Recent Developments in the Applications of GO/rGO-Based Biosensing Platforms for Pesticide Detection
Abstract
:1. Introduction
2. Pesticide Detection and Toxicity
- ➢
- Effect of pesticides on ecosystems
- ➢
- Effect of pesticides on human health
3. Nanomaterials Used in Biosensing Applications
4. GO/rGO-Based Sensor Applications
GO/rGO-Based Nanocomposite Sensor for Pesticide Detection
5. Sensing Strategies
5.1. Electrochemical Sensing
5.2. Fluorescence Sensing
6. Conclusions
7. Limitation and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GO | graphene oxide |
rGO | reduced graphene oxide |
SPR | surface plasmon resonance |
FRET | fluorescence resonance energy transfer |
GC | gas chromatography |
HPLC | high-performance liquid chromatography |
CFR | Code of Federal Regulations |
FAO | Food and Agriculture Organization |
WHO | World health organization |
OCPs | organochlorine substances |
DDT | dichlorodiphenyltrichloroethane |
AChE | acetylcholinesterase |
PYR | pyrethroids |
OP | organophosphates |
MePO | methyl-paraoxon |
0D | zero-dimensional |
1D | one-dimensional |
GNs | graphene nanosheets |
TMDs | transition metal dichalcogenides |
CNTs- | carbon nanotubes |
LOD | limit of detection |
LDI-MS | laser desorption and ionization mass spectrometry |
SERS | surface-enhanced Raman spectroscopy |
EIS | electrochemical impedance spectroscopy |
CV | cyclic voltameter |
MP | methyl parathion |
QD | quantum dot |
CD | carbon quantum dot |
References
- Lundqvist, J.; von Brömssen, C.; Rosenmai, A.K.; Ohlsson, Å.; Le Godec, T.; Jonsson, O.; Kreuger, J.; Oskarsson, A. Assessment of Pesticides in Surface Water Samples from Swedish Agricultural Areas by Integrated Bioanalysis and Chemical Analysis. Environ. Sci. Eur. 2019, 31, 53. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.K.; Rawat, S.S.; Jain, D.; Ghosh, S. Use of Pesticides in Agriculture and Livestock Animals and Its Impact on Environment of India. Asian J. Environ. Sci. 2013, 8, 51–57. [Google Scholar]
- Christopher, F.C.; Kumar, P.S.; Christopher, F.J.; Joshiba, G.J.; Madhesh, P. Recent Advancements in Rapid Analysis of Pesticides Using Nano Biosensors: A Present and Future Perspective. J. Clean. Prod. 2020, 269, 122356. [Google Scholar] [CrossRef]
- Bucur, B.; Munteanu, F.-D.; Marty, J.-L.; Vasilescu, A. Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent Advances in Nanomaterials-Based Electrochemical (Bio)Sensors for Pesticides Detection. TrAC Trends Anal. Chem. 2020, 132, 116041. [Google Scholar] [CrossRef]
- Sarlak, N.; Taherifar, A.; Salehi, F. Synthesis of Nanopesticides by Encapsulating Pesticide Nanoparticles Using Functionalized Carbon Nanotubes and Application of New Nanocomposite for Plant Disease Treatment. J. Agric. Food Chem. 2014, 62, 4833–4838. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022, 13, 2833. [Google Scholar] [CrossRef]
- Xu, L.; Abd El-Aty, A.M.; Eun, J.-B.; Shim, J.-H.; Zhao, J.; Lei, X.; Gao, S.; She, Y.; Jin, F.; Wang, J.; et al. Recent Advances in Rapid Detection Techniques for Pesticide Residue: A Review. J. Agric. Food Chem. 2022, 70, 13093–13117. [Google Scholar] [CrossRef]
