Detection of Rice Fungal Spores Based on Micro- Hyperspectral and Microfluidic Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spore Sample Preparation
2.2. Working Theory of Microfluidic Chip
2.3. Structure Design and Fabrication of Microfluidic Chip
2.3.1. Structure Design of Microfluidic Chip
2.3.2. Fabrication of Microfluidic Chip
2.4. Numerical Simulation Analysis
2.4.1. Parameter Setting
2.4.2. Simulation Optimization
2.5. Micro-Hyperspectral Data Collection and Processing Analysis of Fungal Disease Spores
2.5.1. Acquisition of Micro-Hyperspectral Data of Fungal Disease Spores
2.5.2. Extraction of Micro-Hyperspectral Data of Fungal Disease Spores
2.5.3. Selection of Characteristic Wavelength of Micro-Hyperspectral of Fungal Disease Spores
2.5.4. Classification Mode
2.6. Classification Evaluation Indicators
3. Results and Discussion
3.1. Microfluidic Chip Numerical Simulation Results
3.2. Results of Microfluidic Chip Spore Enrichment Experiments
3.3. Spectral Data Analysis Results
3.4. Characteristic Band Screening Results
3.5. Classification Model Comparison Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jain, S.; Sahni, R.; Khargonkar, T.; Gupta, H.; Verma, O.P.; Sharma, T.K.; Bhardwaj, T.; Agarwal, S.; Kim, H. Automatic rice aisease detection and assistance framework using deep learning and a chatbot. Electronics 2022, 11, 2110. [Google Scholar] [CrossRef]
- Azizi, M.M.F.; Lau, H.Y. Advanced diagnostic approaches developed for the global menace of rice diseases: A review. Can. J. Plant Pathol. 2022, 44, 627–651. [Google Scholar] [CrossRef]
- Orozco-Fuentes, S.; Griffiths, G.; Holmes, M.J.; Ettelaie, R.; Smith, J.; Baggaley, A.W.; Parker, N.G. Early warning signals in plant disease outbreaks. Ecol. Model. 2019, 393, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Talbot, N.J. Effector-mediated suppression of chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease. Plant Cell 2012, 24, 322–335. [Google Scholar] [CrossRef] [Green Version]
- Vasselli, J.G.; Shaw, B.D. Fungal spore attachment to substrata. Fungal Biol. Rev. 2022, 41, 2–9. [Google Scholar] [CrossRef]
- Punt, M.; Teertstra, W.R.; Wosten, H.A.B. Penicillium roqueforti conidia induced by L-amino acids can germinate without detectable swelling. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2022, 115, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Mao, H.P.; Xu, G.L.; Zhang, X.D.; Zhang, Y.K. A Rapid Detection Method for Fungal Spores from Greenhouse Crops Based on CMOS Image Sensors and Diffraction Fingerprint Feature Processing. J. Fungi 2022, 8, 374. [Google Scholar] [CrossRef]
- Yang, N.; Chen, C.Y.; Li, T.; Li, Z.; Zou, L.R.; Zhang, R.B.; Mao, H.P. Portable rice disease spores capture and detection method using diffraction fingerprints on microfluidic chip. Micromachines 2019, 10, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Roh, J.H.; Kim, H.Y. Early forecasting of rice blast disease using long short-term memory recurrent neural networks. Sustainability 2018, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Song, J.H.; Wang, Y.F.; Yin, W.X.; Huang, J.B.; Luo, C.X. Effect of chemical seed treatment on rice false smut control in field. Plant Dis. 2021, 105, 3218–3223. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, X.D.; Yang, N.; Ma, G.X.; Du, X.X.; Mao, H.P. Separation-enrichment method for airborne disease spores based on microfluidic chip. Int. J. Agric. Biol. Eng. 2021, 14, 199–205. [Google Scholar] [CrossRef]
