A Wireless and Wearable Multimodal Sensor to Non-Invasively Monitor Transabdominal Placental Oxygen Saturation and Maternal Physiological Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multimodal Sensor
2.2. Participants
2.3. Experimental Procedure
2.4. Data Acquisition and Processing
2.5. Statistical Analysis
3. Results and Discussions
3.1. Patient Characteristics
3.2. Transabdominal Placental Oxygen Saturation
3.3. Maternal Physiological Signals
3.4. Maternal Abdominal Surface Movements
3.5. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
functional Magnetic Resonance Imaging | fMRI |
intrauterine growth restriction | IUGR |
near-infrared spectroscopy | NIRS |
cardiotocography | CTG |
small-for-gestational-age | SGA |
polydimethylsiloxane | PDMS |
light-emitting diode | LED |
photodetectors | PDs |
Detroit Medical Center | DMC |
analysis of variance | ANOVA |
pregnancy without complications | UC |
maternal pre-existing conditions/complications | MC |
placental pathologic abnormalities | PI |
pregnancy with neonatal complications | NC |
heart rate | HR |
respiratory rate | RR |
universal serial bus | USB |
References
- Thompson, L.P.; Crimmins, S.; Telugu, B.P.; Turan, S. Intrauterine hypoxia: Clinical consequences and therapeutic perspectives. Res. Rep. Neonatol. 2015, 2015, 79–89. [Google Scholar] [CrossRef]
- Hutter, D.; Jaeggi, E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: A review. Int. J. Pediatr. 2010, 2010, 401323. [Google Scholar] [CrossRef]
- Habek, D.; Habek, J.C.; Jugović, D.; Salihagić, A. Intrauterine hypoxia and sudden infant death syndrome. Acta Medica Croat. Cas. Hravatske Akad. Med. Znan. 2002, 56, 109–118. [Google Scholar]
- Nordstrom, L.; Arulkumaran, S. Intrapartum fetal hypoxia and biochemical markers: A review. Obstet. Gynecol. Surv. 1998, 53, 645–657. [Google Scholar] [CrossRef]
- Abramowicz, J.; Sheiner, E. Ultrasound of the placenta: A systematic approach. Part II: Functional assessment (Doppler). Placenta 2008, 29, 921–929. [Google Scholar] [CrossRef]
- Ražem, K.; Kocijan, J.; Podbregar, M.; Lučovnik, M. Near-infrared spectroscopy of the placenta for monitoring fetal oxygenation during labour. PLoS ONE 2020, 15, e0231461. [Google Scholar] [CrossRef]
- Wang, L.; Cochran, J.M.; Ko, T.; Baker, W.B.; Abramson, K.; He, L.; Schwartz, N. Non-invasive monitoring of blood oxygenation in human placentas via concurrent diffuse optical spectroscopy and ultrasound imaging. Nat. Biomed. Eng. 2022, 6, 1017–1030. [Google Scholar] [CrossRef]
- Hasegawa, J.; Nakamura, M.; Matsuoka, R.; Mimura, T.; Ichizuka, K.; Sekizawa, A.; Okai, T. Evaluation of placental function using near infrared spectroscopy during fetal growth restriction. J. Perinat. Med. 2010, 38, 29–32. [Google Scholar] [CrossRef]
- Mah, A.J.; Nguyen, T.; Ghazi Zadeh, L.; Shadgan, A.; Khaksari, K.; Nourizadeh, M.; Zaidi, A.; Park, S.; Gandjbakhche, A.H.; Shadgan, B. Optical Monitoring of breathing patterns and tissue oxygenation: A potential application in COVID-19 screening and monitoring. Sensors 2022, 22, 7274. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Rajagopal, S.; Prieto-Simón, B.; Pogue, B.W. Recent advances in smart wearable sensors for continuous human health monitoring. Talanta 2024, 272, 125817. [Google Scholar] [CrossRef]
- Nguyen, T.; Park, S.; Park, J.; Sodager, A.; George, T.; Gandjbakhche, A. Application of the Single Source—Detector Separation Algorithm in Wearable Neuroimaging Devices: A Step toward Miniaturized Biosensor for Hypoxia Detection. Bioengineering 2024, 11, 385. [Google Scholar] [CrossRef]
- Nguyen, T.; Khaksari, K.; Khare, S.M.; Park, S.; Anderson, A.A.; Bieda, J.; Gandjbakhche, A.H. Non-invasive transabdominal measurement of placental oxygenation: A step toward continuous monitoring. Biomed. Opt. Express 2021, 12, 4119–4130. [Google Scholar] [CrossRef]