- Liu, M.; Huang, R.; Che, M.; Su, R.; Qi, W.; He, Z. Tannic Acid-Assisted Fabrication of Fe-Pd Nanoparticles for Stable Rapid Dechlorination of Two Organochlorides. Chem. Eng. J. 2018, 352, 716–721. [Google Scholar] [CrossRef]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous Effects of Chemical Pesticides on Human Health–Cancer and Other Associated Disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M.; Storey, K.B. Pesticide Toxicity: A Mechanistic Approach. EXCLI J. 2018, 17, 1101–1136. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.N. Organophosphorus Pesticides: Do They All Have the Same Mechanism of Toxicity? J. Toxicol. Environ. Health Part B 1999, 2, 161–181. [Google Scholar] [CrossRef]
- Salazar-Arredondo, E.; Solís-Heredia, M.; Rojas, A.; Hernández-Ochoa, I.; Quintanilla-Vega, B. Sperm Chromatin Alteration and DNA Damage by Methyl-Parathion, Chlorpyrifos and Diazinon and Their Oxon Metabolites in Human Spermatozoa. Reprod. Toxicol. 2008, 25, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019, 9, 8778–8781. [Google Scholar] [CrossRef] [PubMed]
- Vinotha Alex, A.; Mukherjee, A. Review of Recent Developments (2018–2020) on Acetylcholinesterase Inhibition Based Biosensors for Organophosphorus Pesticides Detection. Microchem. J. 2021, 161, 105779. [Google Scholar] [CrossRef]
- Zhao, G.; Zhou, B.; Wang, X.; Shen, J.; Zhao, B. Detection of Organophosphorus Pesticides by Nanogold/Mercaptomethamidophos Multi-Residue Electrochemical Biosensor. Food Chem. 2021, 354, 129511. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X.; Li, Y.; Li, C.; Yang, L.; Ma, K.; Zhang, Z.; Huang, H. Electrochemical Aptasensor Based on Mo2C/Mo2N and Gold Nanoparticles for Determination of Chlorpyrifos. Microchim. Acta 2021, 188, 170. [Google Scholar] [CrossRef]
- Singh, R.; Thakur, P.; Thakur, A.; Kumar, H.; Chawla, P.; Rohit, J.V.; Kaushik, R.; Kumar, N. Colorimetric Sensing Approaches of Surface-Modified Gold and Silver Nanoparticles for Detection of Residual Pesticides: A Review. Int. J. Environ. Anal. Chem. 2021, 101, 3006–3022. [Google Scholar] [CrossRef]
- Wu, J.; Fu, X.; Xie, C.; Yang, M.; Fang, W.; Gao, S. TiO2 Nanoparticles-Enhanced Luminol Chemiluminescence and Its Analytical Applications in Organophosphate Pesticide Imprinting. Sensors Actuators B Chem. 2011, 160, 511–516. [Google Scholar] [CrossRef]
- Chu, S.; Huang, W.; Shen, F.; Li, T.; Li, S.; Xu, W.; Lv, C.; Luo, Q.; Liu, J. Graphene Oxide-Based Colorimetric Detection of Organophosphorus Pesticides: Via a Multi-Enzyme Cascade Reaction. Nanoscale 2020, 12, 5829–5833. [Google Scholar] [CrossRef]
- Shahdeo, D.; Roberts, A.; Abbineni, N.; Gandhi, S. Graphene Based Sensors, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 91, ISBN 9780323853712. [Google Scholar]
- Liu, G.; Li, L.; Huang, X.; Zheng, S.; Xu, D.; Xu, X.; Zhang, Y.; Lin, H. Determination of Triazole Pesticides in Aqueous Solution Based on Magnetic Graphene Oxide Functionalized MOF-199 as Solid Phase Extraction Sorbents. Microporous Mesoporous Mater. 2018, 270, 258–264. [Google Scholar] [CrossRef]