- Dung, J.K.S.; Scott, J.C.; Cheng, Q.K.; Alderman, S.C.; Kaur, N.; Walenta, D.L.; Frost, K.E.; Hamm, P.B. Detection and quantification of airborne claviceps purpurea sensu lato ascospores from hirst-type spore traps using real-time quantitative PCR. Plant Dis. 2018, 102, 2487–2493. [Google Scholar] [CrossRef] [Green Version]
- Markovic, M.Z.; Prokop, S.; Staebler, R.M.; Liggio, J.; Harner, T. Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler. Atmos. Environ. 2015, 112, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, A.R.; Narayan, S.; Dutcher, C.S. A review of microfluidic concepts and applications for atmospheric aerosol science. Aerosol Sci. Technol. 2017, 52, 310–329. [Google Scholar] [CrossRef]
- Lee, J.W.; Yi, M.Y.; Lee, S.M. Inertial focusing of particles with an aerodynamic lens in the atmospheric pressure range. J. Aerosol Sci. 2003, 34, 211–224. [Google Scholar] [CrossRef]
- Bello, J.C.; Sakalidis, M.L.; Perla, D.E.; Hausbeck, M.K. Detection of airborne sporangia of peudoperonospora cubensis and p.humuli in mchigan uing brkard sore taps cupled to qantitative PCR. Plant Dis. 2021, 105, 1373–1381. [Google Scholar] [CrossRef]
- Siani, O.Z.; Targhi, M.Z.; Sojoodi, M.; Movahedin, M. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization. Bioprocess Biosyst. Eng. 2020, 43, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Takama, N.; Sharma, K.; Paul, O.; Ruther, P.; Suga, T.; Kim, B. Microfluidic chip connected to porous microneedle array for continuous ISF sampling. Drug Deliv. Transl. Res. 2022, 12, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.E.T.; Dang, C.B.; Hong, S.H.; Yang, A.S.; Su, T.L.; Yang, Y.C. Microfluidics with new multi-stage arc-unit structures for size-based cross-flow separation of microparticles. Microelectron. Eng. 2019, 207, 37–49. [Google Scholar] [CrossRef]
- Xu, P.F.; Zhang, R.B.; Yang, N.; Oppong, P.K.; Sun, J.; Wang, P. High-precision extraction and concentration detection of airborne disease microorganisms based on microfluidic chip. Biomicrofluidics 2019, 13, 2. [Google Scholar] [CrossRef]
- Shang, L.R.; Cheng, Y.; Zhao, Y.J. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; Avila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Shams, A.M.; Rose, L.J.; Wang, J.A. Development of a rapid-viability PCR method for detection of clostridioides difficile spores from environmental samples. Anaerobe 2020, 61, 102077. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Yao, Z.F.; He, D.J. Automatic detection and counting of urediniospores of puccinia striiformis f. sp tritici using spore traps and image processing. Sci. Rep. 2008, 8, 13647. [Google Scholar] [CrossRef] [Green Version]
- Araujo, G.T.; Amundsen, E.; Frick, M.; Gaudet, D.A.; Aboukhaddour, R.; Selinger, B.; Thomas, J.; Laroche, A. Detection and quantification of airborne spores from six important wheat fungal pathogens in southern Alberta. Can. J. Plant Pathol. 2021, 43, 439–454. [Google Scholar] [CrossRef]
- Aguayo, J.; Husson, C.; Chancerel, E.; Fabreguettes, O.; Chandelier, A.; Fourrier-Jeandel, C.; Dupuy, N.; Dutech, C.; Ioos, R.; Robin, C.; et al. Combining permanent aerobiological networks and molecular analyses for large-scale surveillance of forest fungal pathogens: A proof-of-concept. Plant Pathol. 2021, 70, 181–194. [Google Scholar] [CrossRef]
- Sireesha, Y.; Velazhahan, R. Rapid and specific detection of peronosclerospora sorghi in maize seeds by conventional and real-time PCR. Eur. J. Plant Pathol. 2018, 150, 521–526. [Google Scholar] [CrossRef]
