination of anti-coronavirus drugs “Remdesivir and Favipiravir”: Green assessment with application to pharmaceutical formulations and human plasma. Microchem. J. 2022, 174, 107101. [Google Scholar] [CrossRef]
- Saraya, R.E.; Deeb, S.E.; Salman, B.I.; Ibrahim, A.E. Highly sensitive high-performance thin-layer chromatography method for the simultaneous determination of molnupiravir, favipiravir, and ritonavir in pure forms and pharmaceutical formulations. J. Sep. Sci. 2022, 45, 2582–2590. [Google Scholar] [CrossRef]
- Bulduk, İ. HPLC-UV method for quantification of favipiravir in pharmaceutical formulations. Acta Chromatogr. 2021, 33, 209–215. [Google Scholar] [CrossRef]
- Marzouk, H.M.; Rezk, M.R.; Gouda, A.S.; Abdel-Megied, A.M. A Novel Stability-Indicating HPLC-DAD Method for Determination of Favipiravir, a Potential Antiviral Drug for COVID-19 Treatment; Application to Degradation Kinetic Studies and In-Vitro Dissolution Profiling. Microchem. J. 2022, 172, 106917. [Google Scholar] [CrossRef]
- Rezk, M.R.; Badr, K.A.; Abdel-Naby, N.S.; Ayyad, M.M. A novel, rapid and simple UPLC–MS/MS method for quantification of favipiravir in human plasma: Application to a bioequivalence study. Biomed. Chromatogr. 2021, 35, e5098. [Google Scholar] [CrossRef]
- Morsy, M.I.; Nouman, E.G.; Abdallah, Y.M.; Zainelabdeen, M.A.; Darwish, M.M.; Hassan, A.Y.; Gouda, A.S.; Rezk, M.R.; Abdel-Megied, A.M.; Marzouk, H.M. A novel LC-MS/MS method for determination of the potential antiviral candidate favipiravir for the emergency treatment of SARS-CoV-2 virus in human plasma: Application to a bioequivalence study in Egyptian human volunteers. J. Pharm. Biomed. Anal. 2021, 199, 114057. [Google Scholar] [CrossRef]
- Emam, A.A.; Abdelaleem, E.A.; Abdelmomen, E.H.; Abdelmoety, R.H.; Abdelfatah, R.M. Rapid and ecofriendly UPLC quantification of Remdesivir, Favipiravir and Dexamethasone for accurate therapeutic drug monitoring in Covid-19 Patient’s plasma. Microchem. J. 2022, 179, 107580. [Google Scholar] [CrossRef]
- Onmaz, D.E.; Abusoglu, S.; Onmaz, M.; Yerlikaya, F.H.; Unlu, A. Development and validation of a sensitive, fast and simple LC-MS/MS method for the quantitation of favipiravir in human serum. J. Chromatogr. B 2021, 1176, 122768. [Google Scholar] [CrossRef]
- Allahverdiyeva, S.; Yunusoğlu, O.; Yardım, Y.; Şentürk, Z. First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode. Anal. Chim. Acta 2021, 1159, 338418. [Google Scholar] [CrossRef]
- Kanbeş Dindar, Ç.; Bozal-Palabiyik, B.; Uslu, B. Development of a Diamond Nanoparticles-based Nanosensor for Detection and Determination of Antiviral Drug Favipiravir. Electroanalysis 2022, 34, 1174–1186. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Khoshnavaz, Y.; Tuzen, M.; Erk, N. Voltammetric sensor based on bimetallic nanocomposite for determination of favipiravir as an antiviral drug. Microchim. Acta 2021, 188, 434. [Google Scholar] [CrossRef]
- Akca, Z.; ÖZOK, H.İ.; Yardim, Y.; Şentürk, Z. Electroanalytical investigation and voltammetric quantification of antiviral drug favipiravir in the pharmaceutical formulation and urine sample using a glassy carbon electrode in anionic surfactant media. Turk. J. Chem. 2022, 46, 869–880. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Eldin, G.M.; Ismail, S.M.; Zine, N.; Elaissari, A.; Jaffrezic-Renault, N.; Errachid, A. Innovative electrochemical sensor for the precise determination of the new antiviral COVID-19 treatment Favipiravir in the presence of coadministered drugs. J. Electroanal. Chem. 2021, 895, 115422. [Google Scholar] [CrossRef]
