Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design and Fabrication of Patterned GPE
2.3. Design and Fabrication of the PET/Adhesive Fluidic Unit
2.4. Functionalization of GPE with PB and GOx
2.5. Assembling of the Microfluidic-Integrated Graphene Paper Electrode (MF-iGPE)
2.6. Characterizations and Electrochemical Measurements
3. Results and Discussion
3.1. Generic Fabrication of Flexible Electrode and Fluidic Units via Xurography
3.2. Morphological and Electrochemical Characterizations of the GPE
3.3. Integration and Characterization of the MF-iGPE Platform
3.4. Preparation and Characterization of the MF-iGPE Glucose Biosensor
3.5. Practical Application of MF−iGPE Glucose Biosensor for Serum Sample
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loo, J.F.C.; Ho, A.H.P.; Turner, A.P.F.; Mak, W.C. Integrated printed microfluidic biosensors. Trends Biotechnol. 2019, 37, 1104–1120. [Google Scholar] [CrossRef] [PubMed]
- Rossini, E.L.; Milani, M.I.; Lima, L.S.; Pezza, H.R. Paper microfluidic device using carbon dots to detect glucose and lactate in saliva samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119285. [Google Scholar] [CrossRef] [PubMed]
- Agustini, D.; Bergamini, M.F.; Marcolino-Junior, L.H. Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis. Biosens. Bioelectron. 2017, 98, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Eom, K.S.; Shin, K.-S.; Kang, J.Y.; Lee, S.H. Enzyme-loaded paper combined impedimetric sensor for the determination of the low-level of cholesterol in saliva. Sens. Actuators B Chem. 2018, 271, 73–81. [Google Scholar] [CrossRef]
- Duarte, L.C.; Figueredo, F.; Ribeiro, L.E.B.; Cortón, E.; Coltro, W.K.T. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection. Anal. Chim. Acta 2019, 1071, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Gosset, A.; Durrieu, C.; Renaud, L.; Deman, A.-L.; Barbe, P.; Bayard, R.; Chateaux, J.-F. Xurography-based microfluidic algal biosensor and dedicated portable measurement station for online monitoring of urban polluted samples. Biosens. Bioelectron. 2018, 117, 669–677. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, L.; Pan, X.; Ma, H.; Lin, B.; Qin, J. A simple photolithography method for microfluidic device fabrication using sunlight as UV source. Microfluid. Nanofluidics 2010, 9, 1247–1252. [Google Scholar] [CrossRef]
- Garcia-Rey, S.; Nielsen, J.B.; Nordin, G.P.; Woolley, A.T.; Basabe-Desmonts, L.; Benito-Lopez, F. High-resolution 3D printing fabrication of a microfluidic platform for blood plasma separation. Polymers 2022, 14, 2537. [Google Scholar] [CrossRef]
- Lashkaripour, A.; Silva, R.; Densmore, D. Desktop micromilled microfluidics. Microfluid. Nanofluidics 2018, 22, 31. [Google Scholar] [CrossRef]
- Roberts, M.A.; Rossier, J.S.; Bercier, P.; Girault, H. UV laser machined polymer substrates for the development of microdiagnostic systems. Anal. Chem. 1997, 69, 2035–2042. [Google Scholar] [CrossRef]
- Chirasatitsin, S.; Kojic, S.; Stojanovic, G. Optimisation of microchannel fabrication using xurographic technuque for microfluidic Chips. In Proceedings of the ETIKUM 2017, Scienetific Conference with International Participation, Novi Sad, Serbia, 6–8 December 2017. [Google Scholar]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D printed microfluidic devices: Enablers and barriers. Lab A Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef] [Green Version]
- Razavi Bazaz, S.; Rouhi, O.; Raoufi, M.A.; Ejeian, F.; Asadnia, M.; Jin, D.; Ebrahimi Warkiani, M. 3D printing of inertial microfluidic devices. Sci. Rep. 2020, 10, 5929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Gu, M. Microfluidic sensing: State of the art fabrication and detection techniques. J. Biomed. Opt. 2011, 16, 080901. [Google Scholar] [CrossRef] [Green Version]
- Park, J.M.; Evans, A.T.; Rasmussen, K.; Brosten, T.R.; Nellis, G.F.; Klein, S.A.; Gianchandani, Y.B. A microvalve with integrated sensors and customizable normal state for low-temperature operation. J. Microelectromech. Syst. 2009, 18, 868–877. [Google Scholar] [CrossRef]
