Development of Levo-Lansoprazole Chiral Molecularly Imprinted Polymer Sensor Based on the Polylysine–Phenylalanine Complex Framework Conformational Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Preparation of MIP and Non-MIP (nMIP) Sensors
2.3. Electrochemical Measurements
2.4. Determination of Levo-Lansoprazole in Real Samples
3. Results and Discussion
3.1. Electrochemical Performance of MIP Sensors
3.2. Impedance Response of the MIP Membrane under Different Conditions
3.3. FTIR Characterization
3.4. Optimization of Experimental Conditions
3.5. Working Curve
3.6. Chiral Separation Effcienct
3.7. Stability, Reproducibility, and Shelf Life
3.8. Anti-Interference Ability of the Sensor
3.9. Real Sample Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daniel, K.G.; Guida, W.C.; Brooks, W.H. The significance of chirality in drug design and development. Curr. Trends Med. Chem. 2011, 11, 760–770. [Google Scholar]
- Sanganyado, E.; Lu, Z.; Fu, Q.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542. [Google Scholar] [CrossRef]
- Carraro, C.; Francke, A.; Sosic, A.; Kohl, F.; Helbing, T.; Franco, M.D.; Fabris, D.; Göttlich, R.; Gatto, B.B. Behind the mirror: Chirality tunes the reactivity and cytotoxicity of chloropiperidines as potential anticancer agents. ACS Med. Chem. Lett. 2019, 10, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Listed, N. FDA’s Policy Statement for the Development of New Stereoisomeric Drugs. Chirality 1992, 4, 338–340. [Google Scholar]
- Bhushan, R.; Kumar, R.; Chandra, A.; Singh, H.K. The comparative effects of oral famotidine and lansoprazole in prophylaxis of aspirin induced peptic ulcer in albino rat. Int. J. Rese Med. Sci. 2021, 9, 1047. [Google Scholar] [CrossRef]
- Zhang, S.R.; Wang, Y.F.; Li, S.J. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion. Biochem. Biophys. Res. Commun. 2014, 448, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.F.; Wang, Y.Q.; Feng, Y.; Yang, Z.C. Stereoselective pharmacodynamics and pharmacokinetics of proton pump inhibitors. Curr. Drug Metab. 2016, 17, 692–702. [Google Scholar]
- Uekusa, S.; Onozato, M.; Sakamoto, T.; Umino, M.; Ichiba, H.; Fukushima, T. Fluorimetric determination of the enantiomers of vigabatrin, an anti-epileptic drug, by reversed-phase HPLC with a novel diastereomer derivatisation reagent. Biomed. Chromatogr. 2020, 35, e5060. [Google Scholar]
- Sun, L.; Zhang, Y.; Yang, Y.; Shen, Y.; Ying, Y.; Su, Y.; Zhang, X.; Liu, Y.; Huang, X.; Wang, Y. Simultaneous enantioselective determination of omeprazole, rabeprazole, lansoprazole, and pantoprazole enantiomers in human plasma by chiral liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2020, 43, 3183–3196. [Google Scholar] [CrossRef]
- Lin, H.R.; Kuo, F.W. Determination of the R- and S-enantiomers of methylone and ethylone in seized drugs by enantioselective liquid chromatography tandem mass spectrometry analysis. Forensic. Sci. Int. 2020, 317, 110528–110533. [Google Scholar] [CrossRef]
- Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, R.; Qin, W. Molecularly imprinted polymer-based potentiometric sensors. TrAC Trends Anal. Chem. 2020, 130, 115980. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, J.; Sun, Y.; Liu, J.; Chen, W.; Xu, Y.; Yang, J.; Li, Y. A photoelectrochemical sensor based on Z-Scheme TiO2@Au@CdS and molecularly imprinted polymer for uric acid detection. Microchim. Acta 2021, 188, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Arabi, M.; Ostovan, A.; Li, J.; Wang, X.; Zhang, Z.; Choo, J.; Chen, L. Molecular imprinting: Green perspectives and strategies. Adv. Mater. 2021, 33, 2100543–2100572. [Google Scholar] [CrossRef]
- Du, W.; Lei, C.M.; Zhang, S.; Bai, G.; Zhou, H.; Sun, M.; Fu, Q.; Chang, C. Determination of clenbuterol from pork samples using surface molecularly imprinted polymers as the selective sorbents for microextraction in packed syringe. J. Pharm. Biomed. Anal. 2014, 91, 160–168. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Tang, L.; Luo, L.; Cai, C. Specific determination of hbv using a viral aptamer molecular imprinting polymer sensor based on ratiometric metal organic framework. Microchim. Acta 2021, 188, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zeng, Q.; Wang, L.L. Electrochemical polymerization induced chirality fixation of crystalline pillararene-based polymer and its application in interfacial chiral sensing. Anal. Chem. 2021, 93, 9965–9969. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, M.; Carroccio, S.C.; Dattilo, S.; Avolio, R.; Castaldo, R.; Puglisi, C.; Privitera, V. Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem. Eng. J. 2019, 367, 180–188. [Google Scholar] [CrossRef]