- El-Wekil, M.M.; Hayallah, A.M.; Abdelgawad, M.A.; Abourehab, M.A.; Shahin, R.Y. Nanocomposite of gold nanoparticles@ nickel disulfide-plant derived carbon for molecularly imprinted electrochemical determination of favipiravir. J. Electroanal. Chem. 2022, 922, 116745. [Google Scholar] [CrossRef]
- Erçarıkcı, E.; Aksu, Z.; Topçu, E.; Kıranşan, K.D. ZnS Nanoparticles-decorated Composite Graphene Paper: A Novel Flexible Electrochemical Sensor for Detection of Dopamine. Electroanalysis 2022, 34, 91–102. [Google Scholar] [CrossRef]
- Erçarıkcı, E.; Aksu, Z.; Dağcı Kıranşan, K.; Topçu, E. Graphene paper with electrodeposited NiCo2S4 nanoparticles as a novel flexible sensor for simultaneous detection of folic acid and ascorbic acid. Diam. Relat. Mater. 2022, 121, 108713. [Google Scholar] [CrossRef]
- Abdel-aal, F.A.; Ali, M.F. Eco-friendly fabricated electrochemical sensor using red cabbage extract for electrochemical determination of dacarbazine with the aid of factorial design approach. J. Electrochem. Soc. 2017, 164, H1053. [Google Scholar] [CrossRef]
- Ali, M.F.; El-Zahry, M.R. A comparative study of different electrodeposited NiCo 2 O 4 microspheres anchored on a reduced graphene oxide platform: Electrochemical sensor for anti-depressant drug venlafaxine. RSC Adv. 2019, 9, 31609–31620. [Google Scholar] [CrossRef]
- El-Zahry, M.R.; Ali, M.F. A novel polymer integrated Vertically-Oriented reduced graphene oxide sheets supported over palladium nanoparticles based sensor for Real-Time monitoring of Sorafenib; a Multi-kinase inhibitor in complex biological samples. Microchem. J. 2022, 180, 107549. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Yu, X.; Ding, X.; Yu, X.; Tang, K. High sensitivity humidity sensor and its application in nondestructive testing for wet paper. Sens. Actuators B Chem. 2019, 301, 127048. [Google Scholar] [CrossRef]
- Vishnu, N.; Gandhi, M.; Badhulika, S.; Kumar, A.S. Tea quality testing using 6B pencil lead as an electrochemical sensor. Anal. Methods 2018, 10, 2327–2336. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; Plikusiene, I. Polymers in Sensor and Biosensor Design. Polymers 2021, 13, 917. [Google Scholar] [CrossRef]
- Hosny, N.M.; Ali, M.F. Emphasis on the incorporation of Tropaeolin OO dye and silver nanoparticles for voltammetric estimation of flibanserin in bulk form, tablets and human plasma. Talanta 2022, 245, 123420. [Google Scholar] [CrossRef]
- Ali, M.F.; Abdel-Aal, F.A. In situ polymerization and FT-IR characterization of poly-glycine on pencil graphite electrode for sensitive determination of anti-emetic drug, granisetron in injections and human plasma. RSC Adv. 2019, 9, 4325–4335. [Google Scholar] [CrossRef]
- Mahanthesha, K.; Swamy, B.K.; Chandra, U. Simultaneous determination of dopamine at poly (Pyrogallol) modified carbon paste electrode: A Voltammetric Study. IJRAR-Int. J. Res. Anal. Rev. (IJRAR) 2018, 5, 1252–1257. [Google Scholar]
- Sukanya, R.; Sakthivel, M.; Chen, S.-M.; Chen, T.-W. A new type of terbium diselenide nano octagon integrated oxidized carbon nanofiber: An efficient electrode material for electrochemical detection of morin in the food sample. Sens. Actuators B: Chem. 2018, 269, 354–367. [Google Scholar] [CrossRef]
- Baytak, A.K.; Duzmen, S.; Teker, T.; Aslanoglu, M. A novel modified electrode based on terbium oxide and carbon nanotubes for the simultaneous determination of methyldopa and paracetamol. Anal. Methods 2016, 8, 4711–4719. [Google Scholar] [CrossRef]
- Gadallah, M.I.; Ali, H.R.H.; Askal, H.F.; Saleh, G.A. Development of terbium based sensor for determination of imipenem in dosage forms and real samples. J. Mol. Liq. 2019, 276, 705–713. [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology, Q2 (R1) Geneva. 2005. Available online: http://www.ich.org (accessed on 6 June 2021).