- Boruah, P.K.; Das, M.R. Dual Responsive Magnetic Fe3O4-TiO2/Graphene Nanocomposite as an Artificial Nanozyme for the Colorimetric Detection and Photodegradation of Pesticide in an Aqueous Medium. J. Hazard. Mater. 2020, 385, 121516. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.A.; Fadillah, G. Recent Trends in the Design of Chemical Sensors Based on Graphene–Metal Oxide Nanocomposites for the Analysis of Toxic Species and Biomolecules. TrAC Trends Anal. Chem. 2019, 120, 115660. [Google Scholar] [CrossRef]
- Guler, M.; Turkoglu, V.; Basi, Z. Determination of Malation, Methidathion, and Chlorpyrifos Ethyl Pesticides Using Acetylcholinesterase Biosensor Based on Nafion/Ag@rGO-NH2 Nanocomposites. Electrochim. Acta 2017, 240, 129–135. [Google Scholar] [CrossRef]
- Shanmugam, R.; Manavalan, S.; Chen, S.-M.; Murugan, K.; Lin, L. Methyl Parathion Detection Using SnS2/N, S-Co-Doped Reduced Graphene Oxide Nanocomposite. ACS Sustain. Chem. Eng. 2020, 8, 11194–11203. [Google Scholar] [CrossRef]
- Alsulami, A.; Kumarswamy, Y.K.; Prashanth, M.K.; Hamzada, S.; Lakshminarayana, P.; Pradeep Kumar, C.B.; Jeon, B.-H.; Raghu, M.S. Fabrication of FeVO(4)/RGO Nanocomposite: An Amperometric Probe for Sensitive Detection of Methyl Parathion in Green Beans and Solar Light-Induced Degradation. ACS Omega 2022, 7, 45239–45252. [Google Scholar] [CrossRef]
- Li, T.; Shang, D.; Gao, S.; Wang, B.; Kong, H.; Yang, G.; Shu, W.; Xu, P.; Wei, G. Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. Biosensors 2022, 12, 314. [Google Scholar] [CrossRef]
- Guo, C.; Hu, M.; Li, Z.; Duan, F.; He, L.; Zhang, Z.; Marchetti, F.; Du, M. Structural Hybridization of Bimetallic Zeolitic Imidazolate Framework (ZIF) Nanosheets and Carbon Nanofibers for Efficiently Sensing α-Synuclein Oligomers. Sensors Actuators B Chem. 2020, 309, 127821. [Google Scholar] [CrossRef]
- Khosropour, H.; Rezaei, B.; Rezaei, P.; Ensafi, A.A. Ultrasensitive Voltammetric and Impedimetric Aptasensor for Diazinon Pesticide Detection by VS2 Quantum Dots-Graphene Nanoplatelets/Carboxylated Multiwalled Carbon Nanotubes as a New Group Nanocomposite for Signal Enrichment. Anal. Chim. Acta 2020, 1111, 92–102. [Google Scholar] [CrossRef]
- Li, M.-F.; Liu, Y.-G.; Zeng, G.-M.; Liu, N.; Liu, S.-B. Graphene and Graphene-Based Nanocomposites Used for Antibiotics Removal in Water Treatment: A Review. Chemosphere 2019, 226, 360–380. [Google Scholar] [CrossRef]
- Manavalan, S.; Veerakumar, P.; Chen, S.-M.; Lin, K.-C. Three-Dimensional Zinc Oxide Nanostars Anchored on Graphene Oxide for Voltammetric Determination of Methyl Parathion. Mikrochim. Acta 2019, 187, 17. [Google Scholar] [CrossRef]
- Barbosa, P.F.P.; Vieira, E.G.; Cumba, L.R.; Paim, L.L.; Nakamura, A.P.R.; Andrade, R.D.A.; Ribeiro, D. Voltammetric Techniques for Pesticides and Herbicides Detection-an Overview. Int. J. Electrochem. Sci. 2019, 14, 3418–3433. [Google Scholar] [CrossRef]