- Qi, Z.; Xu, L.; Xu, Y.; Zhong, J.; Abedini, A.; Cheng, X.; Sinton, D. Disposable silicon-glass microfluidic devices: Precise, robust and cheap. Lab A Chip 2018, 18, 3872–3880. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Sato, K. Silicon microfluidic channels and microstructures in single photolithography step. In Proceedings of the DTIP 2009, Rome, Italy, 1–3 April 2009. [Google Scholar]
- Bruzewicz, D.A.; Reches, M.; Whitesides, G.M. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal. Chem. 2008, 80, 3387–3392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weibel, D.B.; Kruithof, M.; Potenta, S.; Sia, S.K.; Lee, A.; Whitesides, G.M. Torque-actuated valves for microfluidics. Anal. Chem. 2005, 77, 4726–4733. [Google Scholar] [CrossRef]
- Perrone, E.; Cesaria, M.; Zizzari, A.; Bianco, M.; Ferrara, F.; Raia, L.; Guarino, V.; Cuscunà, M.; Mazzeo, M.; Gigli, G.; et al. Potential of CO2−laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale. Mater. Today Bio 2021, 12, 100163. [Google Scholar] [CrossRef]
- Mirzajani, H.; Abbasiasl, T.; Mirlou, F.; Istif, E.; Bathaei, M.J.; Dağ, Ç.; Deyneli, O.; Yazıcı, D.; Beker, L. An ultra-compact and wireless tag for battery-free sweat glucose monitoring. Biosens. Bioelectron. 2022, 213, 114450. [Google Scholar] [CrossRef] [PubMed]
- Tweedie, M.; Maguire, P.D. Microfluidic ratio metering devices fabricated in PMMA by CO2 laser. Microsyst. Technol. 2021, 27, 47–58. [Google Scholar] [CrossRef]
- Caiazzo, F.; Curcio, F.; Daurelio, G.; Minutolo, F.M.C. Laser cutting of different polymeric plastics (PE, PP and PC) by a CO2 laser beam. J. Mater. Process. Technol. 2005, 159, 279–285. [Google Scholar] [CrossRef]
- Caprino, G.; Tagliaferri, V. Maximum cutting speed in laser cutting of fiber reinforced plastics. Int. J. Mach. Tools Manuf. 1988, 28, 389–398. [Google Scholar] [CrossRef]
- Li, W.; Qian, D.; Li, Y.; Bao, N.; Gu, H.; Yu, C. Fully-drawn pencil-on-paper sensors for electroanalysis of dopamine. J. Electroanal. Chem. 2016, 769, 72–79. [Google Scholar] [CrossRef]
- Oliveira, V.X.G.; Dias, A.A.; Carvalho, L.L.; Cardoso, T.M.G.; Colmati, F.; Coltro, W.K.T. Determination of ascorbic acid in commercial tablets using pencil drawn electrochemical paper−based analytical devices. Anal. Sci. 2018, 34, 91–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downs, C.; Nejely, A.; Fu, E. Disposable fabric-based electrochemical sensors fabricated from wax-transfer-printed fluidic cells and stencil-printed electrodes. Anal. Methods 2018, 10, 3696–3703. [Google Scholar] [CrossRef]
- Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab A Chip 2010, 10, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, T.H.; Song, E.; Tortorich, R.P.; Choi, J.-W. A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes. ECS J. Solid State Sci. Technol. 2015, 4, S3044. [Google Scholar] [CrossRef]
- Subramanian, V.; Chang, J.B.; Vornbrock, A.d.l.F.; Huang, D.C.; Jagannathan, L.; Liao, F.; Mattis, B.; Molesa, S.; Redinger, D.R.; Soltman, D.; et al. Printed electronics for low-cost electronic systems: Technology status and application development. In Proceedings of the ESSCIRC 2008—34th European Solid-State Circuits Conference, Edinburgh, UK, 15–19 September 2008; pp. 17–24. [Google Scholar]
- Takaloo, S.; Moghimi Zand, M. Wearable electrochemical flexible biosensors: With the focus on affinity biosensors. Sens. Bio-Sens. Res. 2021, 32, 100403. [Google Scholar] [CrossRef]
- Lee, E.K.; Kim, M.K.; Lee, C.H. Skin-Mountable Biosensors and Therapeutics: A Review. Annu. Rev. Biomed. Eng. 2019, 21, 299–323. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-B.; Meeseepong, M.; Trung, T.Q.; Kim, B.-Y.; Lee, N.-E. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens. Bioelectron. 2020, 156, 112133. [Google Scholar] [CrossRef]
- Zhu, N.; Han, S.; Gan, S.; Ulstrup, J.; Chi, Q. Graphene paper doped with chemically compatible prussian blue nanoparticles as nanohybrid electrocatalyst. Adv. Funct. Mater. 2013, 23, 5297–5306. [Google Scholar] [CrossRef]