- Kusar, D.; Papic, B.; Zajc, U.; Zdovc, I.; Golob, M.; Zvokelj, L.; Knific, T.; Avbersek, J.; Ocepek, M.; Ocepek, M.P. Novel taqman PCR assay for the quantification of paenibacillus larvae spores in bee-related samples. Insects 2021, 12, 1034. [Google Scholar] [CrossRef] [PubMed]
- Bauer, H.; Schueller, E.; Weinke, G. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos. Environ. 2018, 42, 5542–5549. [Google Scholar] [CrossRef]
- Carisse, O.; Bacon, A.; Lefebvre, R. Grape powdery mildew (Erysiphe necator) risk assessment based on airborne conidium concentration. Crop Prot. 2009, 28, 1036–1044. [Google Scholar] [CrossRef]
- Jiao, C.W.; Xu, Z.P.; Bian, Q.W.; Forsberg, E.; Tan, Q.; Peng, X.; He, S.L. Machine learning classification of origins and varieties of tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 120054. [Google Scholar] [CrossRef]
- Pu, H.B.; Lin, L.; Sun, D.W. Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 853–866. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Jia, B.B.; Yoon, S.C.; Zhuang, H.; Ni, X.Z.; Guo, B.Z.; Gold, S.E.; Fountain, J.C.; Glenn, A.E.; Lawrence, K.C.; et al. Spatio-temporal patterns of aspergillus flavus infection and aflatoxin B-1 biosynthesis on maize kernels probed by SWIR hyperspectral imaging and synchrotron FTIR microspectroscopy. Food Chem. 2022, 382, 132340. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, X.Z.; Wang, Z.J.; Huang, Y.M.; Wei, Y.Y.; Zhang, M.M.; Tu, K.; Pan, L.Q. Growth simulation and discrimination of botrytis cinerea, rhizopus stolonifer and colletotrichum acutatum using hyperspectral reflectance imaging. PLoS ONE 2015, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ji, Y.; Deng, Y.B.; Wu, Y.H. Advection of droplet collision in centrifugal microfluidics. Phys. Fluids 2019, 31, 032003. [Google Scholar] [CrossRef]
- Park, J.S.; Song, S.H.; Jung, H.I. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 2009, 9, 939–948. [Google Scholar] [CrossRef]
- Chen, X.Y. Topology optimization of microfluidics-A review. Microchem. J. 2016, 127, 52–61. [Google Scholar] [CrossRef]
- Rader, D.J.; Marple, V.A. Effect of ultra-stokesian drag and particle interception on impaction characteristics. Aerosol Sci. Technol. 1985, 4, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.L.; Liu, Y.F.; Zhang, N.; Chen, Z.J. Theoretical study of thermophoretic impulsive force exerted on a particle in fluid. J. Mol. Liq. 2017, 241, 99–101. [Google Scholar] [CrossRef]
- Zhang, H.C.; Jia, B.B.; Lu, Y.; Yoon, S.C.; Ni, X.Z.; Zhuang, H.; Guo, X.H.; Le, W.X.; Wang, W. Detection of aflatoxin B-1 in single peanut kernels by combining hyperspectral and microscopic imaging technologies. Sensors 2022, 22, 4864. [Google Scholar] [CrossRef]
- Gol, B.; Kurdzinski, M.E.; Tovar-Lopez, F.J.; Petersen, P.; Mitchell, A.; Khoshmanesh, K. Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system. Appl. Phys. Lett. 2016, 108, 16. [Google Scholar] [CrossRef]
- Wang, X.; Papautsky, I. Size-based microfluidic multimodal microparticle sorter. Lab Chip 2015, 15, 1350–1359. [Google Scholar] [CrossRef]
- Ville, M.D.; Coquet, P.; Brunet, P.; Boukherroub, R. Simple and low-cost fabrication of PDMS microfluidic round channels by surface-wetting parameters optimization. Microfluid. Nanofluidics 2011, 12, 953–961. [Google Scholar] [CrossRef]
- Yu, C.L.; Qian, X.; Chen, Y.; Yu, Q.; Ni, K.; Wang, X.H. Three-dimensional electro-sonic flow focusing ionization microfluidic chip for mass spectrometry. Micromachines 2015, 6, 1890–1902. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Wu, G.N.; Xiao, Z.; Guo, Y.J.; Zhang, X.Q.; Liu, K. An extreme-learning-machine-based hyperspectral detection method of insulator pollution degree. IEEE Access 2019, 7, 121156–121164. [Google Scholar] [CrossRef]
