A Novel and Sensitive Fluorescent Probe for Glyphosate Detection Based on Cu2+ Modulated Polydihydroxyphenylalanine Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials and Instruments
2.2. Preparation of PDOA Nanoparticles
2.3. Fluorescence Detection of Cu2+ and Glyphosate
2.4. Detection of Glyphosate in Real Environmental Water Samples
3. Results and Discussion
3.1. Characterization of PDOAs
3.2. Spectroscopic Property of PDOAs
3.3. Cu2+ Detection Based on “Turn Off” Fluorescence of PDOAs
3.4. Glyphosate Detection Based on “Turn On” Fluorescence of PDOAs-Cu2+ System
3.5. Investigation of Sensing Mechanism
3.6. Detection of Glyphosate in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.K.; Tripathi, P.K.; Yadav, R.P.; Singh, D.; Singh, A. Toxicity of malathion and carbaryl pesticides: Effects on some biochemical profiles of the freshwater fish Colisa fasciatus. Bull. Environ. Contam. Toxicol. 2004, 72, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Jokanovic, M.; Kosanovic, M. Neurotoxic effects in patients poisoned with organophosphorus pesticides. Environ. Toxicol. Pharmarcol. 2010, 29, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.K. Pesticide residues in imported, organic, and “suspect” fruits and vegetables. J. Agric. Food Chem. 2012, 60, 4425–4429. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, L.N.; Shen, C.; Wang, C.Y.; Hu, X.Y.; Wang, G.X. An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sens. Actuator B Chem. 2019, 283, 487–494. [Google Scholar] [CrossRef]
- Coutinho, C.F.; Coutinho, L.F.; Mazo, L.H.; Nixdorf, S.L.; Camara, C.A. Rapid and direct determination of glyphosate and aminomethylphosphonic acid in water using anion-exchange chromatography with coulometric detection. J. Chromatogr. A 2008, 1208, 246–249. [Google Scholar] [CrossRef]
- Qian, K.; Tang, T.; Shi, T.; Wang, F.; Li, J.; Cao, Y. Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal. Chim. Acta 2009, 635, 222–226. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef]
- Clair, E.; Mesnage, R.; Travert, C.; Seralini, G.E. A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicol. Vitr. 2012, 26, 269–279. [Google Scholar] [CrossRef]
- Wang, X.; Sakinati, M.; Yang, Y.; Ma, Y.; Yang, M.; Luo, H.; Hou, C.; Huo, D. The construction of a CND/Cu2+ fluorescence sensing system for the ultrasensitive detection of glyphosate. Anal. Methods 2020, 12, 520–527. [Google Scholar] [CrossRef]
- Chang, Y.C.; Lin, Y.S.; Xiao, G.T.; Chiu, T.C.; Hu, C.C. A highly selective and sensitive nanosensor for the detection of glyphosate. Talanta 2016, 161, 94–98. [Google Scholar] [CrossRef]
- Liu, H.; Chen, P.; Liu, Z.; Liu, J.; Yi, J.; Xia, F.; Zhou, C. Electrochemical luminescence sensor based on double suppression for highly sensitive detection of glyphosate. Sens. Actuator B Chem. 2020, 304, 127364. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Qu, J.; Zhu, Q.; Chen, X. Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Anal. Methods 2013, 5, 917–924. [Google Scholar] [CrossRef]
- Almeida LK, S.; Chigome, S.; Torto, N.; Frost, C.L.; Pletschke, B.I. A novel colorimetric sensor strip for the detection of glyphosate in water. Sens. Actuator B Chem. 2015, 206, 357–363. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Y.; La, L.I.; An, J.; Zhang, H.; Lian, K. A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. J. Chromatogr. A 2019, 1589, 116–121. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Wen, Q.; Wang, G.; Wang, H.; Qu, Q.; Hu, X. Determination of glyphosate and aminomethylphosphonic acid in water by LC using a new labeling reagent, 4-methoxybenzenesulfonyl fluoride. Chromatographia 2010, 72, 679–686. [Google Scholar] [CrossRef]