- Eskild, A.; Strøm-Roum, E.M.; Haavaldsen, C. Does the biological response to fetal hypoxia involve angiogenesis, placental enlargement and preeclampsia? Paediatr. Perinat. Epidemiol. 2016, 30, 305–309. [Google Scholar] [CrossRef]
- Stosur, S. Serum water analysis in normal pregnancy and preeclampsia. Am. Soc. Clin. Lab. Sci. 2011, 24, 99–104. [Google Scholar] [CrossRef]
- Mayhew, T.M. Estimating oxygen diffusive conductances of gas-exchange systems: A stereological approach illustrated with the human placenta. Ann. Anat. -Anat. Anz. 2014, 196, 34–40. [Google Scholar] [CrossRef]
- Cunningham, M.W., Jr.; LaMarca, B. Risk of cardiovascular disease, end-stage renal disease, and stroke in postpartum women and their fetuses after a hypertensive pregnancy, American Journal of Physiology-Regulatory. Integr. Comp. Physiol. 2018, 315, R521–R528. [Google Scholar] [CrossRef]
- Tong, W.; Giussani, D.A. Preeclampsia link to gestational hypoxia. J. Dev. Orig. Health Dis. 2019, 10, 322–333. [Google Scholar] [CrossRef]
- Burton, G.J.; Jones, C.J. Syncytial knots, sprouts, apoptosis, and trophoblast deportation from the human placenta. Taiwan. J. Obstet. Gynecol. 2009, 48, 28–37. [Google Scholar] [CrossRef]
- Roberts, J.M.; Escudero, C. The placenta in preeclampsia. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2012, 2, 72–83. [Google Scholar] [CrossRef]
- Toal, M.; Chan, C.; Fallah, S.; Alkazaleh, F.; Chaddha, V.; Windrim, R.C.; Kingdom, J.C. Usefulness of a placental profile in high-risk pregnancies. Am. J. Obstet. Gynecol. 2007, 196, 363.e1–363.e7. [Google Scholar] [CrossRef]
- Baergen, R.N. Manual of Pathology of the Human Placenta; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Matsuo, K.; Malinow, A.M.; Harman, C.R.; Baschat, A.A. Decreased placental oxygenation capacity in pre-eclampsia: Clinical application of a novel index of placental function preformed at the time of delivery. J. Perinat. Med. 2009, 37, 657–661. [Google Scholar] [CrossRef]
- Meakin, A.; Saif, Z.; Jones, A.; Aviles, P.V.; Clifton, V. Placental adaptations to the presence of maternal asthma during pregnancy. Placenta 2017, 54, 17–23. [Google Scholar] [CrossRef]
- Giles, W.; Murphy, V. Asthma in pregnancy: A review. Obstet. Med. 2013, 6, 58–63. [Google Scholar] [CrossRef]
- Coleman, M.T.; Rund, D.A. Nonobstetric conditions causing hypoxia during pregnancy: Asthma and epilepsy. Am. J. Obstet. Gynecol. 1997, 177, 1–7. [Google Scholar] [CrossRef]
- Khaliq, A.; Dunk, C.; Jiang, J.; Shams, M.; Li, X.F.; Acevedo, C.; Ahmed, A. Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: Molecular evidence for “placental hyperoxia” in intrauterine growth restriction. Lab. Investig. A J. Tech. Methods Pathol. 1999, 79, 151–170. [Google Scholar]
- Murphy, V.; Gibson, P.; Smith, R.; Clifton, V. Asthma during pregnancy: Mechanisms and treatment implications. Eur. Respir. J. 2005, 25, 731–750. [Google Scholar] [CrossRef]
- Clifton, V.L.; Giles, W.B.; Smith, R.; Bisits, A.T.; Hempenstall, P.A.; Kessell, C.G.; Gibson, P.G. Alterations of placental vascular function in asthmatic pregnancies. Am. J. Respir. Crit. Care Med. 2001, 164, 546–553. [Google Scholar] [CrossRef]
- Choo, S.; de Vrijer, B.; Regnault, T.R.; Brown, H.K.; Stitt, L.; Richardson, B.S. The impact of maternal diabetes on birth to placental weight ratio and umbilical cord oxygen values with implications for fetal-placental development. Placenta 2023, 136, 18–24. [Google Scholar] [CrossRef]
- Lao, T.; Lee, C.-P.; Wong, W.-M. Placental weight to birthweight ratio is increased in mild gestational glucose intolerance. Placenta 1997, 18, 227–230. [Google Scholar] [CrossRef]
- Strøm-Roum, E.M.; Haavaldsen, C.; Tanbo, T.G.; Eskild, T.A. Placental weight relative to birthweight in pregnancies with maternal diabetes mellitus. Acta Obstet. Et Gynecol. Scand. 2013, 92, 783–789. [Google Scholar] [CrossRef]