- Nie, L.X.; Dai, Z.; Ma, S.C. Enhanced accuracy of near-infrared spectroscopy for traditional Chinese medicine with competitive adaptive reweighted sampling. Anal. Lett. 2016, 49, 2259–2267. [Google Scholar] [CrossRef]
- Ding, S.F.; An, Y.X.; Zhang, X.K.; Wu, F.L.; Xue, Y. Wavelet twin support vector machines based on glowworm swarm optimization. Neurocomputing 2017, 225, 157–163. [Google Scholar] [CrossRef]
- Gao, H.M.; Yang, Y.; Li, C.M.; Gao, L.R.; Zhang, B. Multiscale Residual Network With Mixed Depthwise Convolution for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3396–3408. [Google Scholar] [CrossRef]
- Zhang, X.D.; Guo, B.X.; Wang, Y.F.; Hu, L.; Yang, N.; Mao, H.P. A detection method for crop fungal spores based on microfluidic separation enrichment and AC impedance characteristics. Fungi 2022, 8, 1168. [Google Scholar] [CrossRef]
Spore Type | Average Number of Spores Enriched | Sum | Enrichment Efficiency | |||
---|---|---|---|---|---|---|
Enrichment Area 1a and 1b | Enrichment Area 2 | Enrichment Area 3 | Other Channels | |||
Magnaporthe grisea spores | 15 | 291 | 4 | 42 | 352 | 82.67% |
Ustilaginoidea virens spores | 3 | 6 | 301 | 63 | 373 | 80.70% |
Index | SVM | CNN | CARS-SVM | CARS-CNN | ||||
---|---|---|---|---|---|---|---|---|
Magnaporthe grisea Spores | Ustilaginoidea virens Spores | Magnaporthe grisea Spores | Ustilaginoidea virens Spores | Magnaporthe grisea Spores | Ustilaginoidea virens Spores | Magnaporthe grisea Spores | Ustilaginoidea virens Spores | |
TP | 84 | 82 | 83 | 87 | 93 | 94 | 94 | 97 |
FN | 16 | 18 | 17 | 13 | 7 | 6 | 6 | 3 |
TN | 82 | 83 | 85 | 84 | 95 | 91 | 96 | 95 |
FP | 18 | 17 | 15 | 16 | 5 | 9 | 4 | 5 |
Index | SVM | CNN | CARS-SVM | CARS-CNN | ||||
---|---|---|---|---|---|---|---|---|
Magnaporthe grisea Spores | Ustilaginoidea virens Spores | Magnaporthe grisea Spores | Ustilaginoidea virens Spores | Magnaporthe grisea Spores | Ustilaginoidea virens Spores | Magnaporthe grisea Spores | Ustilaginoidea virens Spores | |
Accuracy | 0.830 | 0.825 | 0.840 | 0.855 | 0.940 | 0.925 | 0.950 | 0.960 |
Precision | 0.824 | 0.828 | 0.847 | 0.845 | 0.949 | 0.913 | 0.959 | 0.950 |
Recall | 0.840 | 0.820 | 0.830 | 0.870 | 0.930 | 0.940 | 0.940 | 0.970 |
Specificity | 0.820 | 0.830 | 0.850 | 0.84 | 0.950 | 0.910 | 0.960 | 0.950 |
F1-Score | 0.832 | 0.824 | 0.838 | 0.857 | 0.939 | 0.926 | 0.949 | 0.960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Song, H.; Wang, Y.; Hu, L.; Wang, P.; Mao, H. Detection of Rice Fungal Spores Based on Micro- Hyperspectral and Microfluidic Techniques. Biosensors 2023, 13, 278. https://doi.org/10.3390/bios13020278
Zhang X, Song H, Wang Y, Hu L, Wang P, Mao H. Detection of Rice Fungal Spores Based on Micro- Hyperspectral and Microfluidic Techniques. Biosensors. 2023; 13(2):278. https://doi.org/10.3390/bios13020278
Chicago/Turabian StyleZhang, Xiaodong, Houjian Song, Yafei Wang, Lian Hu, Pei Wang, and Hanping Mao. 2023. "Detection of Rice Fungal Spores Based on Micro- Hyperspectral and Microfluidic Techniques" Biosensors 13, no. 2: 278. https://doi.org/10.3390/bios13020278
APA StyleZhang, X., Song, H., Wang, Y., Hu, L., Wang, P., & Mao, H. (2023). Detection of Rice Fungal Spores Based on Micro- Hyperspectral and Microfluidic Techniques. Biosensors, 13(2), 278. https://doi.org/10.3390/bios13020278