- Saito, T.; Aoki, H.; Namera, A.; Oikawa, H.; Liyazaki, S.; Nakamoto, A.; Inokuchi, S. Lix-mode TiO-C18 monolith spin column extraction and GC/LS for the simultaneous assay of organophosphorus compounds and glufosinate, and glyphosate in human serum and urine. Anal. Sci. 2011, 27, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Viirlaid, E.; Ilisson, L.; Kopanchuk, S.; Laeorg, U.; Rinken, A.; Rinken, T. Immunoassay for rapid on-site detection of glyphosate herbicide. Environ. Monit. Assess. 2019, 8, 191. [Google Scholar] [CrossRef]
- Xu, J.; Wei, C. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. Biosens. Bioelectron. 2017, 87, 422–427. [Google Scholar] [CrossRef]
- Aguirre, L.D.; Urreta, S.E.; Gomez, C.G. A Cu2+/glassy carbon system for glyphosate determination. Sens. Actuator B Chem. 2019, 284, 675–683. [Google Scholar] [CrossRef]
- Chang, Y.Q.; Zhang, Z.; Hao, J.H.; Yang, W.S.; Tang, J.L. A simple label free colorimetric method for glyphosate detection based on the inhibition of peroxidase-like activity of Cu (II). Sens. Actuator B Chem. 2016, 228, 410–415. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Yu, H.; Gao, X.; Shao, S. Mitochondria-targeted fluorescent probe for imaging hydrogen peroxide in living cells. Anal. Chem. 2016, 88, 1455–1461. [Google Scholar] [CrossRef]
- Xu, J.; Yu, H.; Hu, Y.; Chen, M.; Shao, S. A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells. Biosens. Bioelectron. 2016, 75, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 2012, 84, 4185–4191. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Dong, J.; Zhu, H.; Teng, X.; Ai, S.; Mang, M. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots. Biosens. Bioelectron. 2015, 15, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.; Bayindir, M. Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Anal. Chem. 2014, 86, 5508–5512. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- Ma, Y.; Niu, H.; Zhang, X.; Cai, Y. Colorimetric detection of copper ions in tap water during the synthesis of silver-dopamine nanoparticles. Chem. Commun. 2011, 47, 12643–12645. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Xu, L.; Feng, L.; Ji, Y.; Tao, L.; Li, S.; Wei, Y. Biocompatible polydopamine fluorescent organic nanoparticles: Facile preparation and cell imaging. Nanoscale 2012, 4, 5581–5584. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, Y.; Shu, Y.; Shen, B.; Chan, H.N.; Chen, Y.; Zhou, J.; Wu, H. Highly emissive and biocompatible dopamine-derived oligomers as fluorescent probes for chemical detection and targeted bioimaging. Chem. Commun. 2014, 50, 13578–13580. [Google Scholar] [CrossRef]
- Su, Y.; Shi, B.; Liao, S.; Qin, Y.; Zhang, L.; Huang, M.; Zhao, S. Facile preparation of fluorescent polydihydroxyphenylalanine nanoparticles for label-free detection of copper ions. Sens. Actuator B Chem. 2016, 225, 334–339. [Google Scholar] [CrossRef]
- Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Sarna, T. Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials. Angew. Chem. Int. Ed. 2009, 48, 3914–3921. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ghalandari, B.; Lin, L.; Sang, X.; Su, W.; Divsalar, A.; Ding, X. A turn-on fluorescence sensor based on Cu2+ modulated DNA-templated silver nanoclusters for glyphosate detection and mechanism investigation. Food Chem. 2022, 367, 130617–130623. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Yang, J.; Zhang, Y.; Zhang, X.; Deng, H.; Xu, J.; Wang, J.; Yuan, M.S. Employing a fluorescent and colorimetric picolyl-functionalized rhodamine for the detection of glyphosate pesticide. Talanta 2021, 224, 121834–121839. [Google Scholar] [CrossRef]
- Wang, L.; Bi, Y.; Gao, J.; Li, Y.; Ding, H.; Ding, L. Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC Adv. 2016, 6, 85820–85828. [Google Scholar] [CrossRef]
- Guo, Z.X.; Cai, Q.T.; Yang, Z.G. Determination of glyphosate and phosphate in water by ion chromatography-Inductively coupled plasma mass spectrometry detection. J. Chromatogr. A 2005, 1100, 160–167. [Google Scholar] [CrossRef]