- Ansari, S.; Karimi, M. Recent progress, challenges and trends in trace determination of drug analysis using molecularly imprinted solid-phase microextraction technology. Talanta 2017, 164, 612–625. [Google Scholar] [CrossRef]
- Li, S.; Pang, C.; Ma, X.; Zhao, M.; Li, H.; Wang, M.; Li, J.; Luo, J. Chiral drug fluorometry based on a calix[6]arene/molecularly imprinted polymer double recognition element grafted on nano-C-dots/Ir/Au. Microchim. Acta 2020, 187, 394–401. [Google Scholar] [CrossRef]
- Zhang, L.M.; Luo, K.; Li, D.; Zhang, Y.F.; Zeng, Y.; Li, J.P. Chiral molecular imprinted sensor for highly selective determination of D-carnitine in enantiomers via dsDNA-assisted conformation immobilization. Anal. Chim. Acta 2020, 1136, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Dayananda, K.; Choi, E.K.; Park, H.J.; Kim, J.S.; Lee, D.S. Synthesis and characterization of poly (l-glutamic acid)-block-poly (l-phenylalanine). Polymer 2009, 50, 2252–2257. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, Z.H.; Han, S.Y.; Chen, Z.P.; Wang, J.W.; Hu, J.S.; Reheman, A. Preparation and pH/temperature dual drug release behavior of polyamino acid nanomicelles. Polym. Bull. 2022, 79, 4685–4699. [Google Scholar] [CrossRef]
- Gülfen, M.; Canbaz, Y.; Özdemir, A. Simultaneous determination of amoxicillin, lansoprazole, and levofloxacin in pharmaceuticals by HPLC with UV–Vis detector. J. Anal. Test. 2020, 4, 45–53. [Google Scholar] [CrossRef]
- Khalili, Z.; Nezhadali, A. Nanomolar detection of lansoprazole: Computational–assisted to monomer–templet complex study based on molecularly imprinted polymer and electrochemical determination. Chem. Pap. 2022, 76, 1185–1198. [Google Scholar] [CrossRef]
- Dogrukol-Ak, D.; Tuncel, M.; Aboul-Enein, H.Y. The determination of lansoprazole in pharmaceutical preparation by capillary electrophoresis. Chromatographia 2021, 54, 527–530. [Google Scholar] [CrossRef]
- Khan, M.S.; Asghar, M.; Yaqoob, M.; Ali, S.; Haider Shah, S.; Siddiqui, M.A. Determination of lansoprazole in pharmaceuticals using flow injection with rhodamine 6G–diperiodatoargentate (III) chemiluminescence detection. Luminescence 2022, 37, 1126–1134. [Google Scholar] [CrossRef]
- Rahman, N.; Khan, S. Experimental design approach in the optimization of potentiometric method for lansoprazole determination using lansoprazole-tungstate based ion-selective electrode. Ind. Eng. Chem. Res. 2018, 57, 9351–9361. [Google Scholar] [CrossRef]
- Nassar, M.Y.; El-Moety, E.A.; El-Shahat, M.F. Synthesis and characterization of a ZnMn2O4 nanostructure as a chemical nanosensor: A facile and new approach for colorimetric determination of omeprazole and lansoprazole drugs. RSC Adv. 2017, 7, 43798–43811. [Google Scholar] [CrossRef]
Samples | Found 10−12 mol/L | RSD% n = 5 | Added 10−12 mol/L | Total Found 10−12 mol/L | RSD% n = 5 | Recoveries % |
---|---|---|---|---|---|---|
Tablet 1 | 1.37 | 3.2 | 3.00 | 4.45 | 4.7 | 102.67 |
Tablet 2 | 1.72 | 3.5 | 3.00 | 4.78 | 4.4 | 102.00 |
Tablet 3 | 2.15 | 3.3 | 5.00 | 6.97 | 5.1 | 96.40 |
Tablet 4 | 1.94 | 3.1 | 5.00 | 7.08 | 4.9 | 102.80 |
Serum 1 | ND | ND | 3.00 | 2.98 | 4.2 | 97.80 |
Serum 2 | ND | ND | 5.00 | 5.10 | 3.8 | 101.26 |
Serum 3 | ND | ND | 10.00 | 9.89 | 4.6 | 100.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, Z.; Li, D.; Yuan, Y.; Ouyang, H.; Li, J. Development of Levo-Lansoprazole Chiral Molecularly Imprinted Polymer Sensor Based on the Polylysine–Phenylalanine Complex Framework Conformational Separation. Biosensors 2023, 13, 509. https://doi.org/10.3390/bios13050509
Zhang L, Wang Z, Li D, Yuan Y, Ouyang H, Li J. Development of Levo-Lansoprazole Chiral Molecularly Imprinted Polymer Sensor Based on the Polylysine–Phenylalanine Complex Framework Conformational Separation. Biosensors. 2023; 13(5):509. https://doi.org/10.3390/bios13050509
Chicago/Turabian StyleZhang, Lianming, Zian Wang, Dan Li, Yali Yuan, Huixiang Ouyang, and Jianping Li. 2023. "Development of Levo-Lansoprazole Chiral Molecularly Imprinted Polymer Sensor Based on the Polylysine–Phenylalanine Complex Framework Conformational Separation" Biosensors 13, no. 5: 509. https://doi.org/10.3390/bios13050509
APA StyleZhang, L., Wang, Z., Li, D., Yuan, Y., Ouyang, H., & Li, J. (2023). Development of Levo-Lansoprazole Chiral Molecularly Imprinted Polymer Sensor Based on the Polylysine–Phenylalanine Complex Framework Conformational Separation. Biosensors, 13(5), 509. https://doi.org/10.3390/bios13050509