Bacterial Lux Biosensors in Genotoxicological Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Test of Chemical Compounds for Genotoxicity
2.3. The Modifying Effect of Deuterium on the Activity of Chemical Genotoxicants
2.4. A Study of the Pro- and Antioxidant Activity of Substances from Different Sources
3. Results
3.1. Genotoxicity Analysis of Chemical Compounds Using a Set of Three Biosensors: pSoxS-lux, pKatG-lux, and ColD-lux
3.2. Modifying Effect of Deuterium on the Activity of Chemical Genotoxicants and Mutagens
3.3. The Effect of Deuterium on the Adaptive Response of E. coli to Genotoxic Effects of the Alkylating Agents
3.4. Testing for Pro- and Antioxidant Activity of Substances from Various Sources by pSoxS-lux and pKatG-lux Biosensors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verschaeve, L.; Van Gompel, J.; Thilemans, L.; Regniers, L.; Vanparys, P.; Van der Lelie, D. VITO-TOX® bacterial genotoxicity and toxicity test for the rapid screening of chemicals. Environ. Mol. Mutagen. 1999, 33, 240–248. [Google Scholar] [CrossRef]
- Belkin, S. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. Biol. 2003, 6, 206–212. [Google Scholar] [CrossRef]
- Deryabin, D.G. Bacterial Bioluminescence: Fundamental and Applied Aspects; Nauka: Moscow, Russia, 2009; p. 246. [Google Scholar]
- Illarionov, B.A.; Protopopova, M.I. Cloning and Expression of Photobacterium leiognathi Luminescent System Genes in the pUC18 Plasmid Vector. Genetika 1985, 6, 10–12. [Google Scholar]
- Danilov, V.S.; Zarubina, A.P.; Eroshnikov, G.E. Sensory bioluminescent systems based on lux-operons of different types of luminescent bacteria. Vestn. MGU Ser. Biologiya 2002, 3, 20–24. [Google Scholar]
- Yagur-Kroll, S.; Bilic, B.; Belkin, S. Strategies for Enhancing Bioluminescent Bacterial Sensor Performance by Promoter Region Manipulation. Microb. Biotechnol. 2010, 3, 300–310. [Google Scholar] [CrossRef]
- Yagur-Kroll, S.; Belkin, S. Upgrading Bioluminescent Bacterial Bioreporter Performance by Splitting the Lux Operon. Anal. Bioanal. Chem. 2011, 400, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Ptistsyn, L.R. Bioluminescent Analysis of the SOS-Response of Escherichia coli Cells. Genetika 1996, 32, 354–358. [Google Scholar] [PubMed]
- Kotova, V.Y.; Manukhov, I.V.; Zavilgelskii, G.B. Lux-Biosensors for Detection of SOS-Response, Heat Shock, and Oxidative Stress. Appl. Biochem. Microbiol. 2010, 46, 781–788. [Google Scholar] [CrossRef]
- Zavilgelsky, G.B.; Kotova, V.Y.; Manukhov, I.V. Sensor Bioluminescent Systems Based on Lux Operons for the Toxic Substances Detection. Khim. Fiz. 2012, 31, 15–20. [Google Scholar]
- Kotova, V.Y.; Ryzhenkova, K.V.; Manuchov, I.V.; Zavigelskiy, G.B. Inducible Specific Luxbiosensors for the Detection of Antibiotics: Construction and Main Parametrs. Prikl. Biokhimiya I Microbiol. 2014, 50, 112–117. [Google Scholar]
- Meighen, E.A. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 1991, 55, 123–142. [Google Scholar] [CrossRef] [PubMed]
- Gaudu, P.; Moon, N.; Weiss, B. Regulation of the soxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo. J. Biol. Chem. 1997, 272, 5082–5086. [Google Scholar] [CrossRef] [PubMed]
- Zavilgelsky, G.B. SOS-reparations 60 years. Mol. Biol. 2013, 17, 699–706. [Google Scholar]
- Maslowska, K.H.; Makiela-Dzbenska, K.; Fijalkowska, I.J. The SOS system: A complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 2019, 60, 368–384. [Google Scholar] [CrossRef]
- Ushakov, V.Y. SOS-system of DNA repair in bacteria (review). Bull. Perm. Univ. Ser. Biol. 2010, 2, 19–30. [Google Scholar]
- Quillardet, P.; Hofnung, M. The SOS Chromotest: A review. Mutat. Res. 1993, 297, 235–279. [Google Scholar] [CrossRef] [PubMed]