- Vambergue, A.; Fajardy, I. Consequences of gestational and pregestational diabetes on placental function and birth weight. World J. Diabetes 2011, 2, 196–203. [Google Scholar] [CrossRef]
- Jirkovská, M.; Kučera, T.; Kaláb, J.; Jadrníček, M.; Niedobová, V.; Janáček, J.; Krejčí, V. The branching pattern of villous capillaries and structural changes of placental terminal villi in type 1 diabetes mellitus. Placenta 2012, 33, 343–351. [Google Scholar] [CrossRef]
- Huynh, J.; Dawson, D.; Roberts, D.; Bentley-Lewis, R. A systematic review of placental pathology in maternal diabetes mellitus. Placenta 2015, 36, 101–114. [Google Scholar] [CrossRef]
- Soehnchen, N.; Melzer, K.; de Tejada, B.M.; Jastrow-Meyer, N.; Othenin-Girard, V.; Irion, O.; Kayser, B. Maternal heart rate changes during labour. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 158, 173–178. [Google Scholar] [CrossRef]
- Musa, S.M.; Adam, I.; Hassan, N.G.; Rayis, D.A.; Lutfi, M.F. Maternal heart rate variability during the first stage of labor. Front. Physiol. 2017, 8, 774. [Google Scholar] [CrossRef]
- Robson, S.; Dunlop, W.; Boys, R.; Hunter, S. Cardiac output during labour. Br. Med. J. (Clin. Res. Ed.) 1987, 295, 1169–1172. [Google Scholar] [CrossRef]
- Bossung, V.; Singer, A.; Ratz, T.; Rothenbühler, M.; Leeners, B.; Kimmich, N. Changes in Heart Rate, Heart Rate Variability, Breathing Rate, and Skin Temperature throughout Pregnancy and the Impact of Emotions—A Longitudinal Evaluation Using a Sensor Bracelet. Sensors 2023, 23, 6620. [Google Scholar] [CrossRef]
Patient | HR (MR) | RR (MR) | HR (Sensor) | BR (Sensor) |
---|---|---|---|---|
1 | 94 | 18 | 80.0 ± 11.0 | 16.1 ± 1.2 |
2 | 73 | 16 | 72.8 ± 3.9 | 23.5 ± 1.9 |
3 | 69 | 18 | 69.4 ± 9.5 | 22.3 ± 4.3 |
4 | 94 | 18 | 90.0 ± 4.1 | 17.9 ± 1.3 |
5 | 92 | 22 | 88.5 ± 3.3 | 24.1 ± 2.0 |
6 | 86 | 16 | 83.4 ± 12.9 | 19.8 ± 3.0 |
7 | 88 | 17 | 76.2 ± 9.7 | 23.1 ± 3.5 |
8 | 85 | NA | 76.9 ± 9.9 | 20.2 ± 3.1 |
9 | 106 | NA | 93.7 ± 6.5 | 17.5 ± 0.7 |
10 | 85 | 20 | 78.8 ± 2.7 | 21.0 ± 1.4 |
11 | 76 | 16 | 72.4 ± 8.9 | 20.1 ± 2.2 |
12 | 86 | NA | 88.5 ± 7.6 | 27.3 ± 3.0 |
13 | 104 | 20 | 100.7 ± 13.0 | 30.5 ± 4.9 |
14 | 92 | 18 | 92.4 ± 5.9 | 26.6 ± 3.2 |
15 | 96 | 18 | 86.6 ± 10.2 | 18.8 ± 4.4 |
16 | 75 | 16 | 72.1 ± 5.9 | 20.4 ± 1.5 |
17 | 131 | 19 | 83.6 ± 7.0 | 16.1 ± 3.0 |
18 | 86 | NA | 87.0 ± 15.4 | 25.1 ± 5.5 |
19 | 68 | 18 | 66.3 ± 11.0 | 21.9 ± 2.1 |
20 | 78 | NA | 80.7 ± 19.8 | 23.7 ± 2.0 |
21 | 112 | 20 | 86.0 ± 15.8 | 20.2 ± 1.3 |
22 | 72 | 16 | 86.6 ± 14.8 | 20.8 ± 6.1 |
23 | 90 | NA | 80.3 ± 13.7 | 24.2 ± 3.3 |
24 | 108 | NA | 74.8 ± 9.2 | 24.1 ± 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.; Park, S.; Sodager, A.; Park, J.; Gallo, D.M.; Luo, G.; Romero, R.; Gandjbakhche, A. A Wireless and Wearable Multimodal Sensor to Non-Invasively Monitor Transabdominal Placental Oxygen Saturation and Maternal Physiological Signals. Biosensors 2024, 14, 481. https://doi.org/10.3390/bios14100481
Nguyen T, Park S, Sodager A, Park J, Gallo DM, Luo G, Romero R, Gandjbakhche A. A Wireless and Wearable Multimodal Sensor to Non-Invasively Monitor Transabdominal Placental Oxygen Saturation and Maternal Physiological Signals. Biosensors. 2024; 14(10):481. https://doi.org/10.3390/bios14100481
Chicago/Turabian StyleNguyen, Thien, Soongho Park, Asma Sodager, Jinho Park, Dahiana M. Gallo, Guoyang Luo, Roberto Romero, and Amir Gandjbakhche. 2024. "A Wireless and Wearable Multimodal Sensor to Non-Invasively Monitor Transabdominal Placental Oxygen Saturation and Maternal Physiological Signals" Biosensors 14, no. 10: 481. https://doi.org/10.3390/bios14100481
APA StyleNguyen, T., Park, S., Sodager, A., Park, J., Gallo, D. M., Luo, G., Romero, R., & Gandjbakhche, A. (2024). A Wireless and Wearable Multimodal Sensor to Non-Invasively Monitor Transabdominal Placental Oxygen Saturation and Maternal Physiological Signals. Biosensors, 14(10), 481. https://doi.org/10.3390/bios14100481