- Karthick, R.; Chen, F. Free-standing graphene paper for energy application: Progress and future scenarios. Carbon 2019, 150, 292–310. [Google Scholar] [CrossRef]
- Ba, H.; Sutter, C.; Papaefthimiou, V.; Zafeiratos, S.; Bahouka, A.; Lafue, Y.; Nguyen-Dinh, L.; Romero, T.; Pham-Huu, C. Foldable flexible electronics based on few-layer graphene coated on paper composites. Carbon 2020, 167, 169–180. [Google Scholar] [CrossRef]
- Kongkaew, S.; Meng, L.; Limbut, W.; Kanatharana, P.; Thavarungkul, P.; Mak, W.C. Evaluation on the intrinsic physicoelectrochemical attributes and engineering of micro-, nano-, and 2D-structured allotropic carbon-based papers for flexible electronics. Langmuir 2021, 37, 14302–14313. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-Y.; Cheng, Y.-H.; Chang, H.; Shaw, J.-S.; Lee, R. Design of electrodes on gold test strips for enhanced accuracy in glucose measurement. J. Sens. 2019, 2019, 8627198. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, Y.; Yu, T.; Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Souza Filho, A.G.; Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 5355–5377. [Google Scholar] [CrossRef] [Green Version]
- Elena, L.B.; Iovu, H. Graphene nanocomposites studied by raman spectroscopy. In Raman Spectroscopy; IntechOpen Limited: London, UK, 2018; pp. 1–324. [Google Scholar] [CrossRef]
- Chu, J.; Li, X.; Cheng, Y.; Xiong, S. Electrochromic properties of prussian blue nanocube film directly grown on FTO substrates by hydrothermal method. Mater. Lett. 2020, 258, 126782. [Google Scholar] [CrossRef]
- Li, J.; Lu, M.; Tan, Z.; Xu, Y.; Zhang, Y.; Hu, X.; Yang, Z. One-step solvothermal preparation of silver-ZnO hybrid nanorods for use in enzymatic and direct electron-transfer based biosensing of glucose. Microchim. Acta 2016, 183, 1705–1712. [Google Scholar] [CrossRef]
- Ridhuan, N.S.; Abdul Razak, K.; Lockman, Z. Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods. Sci. Rep. 2018, 8, 13722. [Google Scholar] [CrossRef] [PubMed]
- Aydoğdu, G.; Zeybek, D.K.; Pekyardımcı, Ş.; Kılıç, E. A novel amperometric biosensor based on ZnO nanoparticles-modified carbon paste electrode for determination of glucose in human serum. Artif. Cells Nanomed. Biotechnol. 2013, 41, 332–338. [Google Scholar] [CrossRef]
- Shaolin, M.; Huaiguo, X.; Bidong, Q. Bioelectrochemical responses of the polyaniline glucose oxidase electrode. J. Electroanal. Chem. Interfacial Electrochem. 1991, 304, 7–16. [Google Scholar] [CrossRef]
- Nolan, J.K.; Nguyen, T.N.H.; Le, K.V.H.; DeLong, L.E.; Lee, H. Simple fabrication of flexible biosensor arrays using direct writing for multianalyte measurement from human astrocytes. SLAS Technol. 2020, 25, 33–46. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Ezzati, M.; Hosseini, H. Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta 2020, 210, 120696. [Google Scholar] [CrossRef]
- Meng, L.; Chirtes, S.; Liu, X.; Eriksson, M.; Mak, W.C. A green route for lignin-derived graphene electrodes: A disposable platform for electrochemical biosensors. Biosens. Bioelectron. 2022, 218, 114742. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Kojima, K.; Sode, K. Extended-range glucose sensor employing engineered glucose dehydrogenases. Anal. Chem. 2000, 72, 4689–4693. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, J.-J.; Chen, H.-Y. Extended-range glucose biosensor via layer-by-layer assembly incorporating gold nanoparticles. FBL 2005, 10, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Analysis, A.O.A.C. Guidelines for Standard Method Performance Requirements; AOAC International: Rockville, MD, USA, 2016; pp. 1–18. [Google Scholar]
- Burtis, C.A.; Ashwood, E.R.; Bruns, D.E.; Tietz, N.W. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- ISO 15197:2013; In Vitro Diagnostic Test Systems—Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes mellitusinternational. Organization for Standardization: Geneva, Switzerland, 2013.