- Quillardet, P.; Huisman, O.; D'ari, R.; Hofnung, M. SOS Chromotest, a Direct Assay of Induction of an SOS Function in Escherichia coli K-12 to Measure Genotoxicity. Proc. Natl. Acad. Sci. USA 1982, 79, 5971–5975. [Google Scholar] [CrossRef]
- Sazikina, M.A.; Chistyakov, V.A.; Sazikin, I.S.; Novikova, E.M.; Khatab, Z.S.; Lagutova, L.P.; Latishev, A.V. Genotoxicity of spring water in Rostov-on-Don. Izv. Vy`Sshix Uchebny`X Zaved. Sev. -Kavk. Reg. Estestv. `E Nauk. 2011, 2, 44–46. [Google Scholar]
- Sazikina, M.A.; Chistyakov, V.A.; Sazikin, I.S.; Lagutova, L.P.; Novikova, E.M.; Latishev, A.I. Using a Bacterial Lux Biosensor for Detecting Mercury Contamination of Natural Waters. Voda Ximiya I E`Kologiya 2010, 5, 24–29. [Google Scholar]
- Lovinskaya, A.V.; Kolumbaeva, S.J.; Suvorova, M.A.; Iliyasova, A.I.; Abilev, S.K. Toxic and Mutagenic Activity of the Spring Waters of Almaty. Eurasian J. Ecol. 2019, 60, 42–53. [Google Scholar] [CrossRef]
- Lovinskaya, A.; Kolumbayeva, S.; Begimbetova, D.; Suvorova, M.; Bekmagambetova, N.; Abilev, S. Toxic and Genotoxic Activity of River Waters of the Kazakhstan. Acta Ecol. Sin. 2021, 41, 499–511. [Google Scholar] [CrossRef]
- Sazikina, M.A.; Novikova, E.M.; Khatab, Z.S.; Chistyakov, V.A.; Sazikin, I.S. Toxicity of Soils in the Cities of the Rostov Region. Teoret. I Priklad. Ekol. 2012, 2, 76–81. [Google Scholar]
- Duval, J.F.L.; Pagnout, C. Bimodal stringence-mediated response of metal-detecting luminescent whole cell bioreporters: Experimental evidence and quantitative theory. Sens. Actuators B Chem. 2020, 309, 127751. [Google Scholar] [CrossRef]
- Delatour, E.; Pagnout, C.; Zaffino, M.; Duval, J.F.L. Exploiting Catabolite Repression and Stringent Response to Control Delay and Multimodality of Bioluminescence Signal by Metal Whole-Cell Biosensors: Interplay between Metal Bioavailability and Nutritional Medium Conditions. Biosensors 2022, 12, 327. [Google Scholar] [CrossRef] [PubMed]
- Iyer, V.N.; Szybalski, W. Mitomycin and Porfiromycin : Chemical mechanism of activation and cross-linking of DNA. Science 1964, 145, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Arima, Y.; Nishigori, C.; Takeuchi, T.; Oka, S.; Morimoto, K.; Utani, A.; Miyachi, Y. 4-Nitroquinoline 1-oxide forms 8-hydroxydeoxyguanosine in human fibroblasts through reactive oxygen species. Toxicol. Sci. 2006, 91, 382–392. [Google Scholar] [CrossRef]
- McCann, J.; Choi, E.; Yamasaki, E.; Ames, B.N. Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 1975, 72, 5135–5139. [Google Scholar] [CrossRef]
- De Flora, S.; Bagnasco, M.; Serra, D.; Zanacchi, P. Genotoxicity of chromium compounds. A review. Mutat. Res. 1990, 238, 99–172. [Google Scholar] [CrossRef] [PubMed]
- Arlauskas, A.; Baker, R.S.; Bonin, A.M.; Tandon, R.K.; Crisp, P.T.; Ellis, J. Mutagenicity of metal ions in bacteria. Environ. Res. 1985, 36, 379–388. [Google Scholar] [CrossRef]
- Marzin, D.R.; Phi, H.V. Study of the mutagenicity of metal derivatives with Salmonella typhimurium TA102. Mutat. Res. 1985, 155, 49–51. [Google Scholar] [CrossRef]
- Fonshtein, L.M.; Abilev, S.K.; Akin'shina, I.A.; Zakharova, L.P.; Ivanova, N.A.; Oblapenko, N.G.; Sedysheva, N.Y.; Suraikina, T.I. Investigation of the genetic effects of drugs and other biologically active compounds in tests for mutagenesis and DNA-damaging action. Pharm. Chem. J. 1982, 16, 721–726. [Google Scholar] [CrossRef]
- Clerch, B.; Bravo, J.M.; Llagostera, M. Analysis of the ciprofloxacin-induced mutations in Salmonella typhimurium. Environ. Mol. Mutagen. 1996, 27, 110–115. [Google Scholar] [CrossRef]
- Material Safety Data Sheet Ceftriaxone Sodium. Available online: https://www.gene.com/download/pdf/rocephin_MSDS.pdf (accessed on 28 March 2023).