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
Parameter | FAV |
---|---|
Linearity range (×10−9 M) | 10–150 |
Correlation coefficient (r) | 0.9994 |
Intercept (a) ± SD * | 1.46 ± 2.33 |
Slope (b) ± SD * | 2.5 ± 0.04 |
LOD ** (×10−9 M) | 3.08 |
LOQ ** (×10−9 M) | 9.32 |
Authentic Drug | Conc. (×10−9 M) | Accuracy | Intra-Day Precision | Inter-Day Precision | |||
---|---|---|---|---|---|---|---|
FAV | 20 | % Recovery * | %RSD * | % Recovery * | %RSD * | %Recovery * | % RSD * |
100.36 | 1.25 | 99.53 | 0.99 | 100.64 | 1.77 | ||
70 | 98.92 | 0.93 | 101.42 | 1.81 | 101.32 | 1.34 | |
120 | 101.14 | 1.36 | 100.16 | 1.43 | 99.75 | 1.11 |
Interfering Material | Inter-Day Precision | |
---|---|---|
% Recovery * | % RSD * | |
Uric acid | 99.3 | 1.2 |
Oxalic acid | 100.2 | 0.9 |
Sucrose | 97.3 | 1.1 |
Starch | 99.1 | 1.4 |
Magnesium chloride | 97.7 | 1.3 |
Citric acid | 96.8 | 1.5 |
L-Ascorbic acid | 97.2 | 1.7 |
Sample | Added Amount (nM) | Found Concentration (nM) | %Recovery a ± %RSD | |
---|---|---|---|---|
Avipiravir® Tablet | 20 | 20.09 | 100.45 ± 1.2 | |
80 | 78.87 | 98.58 ± 1.6 | ||
120 | 121.12 | 100.93 ± 1.9 | ||
Human plasma | 30 | 29.56 | 98.53 ± 2.1 | |
50 | 50.07 | 100.14 ± 1.8 | ||
70 | 71.35 | 101.93 ± 1.5 | ||
120 | 116.87 | 97.39 ± 1.7 | ||
Proposed method | Reported method [8] | t-value b | F-Value b | |
98.9 ± 1.2 | 97.5 ± 1.6 | 0.63 | 2.35 |
Technique | Linearity Range | LOD | Application | Ref. |
---|---|---|---|---|
HPLC | 0.5–50 µg/mL | 0.04 µg/mL | Tablet | [5] |
Spectrofluorimetry | 40–280 ng/mL | 9.44 ng/mL | Tablet/human plasma | [6] |
Synchronous Fluorimetry | 1–18 ng/mL | 0.25 ng/mL | Tablet/human plasma | [8] |
HPTLC | 3.75–100 µg/mL | 1.12 µg/mL | Pure form/Tablet | [11] |
HPLC-UV | 10–100 µg/mL | 1.2 µg/mL | Tablet | [12] |
HPLC-DAD | 6.25–250 µg/mL | 1.02 µg/mL | Tablet | [13] |
UPLC-MS/MS | 0.25–16 µg/mL | 0.075 µg/mL | Human plasma | [14] |
LC-MS/MS | 0.048–50 µg/mL | 0.045 µg/mL | Human serum | [17] |
LC-MS/MS | 0.1–20 µg/mL | 0.03 µg/mL | Tablet &plasma | [15] |
UPLC | 0.1–10 µg/mL | 0.03 µg/mL | Human plasma | [16] |
SWV | 0.01–0.1 µg/mL 0.1–20 µg/mL | 3 ng/mL | Tablet/human urine | [18] |
SWV | 1.56–31.2 µg/mL | 0.76 ng/mL | Tablet/serum | [19] |
SWV | 864–0.157 µg/mL | 0.017 µg/mL | Tablet/urine | [22] |
DPV | 0.014–0.31 µg/mL | 0.072 ng/mL | Tablet/plasma & urine | [20] |
SWV | 1–100 µg/mL | 0.26 μg/mL | Tablet/urine | [21] |
SWV | 1.57–23.6 ng/mL | 0.486 ng/mL | Tablets & human plasma | Proposed study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.F.B.; Saraya, R.E.; El Deeb, S.; Ibrahim, A.E.; Salman, B.I. An Innovative Polymer-Based Electrochemical Sensor Encrusted with Tb Nanoparticles for the Detection of Favipiravir: A Potential Antiviral Drug for the Treatment of COVID-19. Biosensors 2023, 13, 243. https://doi.org/10.3390/bios13020243
Ali MFB, Saraya RE, El Deeb S, Ibrahim AE, Salman BI. An Innovative Polymer-Based Electrochemical Sensor Encrusted with Tb Nanoparticles for the Detection of Favipiravir: A Potential Antiviral Drug for the Treatment of COVID-19. Biosensors. 2023; 13(2):243. https://doi.org/10.3390/bios13020243
Chicago/Turabian StyleAli, Marwa F. B., Roshdy E. Saraya, Sami El Deeb, Adel Ehab Ibrahim, and Baher I. Salman. 2023. "An Innovative Polymer-Based Electrochemical Sensor Encrusted with Tb Nanoparticles for the Detection of Favipiravir: A Potential Antiviral Drug for the Treatment of COVID-19" Biosensors 13, no. 2: 243. https://doi.org/10.3390/bios13020243
APA StyleAli, M. F. B., Saraya, R. E., El Deeb, S., Ibrahim, A. E., & Salman, B. I. (2023). An Innovative Polymer-Based Electrochemical Sensor Encrusted with Tb Nanoparticles for the Detection of Favipiravir: A Potential Antiviral Drug for the Treatment of COVID-19. Biosensors, 13(2), 243. https://doi.org/10.3390/bios13020243