- Cao, Q.; Liang, B.; Tu, T.; Wei, J.; Fang, L.; Ye, X. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 2019, 9, 5674–5681. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Han, G.-C.; Xiao, H.; Chen, Z.; Fang, C. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. Anal. Chim. Acta 2020, 1096, 34–43. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J.-H.; Rudi Strickler, J.; Chang, W.-J.; Gunasekaran, S. Nickel nanoparticle–chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectron. 2013, 47, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef]
- Bihar, E.; Wustoni, S.; Pappa, A.M.; Salama, K.N.; Baran, D.; Inal, S. A fully inkjet-printed disposable glucose sensor on paper. npj Flex. Electron. 2018, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Amor-Gutiérrez, O.; Costa Rama, E.; Costa-García, A.; Fernández-Abedul, M.T. Paper-based maskless enzymatic sensor for glucose determination combining ink and wire electrodes. Biosens. Bioelectron. 2017, 93, 40–45. [Google Scholar] [CrossRef]
- Rungsawang, T.; Punrat, E.; Adkins, J.; Henry, C.; Chailapakul, O. Development of electrochemical paper-based glucose sensor using cellulose-4-aminophenylboronic acid-modified screen-printed carbon electrode. Electroanalysis 2016, 28, 462–468. [Google Scholar] [CrossRef]
- Cui, G.; Yoo, J.H.; Woo, B.W.; Kim, S.S.; Cha, G.S.; Nam, H. Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip. Talanta 2001, 54, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Dudik, L.; Liu, C.-C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sens. Actuators B Chem. 2007, 125, 106–113. [Google Scholar] [CrossRef]
- Setti, L.; Fraleoni-Morgera, A.; Ballarin, B.; Filippini, A.; Frascaro, D.; Piana, C. An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens. Bioelectron. 2005, 20, 2019–2026. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, Z.; Zhang, P.; Xiao, S.; Wang, L.; Dong, Y.; Yuan, H.; Li, P.; Sun, Y.; Jiang, X.; et al. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing. Anal. Chim. Acta 2016, 938, 63–71. [Google Scholar] [CrossRef]
- Du, Y.; Yan, J.; Zhou, W.; Yang, X.; Wang, E. Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips. Electrophoresis 2004, 25, 3853–3859. [Google Scholar] [CrossRef]
Electrode Fabrications | Microfluidic Fabrications | Performances | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Substrates | Techniques | Materials | Techniques | Sample Volume (µL) | Integrate AE and RE | Cost/Device | Built−In Packaging | Modified Electrodes | Techniques | Linear (mmol L−1) | Sensitivity | LOD (mmol L−1) | Ref. |
Graphene paper | Xurography | PET | Xurography | 10.0 | / | EUR 0.08 | / | GOx−Chi−PB/iGPE | Chrono (E = −0.05 V) | 0.05−1.0, 1.0−5.5 | 28.3 μA mmol−1 L cm−2 | 0.031 | This work |
Paper | Screen printing | Paper | Wax printing | − | / | − | N/A | GOx/Chi/Naf/PB ink | Amp (E = −0.1 V) | 0−1.9 | 35.7 μA mmol−1 L cm−2 | 0.005 | [56] |