- Fu, J.; An, X.; Yao, Y.; Guo, Y.; Sun, X. Electrochemical Aptasensor Based on One Step Co-Electrodeposition of Aptamer and GO-CuNPs Nanocomposite for Organophosphorus Pesticide Detection. Sensors Actuators B Chem. 2019, 287, 503–509. [Google Scholar] [CrossRef]
- Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D.; Hou, C. 3D Graphene/Copper Oxide Nano-Flowers Based Acetylcholinesterase Biosensor for Sensitive Detection of Organophosphate Pesticides. Sensors Actuators B Chem. 2019, 279, 95–101. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Wang, P.; Zhang, C.; Wu, M.; Yang, L. A Stable Biosensor for Organophosphorus Pesticide Detection Based on Chitosan Modified Graphene. Biotechnol. Appl. Biochem. 2022, 69, 567–575. [Google Scholar] [CrossRef]
- Ding, L.; Wei, J.; Qiu, Y.; Wang, Y.; Wen, Z.; Qian, J.; Hao, N.; Ding, C.; Li, Y.; Wang, K. One-Step Hydrothermal Synthesis of Telluride Molybdenum/Reduced Graphene Oxide with Schottky Barrier for Fabricating Label-Free Photoelectrochemical Profenofos Aptasensor. Chem. Eng. J. 2021, 407, 127213. [Google Scholar] [CrossRef]
- Itsoponpan, T.; Thanachayanont, C.; Hasin, P. Sponge-like CuInS2 Microspheres on Reduced Graphene Oxide as an Electrocatalyst to Construct an Immobilized Acetylcholinesterase Electrochemical Biosensor for Chlorpyrifos Detection in Vegetables. Sensors Actuators B Chem. 2021, 337, 129775. [Google Scholar] [CrossRef]
- Yan, L.; Yan, X.; Li, H.; Zhang, X.; Wang, M.; Fu, S.; Zhang, G.; Qian, C.; Yang, H.; Han, J.; et al. Reduced Graphene Oxide Nanosheets and Gold Nanoparticles Covalently Linked to Ferrocene-Terminated Dendrimer to Construct Electrochemical Sensor with Dual Signal Amplification Strategy for Ultra-Sensitive Detection of Pesticide in Vegetable. Microchem. J. 2020, 157, 105016. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A Sensitive Amperometric AChE-Biosensor for Organophosphate Pesticides Detection Based on Conjugated Polymer and Ag-RGO-NH2 Nanocomposite. Bioelectrochemistry 2019, 127, 163–170. [Google Scholar] [CrossRef]
- Thet Tun, W.S.; Saenchoopa, A.; Daduang, S.; Daduang, J.; Kulchat, S.; Patramanon, R. Electrochemical Biosensor Based on Cellulose Nanofibers/Graphene Oxide and Acetylcholinesterase for the Detection of Chlorpyrifos Pesticide in Water and Fruit Juice. RSC Adv. 2023, 13, 9603–9614. [Google Scholar] [CrossRef]
- Arvand, M.; Mirroshandel, A.A. An Efficient Fluorescence Resonance Energy Transfer System from Quantum Dots to Graphene Oxide Nano Sheets: Application in a Photoluminescence Aptasensing Probe for the Sensitive Detection of Diazinon. Food Chem. 2019, 280, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, H.; Wang, Y.; Zhao, Y.; Li, Y.; Han, L.; Lu, L. A Low-Background Fluorescent Aptasensor for Acetamiprid Detection Based on DNA Three-Way Junction-Formed G-Quadruplexes and Graphene Oxide. Anal. Bioanal. Chem. 2021, 413, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Talari, F.F.; Bozorg, A.; Faridbod, F.; Vossoughi, M. A Novel Sensitive Aptamer-Based Nanosensor Using RGQDs and MWCNTs for Rapid Detection of Diazinon Pesticide. J. Environ. Chem. Eng. 2021, 9, 104878. [Google Scholar] [CrossRef]