- Amacher, D.E.; Ellis, J.H.; Joyce, A.J.; Muehlbauer, P.A.; Turner, G.N.; Wahrenburg, M.G.; Holden, H.E.; Ray, V.A. Preclinical toxicology studies with azithromycin: Genetic toxicology evaluation. Mutat. Res. 1993, 300, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, G.; Mattioli, F.; Robbiano, L.; Martelli, A. Studieson genotoxicity and carcinogenicity of antibacterial, antiviral, antimalarial and antifungal drugs. Mutagenesis 2012, 27, 387–413. [Google Scholar] [CrossRef]
- Ames, B.N. The Detection of Chemical Mutagens with Enteric Bacteria. In Chemical Mutagens; Hollaender, A., Ed.; Springer: Boston, MA, USA, 1971; p. 267. [Google Scholar]
- Yajima, N.; Kondo, K.; Morita, K. Reverse mutation tests in Salmonella typhimurium and chromosomal aberration tests in mammalian cells in culture on fluorinated pyrimidine derivatives. Mutat. Res. 1981, 88, 241–254. [Google Scholar] [CrossRef]
- Hannan, M.A.; al-Dakan, A.A.; Hussain, S.S.; Amer, M.H. Mutagenicity of cisplatin and carboplatin used alone and in combination with four other anticancer drugs. Toxicology 1989, 55, 183–191. [Google Scholar] [CrossRef]
- Vidal. Available online: https://www.vidal.ru/drugs/duspatalin__1486 (accessed on 28 March 2023).
- Scientific Committee on Consumer Safety. Opinion on bismuth citrate, 4th plenary meeting, 12 December 2013. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_147.pdf (accessed on 28 March 2023).
- Brambilla, G.; Mattioli, F.; Martelli, A. Genotoxic and carcinogenic effects of gastrointestinal drugs. Mutagenesis 2010, 25, 315–326. [Google Scholar] [CrossRef]
- Eckhardt, K.; Gocke, E.; King, M.T.; Wild, D. Mutagenic activity of chlorate, bromate and iodate. Mutat. Res. 1982, 97, 185. [Google Scholar] [CrossRef]
- Karekar, V.; Joshi, S.; Shinde, S.L. Antimutagenic profile of three antioxidants in the Ames assay and the Drosophila wing spot test. Mutat. Res. 2000, 468, 183–194. [Google Scholar] [CrossRef]
- Miadokova, E.; Mravcová, M.; Vlčková, V.; Orlická, K.; Slaninová, M.; Dúhová, V.; Vlášková, M.; Vlček, D. Antimutagenic and anticlastogenic potential of α-lipoic acid. Biologia 2002, 57, 351–358. [Google Scholar]
- N-Acetyl-L-cysteine for use in foods for particular nutritional uses and in foods for special medical purposes. EFSA J. 2003, 21, 1–8. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2004.21 (accessed on 28 March 2023).
- De Flora, S.; Bennicelli, C.; Zanacchi, P.; Camoirano, A.; Morelli, A.; De Flora, A. In vitro effects of N-acetylcysteine on the mutagenicity of direct-acting compounds and procarcinogens. Carcinogenesis 1984, 5, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Serrano, J.; Vettorazzi, A.; Muruzabal, D.; Azqueta, A.; López de Cerain, A. In Vitro Genotoxicity Assessment of Functional Ingredients: Betaine, Choline, and Taurine. Foods 2021, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- TP report on the toxicology studies of dicyclohexylcarbodiimide. Natl. Toxicol. Program. Genet. Modif. Model. Rep. 2007, 9, 1–138. Available online: https://pubmed.ncbi.nlm.nih.gov/18784765/ (accessed on 28 March 2023).