Paper | Screen printing | Paper | Photolithography | 5.0 | / | − | N/A | GOx/PB/rGO−TEPA/SPEs | Chrono (E = −0.3 V) | 0.1−25 | 7.18 μA mmol−1 L cm−2 | 0.025 | [57] |
PET | Screen printing | PET | UV laser−cutter | 4.8 | / | − | / | GOx/PB | Chrono (E = 0.0 V) | 0.1−1.0 | 1.27 μA mmol−1 L cm−2 | 0.024 | [21] |
Filter paper | Stencil printing | Fabric | Wax printing | 22.4 | / | − | N/A | GOx | Amp (E = 0.4 V) | 0.25−20 | - | 0.44 | [27] |
Ceramic | Screen printing | PDMS | Mold | 7.7 | / | − | N/A | CS−RGO−NiNPs | Amp (E = 0.6 V) | 0.2−9.0 | 318.4 μA mmol−1 L cm−2 | 0.0041 | [58] |
Paper or polyester film | Screen printing | Polyester−cellulose paper | Photolithography/Wax printing | − | / | EUR 0.02 | N/A | GOx | Chrono * | 0−22.2 | 0.0043 μA mmol−1 L cm−2 | 0.22 | [28] |
Paper | Screen printing | − | Photolithography | 5.0 | / | − | N/A | GOx | Chrono (E = 0 V) | 0−100 | 4.92 μA mmol−1 L cm−2 | 0.21 ± 0.02 | [59] |
Glossy paper (ArjoWiggins) | Inkjet printing | − | − | 30.0 | / | − | N/A | Nafion/GOx−Fc−Chi/PEDOT:PSS | Amp (E = 0.25 V) | 0.025−0.9 | - | - | [60] |
Whatman paper | Wax printing | − | − | 10.0 | / | EUR 0.52 | N/A | GOx−HRP/Ferro/C−ink | Chrono (E = −0.1 V) | 0.3−15 | 16.14 μA mmol−1 L cm−2 | 0.12 | [61] |
Filter paper | Wax printing and Screen printing | − | − | 25.0 | / | EUR 0.07 | N/A | GOx/4−APBA | Chrono (E = 0.2 V) | 0.05−100 | 13.44 μA mmol−1 L cm−2 | 0.86 | [62] |
Nitrocellulose membrane | Screen printing | − | − | − | / | − | N/A | GOx/[Ru(NH3)6]3+ | Chrono (E = 0.0 V) | 0−27.7 | 12.75 μA mmol−1 L cm−2 | − | [63] |
Alumina | Screen printing | − | − | 2.0 | / | − | N/A | GOx/Glu/Ird | Amp (E = 0.25 V) | 0−15 | 11.90 μA mmol−1 L cm−2 | − | [64] |
Indium Tin Oxide | Thermal inkjet printing | − | − | X | − | N/A | GOx/PEDOT:PSS/ITO | Chrono (E = 0.6 V) | 0−60 | 6430 μA mmol−1 L cm−2 | − | [65] |
Samples | Detected Value (mmol L−1) | Reference Value (mmol L−1) |
---|---|---|
Diabetes patient | 9.6 ± 1.3 (n = 3) | 10.05 * |
Healthy subject | 6.8 ± 0.8 (n = 3) | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongkaew, S.; Meng, L.; Limbut, W.; Liu, G.; Kanatharana, P.; Thavarungkul, P.; Mak, W.C. Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform. Biosensors 2023, 13, 446. https://doi.org/10.3390/bios13040446
Kongkaew S, Meng L, Limbut W, Liu G, Kanatharana P, Thavarungkul P, Mak WC. Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform. Biosensors. 2023; 13(4):446. https://doi.org/10.3390/bios13040446
Chicago/Turabian StyleKongkaew, Supatinee, Lingyin Meng, Warakorn Limbut, Guozhen Liu, Proespichaya Kanatharana, Panote Thavarungkul, and Wing Cheung Mak. 2023. "Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform" Biosensors 13, no. 4: 446. https://doi.org/10.3390/bios13040446
APA StyleKongkaew, S., Meng, L., Limbut, W., Liu, G., Kanatharana, P., Thavarungkul, P., & Mak, W. C. (2023). Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform. Biosensors, 13(4), 446. https://doi.org/10.3390/bios13040446