- Rong, Y.; Li, H.; Ouyang, Q.; Ali, S.; Chen, Q. Rapid and Sensitive Detection of Diazinon in Food Based on the FRET between Rare-Earth Doped Upconversion Nanoparticles and Graphene Oxide. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2020, 239, 118500. [Google Scholar] [CrossRef]
- Gaviria, M.I.; Barrientos, K.; Arango, J.P.; Cano, J.B.; Peñuela, G.A. Highly Sensitive Fluorescent Biosensor Based on Acetylcholinesterase and Carbon Dots–Graphene Oxide Quenching Test for Analytical and Commercial Organophosphate Pesticide Detection. Front. Environ. Sci. 2022, 10, 91. [Google Scholar] [CrossRef]
- Xiong, J.; Li, S.; Li, Y.; Chen, Y.; Liu, Y.; Gan, J.; Ju, J.; Xian, Y.; Xiong, X. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food. Chem. Res. Chin. Univ. 2020, 36, 787–794. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, G.; Chu, G.; An, X.; Guo, Y.; Sun, X. The Development of a Novel Biosensor Based on Gold Nanocages/Graphene Oxide-Chitosan Modified Acetylcholinesterase for Organophosphorus Pesticide Detection. New J. Chem. 2019, 43, 13816–13826. [Google Scholar] [CrossRef]
Nanomaterial | Pesticide | Linear Range | Limit of Detection | Ref. |
---|---|---|---|---|
AChE–CS/3DG–CuO NFs/GCE | Malathion | 3 pm–46.665 nm | 0.93 pM | [35] |
Gra–CS AChE | Dichlorvos | 0.1–100,000 nM | 54 pM | [36] |
GCE/VS2QDs–GNP/CMWCNTs/DZBA | Diazinon | 5 × 10−14 mol L−1 to 1.0 × 10−8 nmol L−1 | 1.1 × 10−14 mol L−1 | [30] |
MoTe2 NPs/RGO | Profenofos | 10−9 g L−1 and 10−2 g L−1 | 3.3 × 10−10 g L−1 | [37] |
CIS/rGO | Chlorpyrifos | 0.5–470 ng mL−1 | 0.023 ng mL−1 | [38] |
AuNPs/FcDr/rGO/GCE | Dichlorvos | 0.45–281.4 μM | 0.21 μM | [39] |
Ag/rGO/CS | Carbaryl | 1.0 × 10−8 to 1.0 μg mL−1 | 1.0 × 10−9 μg mL−1 | [40] |
CNFs/GO/CS–GO/SPCE | Chlorpyrifos | 2.5 nM–1 μM | 2.2 nM | [41] |
Nanomaterial | Pesticide | Linear Range | Limit of Detection | Ref. |
---|---|---|---|---|
Aptamer–GO–PEG | Profenofos | 0.5–100 ng/mL | 0.21 ng/mL | [47] |
DNA TWJ-assembled G–quadruplex | Acetamiprid | 0–500 nM | 5.73 nM | [43] |
rGQDs–MWCNT–aptamer | Diazinon | 4–31 nM | 0.4 nM (0.1 μg/L) | [45] |
GO–L–cysteine capped CdS QDs/DF20 aptamer | Diazinon | 1.05 to 206 nM | 0.13 nM | [42] |
Apt–UCNPs–GO | Diazinon | 0.05 to 500 ng/mL | 0.023 ng/mL | [44] |
AChE–Carbon dots–GO | Chlorpyrifos | 1 and 25 ppb (2.8–71 nM) | 2.05 ppb (5.84 nM) | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopal, G.; Roy, N.; Mukherjee, A. Recent Developments in the Applications of GO/rGO-Based Biosensing Platforms for Pesticide Detection. Biosensors 2023, 13, 488. https://doi.org/10.3390/bios13040488
Gopal G, Roy N, Mukherjee A. Recent Developments in the Applications of GO/rGO-Based Biosensing Platforms for Pesticide Detection. Biosensors. 2023; 13(4):488. https://doi.org/10.3390/bios13040488
Chicago/Turabian StyleGopal, Geetha, Namrata Roy, and Amitava Mukherjee. 2023. "Recent Developments in the Applications of GO/rGO-Based Biosensing Platforms for Pesticide Detection" Biosensors 13, no. 4: 488. https://doi.org/10.3390/bios13040488