- Lobishev, V.N.; Kalinichenko, L.P. Isotopic Effects of D2O in Biological Systems; Nauka: Moscow, Russia, 1978; p. 215. [Google Scholar]
- Belete, T.M. Recent Updates on the Development of Deuterium-Containing Drugs for the Treatment of Cancer. Drug. Des. Devel Ther. 2022, 16, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Peng, X.; Sun, Y.; Ai, J.; Duan, W. Evaluation of deuterium-labeled JNJ38877605: Pharmacokinetic, metabolic, and in vivo antitumor profiles. Chem. Res. Toxicol. 2018, 31, 1213–1218. [Google Scholar] [CrossRef]
- Bailleul, B.; Daubersies, P.; Galiègue-Zouitina, S.; Loucheux-Lefebvre, M.H. Molecular basis of 4-nitroquinoline 1-oxide carcinogenesis. Jpn. J. Cancer Res. 1989, 80, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Beranek, D.T. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat. Res. Mol. Mech. Mutagen. 1990, 231, 11–30. [Google Scholar] [CrossRef]
- Palom, Y.; Suresh Kumar, G.; Tang, L.Q.; Paz, M.M.; Musser, S.M.; Rockwell, S.; Tomasz, M. Relative toxicities of DNA cross-links and monoadducts: New insights from studies of decarbamoyl mitomycin C and mitomycin. Comparative Study. Chem. Res. Toxicol. 2002, 15, 1398–1406. [Google Scholar] [CrossRef]
- Volkert, M.R.; Nguyen, D.C. Induction of specific Escherichia coli genes by sublethal treatments with alkylating agents. Proc. Natl. Acad. Sci. USA 1984, 81, 4110–4114. [Google Scholar] [CrossRef]
- Landini, P.; Volkert, M.R. Regulatory Responses of the Adaptive Response to Alkylation Damage: A Simple Regulon with Complex Regulatory Features. J. Bacteriol. 2000, 182, 6543–6549. [Google Scholar] [CrossRef]
- Mielecki, D.; Wrzesiński, M.; Grzesiuk, E. Inducible Repair of Alkylated DNA in Microorganisms. Mutat. Res. 2015, 763, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.M.; Ames, B.N. Revised Methods for the Salmonella Mutagenicity Test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Urey, H.C.; Brickwedde, F.G.; Murphy, G.M. A hydrogen isotope of mass 2. Phys. Rev. 1932, 39, 164–166. [Google Scholar] [CrossRef]
- Den’ko, E.I. Effect of heavy water (D2O) in animal cells, plants and micro-organisms. Usp. Sovrem. Biol. 1973, 70, 41–49. [Google Scholar]
- Jandova, J.; Hua, A.B.; Fimbres, J.; Georg, T.; Wondrak, G.T. Deuterium Oxide (D2O) Induces Early Stress Response Gene Expression and Impairs Growth and Metastasis of Experimental Malignant Melanoma. Cancers 2021, 13, 605. [Google Scholar] [CrossRef] [PubMed]
- Altermatt, H.J.; Gebbers, J.O.; Laissue, J.A. Heavy water enhances the antineoplastic effect of 5-fluoro-uracil and bleomycin in nude mice bearing human carcinoma. Int. J. Cancer 1990, 45, 475–480. [Google Scholar] [CrossRef]
- Parmon, V.N. On the possibility of observing kinetic isotope effects in the life cycles of living organisms at ultralow deuterium concentrations. Vestn. Ross. Akad. Nauk. 2015, 85, 247–249. [Google Scholar]