- Ibanez, M.; Pozo, O.J.; Sancho, J.V.; Lopez, F.J.; Hernandez, F. Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. A 2005, 1081, 145–155. [Google Scholar] [CrossRef]
- Jan, M.R.; Shah, J.; Muhammad, M.; Ara, B. Glyphosate herbicide residue determination in samples of environmental importance using spectrophotometric method. J. Hazard. Mater. 2009, 169, 742–745. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.U.; Jung, D.U.; Lee, J.H.; Song, Y.S.; Park, C.; Kim, S.W. Detection of glyphosate by quantitative analysis of fluorescence and single DNA using DNA labeled fluorescent magnetic core-shell nanoparticles. Sens. Actuator B Chem. 2013, 177, 879–886. [Google Scholar] [CrossRef]
- Shanmugaraj, K.; Ilanchelian, L. A “turn-off” fluorescent sensor for the selective and sensitive detection of copper (II) ions using lysozyme stabilized gold nanoclusters. RSC Adv. 2016, 6, 54518–54524. [Google Scholar] [CrossRef]
- Lin, L.; Song, X.; Chen, Y.; Rong, L.; Zhao, T.; Jiang, Y.; Wang, Y.; Chen, X. One-pot synthesis of highly greenish-yellow fluorescent nitrogen-doped graphene quantum dots for pyrophosphate sensing via competitive coordination with Eu3+ Ions. Nanoscale 2015, 7, 15427–15433. [Google Scholar] [CrossRef]
- Qu, Z.; Na, W.; Nie, Y.; Su, X. A novel fluorimetric sensing strategy for highly sensitive detection of phytic acid and hydrogen peroxide. Anal. Chim. Acta 2018, 1039, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Hu, B.; Shen, L.; Chen, X.; Wang, J. Fenton’s reagent-tuned DNA-templated fluorescent silver nanoclusters as a versatile fluorescence probe and logic device. Analyst 2012, 137, 4974–4980. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, Y.; Kang, J.; Dong, C.; Chen, N.; Li, X.; Guo, Z.; Wu, A. Detection of herbicide glyphosates based on an anti-aggregation mechanism by using unmodified gold nanoparticles in the presence of Pb2+. Anal. Methods 2017, 9, 2890–2896. [Google Scholar] [CrossRef]
- Tu, Q.; Yang, T.; Qu, Y.; Gao, S.; Zhang, Z.; Zhang, Q.; Wang, Y.; Wang, J.; He, L. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Analyst 2019, 144, 2017–2025. [Google Scholar] [CrossRef]
- Wang, D.; Lin, B.; Cao, Y.; Guo, M.; Yu, Y. A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads. J. Agric. Food. Chem. 2016, 64, 6042–6050. [Google Scholar] [CrossRef]
- Qu, F.; Wang, H.; You, J. Dual lanthanide-probe based on coordination polymer networks for ratiometric detection of glyphosate in food samples. Food Chem 2020, 323, 126815. [Google Scholar] [CrossRef]
Sample | Added (uM) | Found (uM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Laboratory tap water | 0.5 | 0.46 | 92.7 | 1.32 |
0.75 | 0.68 | 90.4 | 0.71 | |
1 | 0.92 | 92.2 | 1.54 | |
1.25 | 1.13 | 91.6 | 0.87 | |
Yellow River | 0.5 | 0.52 | 104.5 | 1.67 |
0.75 | 0.74 | 98.5 | 1.19 | |
1 | 1.02 | 102.2 | 1.13 | |
1.25 | 1.28 | 102.6 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, X.; Xu, J.; Zeng, F. A Novel and Sensitive Fluorescent Probe for Glyphosate Detection Based on Cu2+ Modulated Polydihydroxyphenylalanine Nanoparticles. Biosensors 2023, 13, 510. https://doi.org/10.3390/bios13050510
Mu X, Xu J, Zeng F. A Novel and Sensitive Fluorescent Probe for Glyphosate Detection Based on Cu2+ Modulated Polydihydroxyphenylalanine Nanoparticles. Biosensors. 2023; 13(5):510. https://doi.org/10.3390/bios13050510
Chicago/Turabian StyleMu, Xiqiong, Jian Xu, and Fankui Zeng. 2023. "A Novel and Sensitive Fluorescent Probe for Glyphosate Detection Based on Cu2+ Modulated Polydihydroxyphenylalanine Nanoparticles" Biosensors 13, no. 5: 510. https://doi.org/10.3390/bios13050510
APA StyleMu, X., Xu, J., & Zeng, F. (2023). A Novel and Sensitive Fluorescent Probe for Glyphosate Detection Based on Cu2+ Modulated Polydihydroxyphenylalanine Nanoparticles. Biosensors, 13(5), 510. https://doi.org/10.3390/bios13050510