- Abilev, S.K.; Smirnova, S.V.; Igonina, E.V.; Parmon, V.N.; Yankovsky, N.K. Deuterium Oxide En-hances Escherichia coli SOS Response Induced by Genotoxicants. Dokl. Biol. Sci. 2018, 480, 85–89. [Google Scholar] [CrossRef]
- Abilev, S.K.; Igonina, E.V.; Smirnova, S.V.; Rubanovich, A.V. Effect of Deuterium on the Expression of Inducible Genes in Escherichia coli. Biol. Bull. 2019, 46, 1595–1600. [Google Scholar] [CrossRef]
- Abilev, S.K.; Smirnova, S.V.; Shapiro, T.N. Effect of Deuterium Oxide on recA and colD Genes Expression Induced by UV Radiation in Esherichia coli Cells. Radiac. Biol. Radioekol. 2022, 62, 495–501. [Google Scholar]
- Sagristá, M.L.; GarcÍa, A.F.; De Madariaga, M.A.; Mora, M. Antioxidant and Pro-oxidant Effect of the Thiolic Compounds N -acetyl- l -cysteine and Glutathione against Free Radical-induced Lipid Peroxi-dation. Free. Radic. Res. 2002, 36, 329–340. [Google Scholar] [CrossRef]
- Solov’eva, M.E.; Solov’ev, V.V.; Fashutdinova, A.A. Prooxidant and cytotoxic effects of N-acetylcysteine and glutathione in combination with vitamin B12. Tsitologiia 2007, 49, 70–78. [Google Scholar]
- Jomová, K.; Hudecova, L.; Lauro, P.; Simunkova, M.; Alwase, S.H.; Alhazza, I.M.; Valko, M. A Switch between Antioxidant and Prooxidant Properties of the Phenolic Compounds Myricetin, Morin, 3′,4′-Dihydroxyflavone, Taxifolin and 4-Hydroxy-Coumarin in the Presence of Copper(II) Ions: A Spectroscopic, Absorption Titration and DNA Damage Study. Molecules 2019, 24, 4335. [Google Scholar] [CrossRef]
- Abilev, S.K.; Sviridova, D.A.; Grebenyuk, A.N.; Igonina, E.V.; Smirnova, S.V. Study of the Prooxidant and Antioxidant Activity of Anti-Radiation Agents with LUX-Biosensors. Biol. Bull. 2019, 46, 1646–1656. [Google Scholar] [CrossRef]
- Lyahovich, V.V.; Vavilin, V.A.; Zenkov, N.K.; Menshchikova, E.B. Active defense under oxidative stress. The antioxidant responsive element. Biochemistry 2006, 71, 962–974. [Google Scholar]
- Giudice, A.; Arra, C. Review of molecular mechanisms involved in the activation of the Nrf2-are signaling pathway by chemopreventive agents. Methods Mol.Biol. 2010, 647, 37–74. [Google Scholar] [PubMed]
- Raghunath, A.; Sundarraj, A.; Nagarajan, R.; Arfusoc, F.; Biand, J.; Kumard, A.P.; Sethid, G.; Perumal, E. Antioxidant response elements: Discovery, classes, regulation and potential Applications. Redox Biol. 2018, 17, 297–314. [Google Scholar] [CrossRef] [PubMed]
Strains E. coli | Biosensor Designation in the Article | Promotor of Gene | Lux Operon | Reference Compounds |
---|---|---|---|---|
MG1655(pKat::lux) | pKatG-lux | katG | luxCDABE | H2O2 |
MG1655(pSoxS::lux | pSoxS-lux | soxS | luxCDABE | Paraquat |
MG1655(pColD::lux) | pColD-lux | colD | luxCDABE | 4-NQO |
MG1655(pAlkA::lux) | pAlkA-lux | alkA | luxCDABE | MMS |
MG1655(pRecA::lux) | pRecA-lux | recA | luxCDABE | 4-NQO |
No. | Agent | Concentration, 10−3 M | IF, Iind/I0 * | Ames Test | ||
---|---|---|---|---|---|---|
pCol-lux | pKat-lux | pSox-lux | ||||
1 | H2O2 | 0.01–2.2 | 10.01 (0.04) 3.7 × 10−9 ** | 18.53 (0.02) 2.2 × 10−7 | 8.60 (0.04) 6.5 × 10–8 | + [28] |
2 | Paraquat | 0.04–2.0 | – *** | 2.32 (2.0) 2.5 × 10−9 | 4.39 (1.8) 1.0 × 10–7 | + [28] |
3 | Mitomycin C | 0.001–0.1 | 13.80 (0.1) 8.8 × 10−5 | – | – | + [28] |
4 | 4-NQO | 0.05–1.3 | 41.80 (0.3) 3.7 × 10−5 | 15.88 (0.5) 6.5 × 10−9 | 4.29 (0.5) 4.7 × 10–6 | + [28] |
5 | 2-Nitrofluorene | 0.02–0.7 | – | – | – | + [28] |
6 | Furacilin | 0.50–5.0 | 2.27 (1.3) 1.2 × 10−5 | 2.46 (2.5) 2.9 × 10−6 | – | + [28] |
7 | Furamag | 0.50–5.0 | 5.73 (0.2) 2.0 × 10−5 | – | – | + [28] |
8 | Furagin | 0.50–5.0 | 5.52 (0.5) 8.4 × 10−6 | – | – | + [28] |
9 | Furazolidone | 0.50–5.0 | 4.53 (2.2) 3.4 × 10−5 | – | – | + [28] |
10 | Metronidazole | 0.1–5.3 | 3.18 (5.3) 4.3 × 10−7 | – | – | + [28] |
11 | Cadmium(II) chloride (CdCl2) | 0.05–1.0 | – | 2.95 (0.1) 2.5 × 10−6 | 2.08 (0.1) 4.8 × 10–5 | + [29] |
12 | Cadmium(II) bromide (CdBr2) | 0.01–0.1 | – | – | – | - [30] |
13 | Caesium chloride, (CsCl) | 0.05–1.0 | – | – | – | - [31] |
14 | Manganese(II) chloride MnCl2) | 0.05–1.0 | – | – | – | - [31] |
15 | Zinc sulfate (ZnSO4) | 0.05–1.0 | – | – | – | - [31] |
16 | Copper(II) sulfate (CuSO4) | 0.01–1.0 | – | – | – | - [32] |
17 | Cobalt(II) sulfate (CoSO4) | 0.03–0.6 | – | – | – | - [32] |
18 | Iron(II) sulfate (FeSO4) | 0.01–0.1 | – | – | – | - [32] |
19 | Chromium potassium sulfate CrK(SO4)2 | 0.01–0.1 | – | – | – | - [32] |
20 | Potassium dichromate(VI) (K2Cr2O7) | 0.03–0.6 | – | – | 5.34 (0.6) 5.0 × 10–7 | + [32] |
21 | Dioxidine | 0.45–4.50 | 11.47 (0.9) 8.9 × 10−7 | – | – | + [32] |
22 | Ciprofloxacin | 0.04–41.0 | 2.70 (0.04) 2.7 × 10−5 | – | – | + [33] |
23 | Ceftriaxone | 0.02–1.8 | – | – | – | - [34] |
24 | Azithromycin | 0.01–6.0 | – | – | – | - [35] |
25 | Fluconasole | 0.03–32.0 | – | – | – | - [36] |
26 | 2-Aminopurine | 0.05–5.0 | 3.06 (5.0) 1.3 × 10−8 | – | – | + [37] |
27 | 5-Fluorouracil | 0.08–38.0 | – | – | – | - [28] |
28 | 5-Bromouracil | 0.05–5.0 | 2.84 (5.0) 6.6 × 10−6 | – | – | + [37] |
29 | 5-Fluorodeoxyuridine | 0.02–0.4 | – | – | – | - [38] |
30 | 9-Aminoacridine | 0.04–3.0 | – | – | – | + [28] |
31 | Ethidium bromide | 0.03–1.2 | – | – | – | + [28] |
32 | Acridine Orange | 0.04–37.0 | – | – | – | + [28] |
33 | Nitrosomethylurea | 0.01–48.5 | 11.00 (48.5) 2.4 × 10−7 | – | – | + [28] |
34 | Streptozotocin | 0.04–1.8 | 7.41 (0.4) 4.8 × 10−6 | – | – | + [28] |
35 | Cisplatin | 0.02–1.6 | 4.43 (0.8) 7.7 × 10−6 | – | – | + [39] |
36 | Duspatalin | 0.02–42.0 | – | 4.33 (0.8) 0.3 × 10−5 | – | - [40] |
37 | De Nol (bismuth subcitrate potassium) | 0.01–1.4 | – | – | – | - [41] |
38 | Omeprazole | 0.03–5.0 | – | – | – | - [42] |
39 | Iodine | 0.04–15.0 | 3.99 (0.04) 5.2 × 10−7 | – | – | - [43] |
40 | Glutathione reduced | 0.03–3.2 | – | – | – | - [44] |
41 | Lipoic acid | 0.001–0.06 | – | – | – | - [45] |
42 | Mexidol | 0.02–18.0 | – | – | – | - [46] |
43 | Fluimucil | 0.06–60.0 | – | – | – | - [47] |
44 | Taufon | 3.2–31.0 | – | – | – | - [48] |
45 | 1,3- dicyclohexyl carbodiimide | 0.1–15.0 | – | – | – | - [49] |
46 | Ethanol | 16–162 | – | – | – | - [23] |
47 | Dimethyl sulfoxide | 1.4–14.0 | – | – | – | - [23] |
Chemicals, mol/L | pColD-lux | pRecA-lux | ||||||
---|---|---|---|---|---|---|---|---|
*Isotope Effect *, ID/I0 | *Isotope Effect *, ID/I0 | |||||||
5% | 7.5% | 9% | 10% | 5% | 7.5% | 9% | 10% | |
Mitomycin C, 5 × 10−8 | 1.61 ** 9.2 × 10−6 | 1.70 2.9 × 10−7 | 1.75 4.1 × 10−6 | 1,52 6.2 × 10−5 | 1.29 5.1 × 10−8 | 1.30 7.9 × 10−8 | 1.34 4.5 × 10−4 | 1.25 4.5 × 10−4 |
Dioxidine, 10−5 | 1.43 4.5 × 10−5 | 1.54 3.9 × 10−7 | 1.57 5.9 × 10−6 | 1.36 6.3 × 10−5 | - *** | - | - | - |
Furacilin, 2.5 × 10−3 | 2.0 8.2 × 10−4 | 4.0 1.8 × 10−9 | 2.8 3.1 × 10−4 | 2.7 5.3 × 10−7 | 2.2 9.4 × 10−13 | 2.5 3.8 × 10−11 | 1.4 1.0 × 10−6 | 0.9 2.7 × 10−2 |
4-NQO, 8 × 10−5 | 1.86 9.8 × 10−7 | 1.97 2.9 × 10−6 | 1.98 1.7 × 10−5 | 2.08 4.3 × 10−9 | 1.49 5.4 × 10−6 | 1.63 1.8 × 10−4 | 1.82 1.0 × 10−9 | 1.69 3.0 × 10−8 |
Nalidixic acid, 10−3 | 1.68 7.1 × 10−5 | 2.31 9.4 × 10−12 | 2.36 7.0 × 10−7 | 2.21 1.8 × 10−9 | 1.33 2.2 × 10−8 | 1.40 1.1 × 10−9 | 1.24 2.3 × 10−3 | - |
Cisplatin, 5 × 10−5 | 1.31 1.7 × 10−4 | 1.36 1.4 × 10−5 | 1.44 5.4 × 10−6 | 1.27 1.6 × 10−4 | 1.16 2.6 × 10−5 | 1.16 1.2 × 10−4 | 1.16 6.0 × 10−5 | 1.09 5.2 × 10−3 |
Streptozotocin, 10−5 | 1.16 6.6 × 10−3 | 1.24 1.9 × 10−2 | 1.35 2.2 × 10−5 | 1.51 2.0 × 10−7 | 1.11 3.1 × 10−3 | 1.13 2.5 × 10−2 | 1.16 1.2 × 10−3 | 1.14 1.0 × 10−3 |
2-aminopurine, 2.5 × 10−3 | - | 1.49 5.4 × 10−5 | 1.46 7.9 × 10−5 | 1.51 6.5 × 10−5 | 1.16 1.1 × 10−2 | 1.34 1.7 × 10−6 | 1.63 1.2 × 10−5 | 1.22 6.4 × 10−4 |
5-bromouracil, 10−2 | - | - | 1.10 4.6 × 10−2 | 1.23 8.0 × 10−4 | - | 0.82 3.7 × 10−2 | 0.77 1.0 × 10−3 | 0.75 6.5 × 10−4 |
Variant | D2O Concentration in the Medium, % | Luminescence, RLU | Isotope Effect *, ID/I0 |
---|---|---|---|
Control | 0 | 61.1 ± 4.7 | – |
5 | 57.4 ± 4.5 | – | |
7.5 | 60.9 ± 6.0 | – | |
9 | 55.8 ± 7.1 | – | |
10 | 52.1 ± 6.7 | – | |
NMU, 0.005M | 0 | 1436.8 ± 144.0 | – |
5 | 3937.8 ± 536.1 | 2.7 | |
7.5 | 4373.0 ± 256.7 | 3.0 | |
9 | 4313.8 ± 519.1 | 3.0 | |
10 | 2552.3 ± 759.4 | 1.8 | |
MMS, 0.005M | 0 | 320.3 ± 42.6 | – |
5 | 547.9 ± 76.9 | 1.7 | |
7.5 | 1625.3 ± 190.0 | 5.1 | |
9 | 1759.1 ± 195.2 | 5.6 | |
10 | 421.0 ± 38.3 | 1.3 |
No. | Substance | Concen-Tration, mmol/L | Protective Activity on Biosensors, % | |||
---|---|---|---|---|---|---|
pKat-lux | pSox-lux | |||||
Prooxidant | Antioxidant | Prooxidant | Antioxidant | |||
Standard antioxidants | ||||||
1 | Acetylcysteine | 1–30 | – | 94 (10) * | −11 (1) | 96 (20) |
2 | Reduced glutathione | 1–30 | – | 95 (10) | – | 98 (30) |
3 | Dihydroquercetin | 0.1–30 | – | 54 (10) | −6 (5) | 46 (30) |
4 | Lipoic acid | 0.1–6 | – | 72 (3) | – | 76 (6) |
5 | Spermine | 0.5–20 | – | 92 (2.5) | – | 100 (20) |
6 | Lycopene | 0.025–1 | – | 91 (1) | – | 83 (0.5) |
Radioprotectors | ||||||
7 | Glutathione disulfide, lithium salt | 0.5–10 | −21 (0.5) | 96 (5) | – | 94 (5) |
8 | Glutathione disulfide magnesium salt | 0.1–5 | −91 (5) | – | – | 7 (0.1) |
9 | Reduced glutathione, zinc salt | 0.5–10 | −81 (5) | – | – | 35 (5) |
10 | Glutoxim | 0.1–10 | 8 (0.5) | 15 (10) | – | 16 (0.5) |
11 | Genistein | 0.5–10 | 8 (0.5) | 45 (5) | −46 (10) | 46 (0.5) |
12 | Androstenediol (AED) | 0.001–0.1 | – | 27 (0.1) | −19 (0.1) | – |
13 | B-190 (indralin) | 0.5–20 | −48 (0.5) | 98 (20) | – | 100 (10) |
14 | Molixan | 0.5–10 | −60 (1) | – | – | 29 (1) |
15 | Cystamine recrystallized | 0.5–10 | 11 (0.5) | 45 (10) | −37 (2.5) | – |
16 | Cystamine dihydrochloride | 0.5–10 | – | 49 (10) | −28 (0.5) | – |
Vitamins, amino acids | ||||||
17 | Vitamin A | 0.1–70 | −62 (30) | – | −25 (2.5) | 27 (70) |
18 | Vitamin E | 0.1–20 | – | 32 (20) | −19 (0.1) | 44 (20) |
19 | Vitamin B6 | 0.1–30 | −12 (1) | 94 (30) | −33 (5) | 79 (30) |
20 | Vitamin PP | 0.1–8 | – | 30 (5) | −25 (7) | – |
21 | Biotin | 0.1–30 | 8 (2.5) | 13 (30) | −47 (10) | – |
22 | Vitamin C | 0.1–30 | – | 96 (10) | – | 92 (20) |
23 | Cysteine | 1–30 | −24 (1) | 96 (15) | −40 (5) | 91 (20) |
24 | Methionine | 0.1–50 | −9 (15) | – | −8 (1) | 30 (30) |
25 | Cystine | 1–30 | −19 (30) | – | −43 (1) | – |
26 | Taurine (taufon) | 0.1–30 | −14 (30) | 16 (1) | −28 (5) | – |
Substances for different purposes | ||||||
27 | Mexidol | 0.1–36 | – | 97 (36) | −33 (5) | 96 (36) |
28 | Q10 (coenzyme) | 0.1–10 | 9 (0.1) | 18 (10) | – | 69 (10) |
29 | DMSO | 0.5–100 | 6 (0.5) | 77 (100) | −28 (0.5) | 86 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abilev, S.K.; Igonina, E.V.; Sviridova, D.A.; Smirnova, S.V. Bacterial Lux Biosensors in Genotoxicological Studies. Biosensors 2023, 13, 511. https://doi.org/10.3390/bios13050511
Abilev SK, Igonina EV, Sviridova DA, Smirnova SV. Bacterial Lux Biosensors in Genotoxicological Studies. Biosensors. 2023; 13(5):511. https://doi.org/10.3390/bios13050511
Chicago/Turabian StyleAbilev, Serikbai K., Elena V. Igonina, Darya A. Sviridova, and Svetlana V. Smirnova. 2023. "Bacterial Lux Biosensors in Genotoxicological Studies" Biosensors 13, no. 5: 511. https://doi.org/10.3390/bios13050511
APA StyleAbilev, S. K., Igonina, E. V., Sviridova, D. A., & Smirnova, S. V. (2023). Bacterial Lux Biosensors in Genotoxicological Studies. Biosensors, 13(5), 511. https://doi.org/10.3390/bios13050511