Self-Assembled Lubricin (PRG-4)-Based Biomimetic Surface-Enhanced Raman Scattering Sensor for Direct Droplet Detection of Melamine in Undiluted Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sensor Fabrication
2.3. AFM Characterization of the Biomimetic SERS
3. Results
3.1. AFM Imaging and Normal Force Distance Measurements
3.2. Analysis of Melamine with Bare SERS
3.3. Analysis of Undiluted Milk Spiked with Melamine with Biomimetic SERS
3.4. Calibration of Undiluted Milk Spiked with Melamine with Biomimetic SERS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garg, A.K.; Singh, B.; Naskar, S.; Prajapati, R.K.; Dalal, C.; Sonkar, S.K. Melamine–Formaldehyde Polymer-Based Nanocomposite for Sunlight-Driven Photodegradation of Multiple Dyes and Their Mixture. Langmuir 2023, 39, 11036–11047. [Google Scholar] [CrossRef] [PubMed]
- Kralj, M.; Krivačić, S.; Ivanišević, I.; Zubak, M.; Supina, A.; Marciuš, M.; Halasz, I.; Kassal, P. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics. Nanomaterials 2022, 12, 2936. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Bai, J.; Huang, J.; Demir, M.; Farghaly, A.A.; Aghamohammadi, P.; Hu, X.; Wang, L. One-Pot Synthesis of Melamine Formaldehyde Resin-Derived N-Doped Porous Carbon for CO2 Capture Application. Molecules 2023, 28, 1772. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhi, Y.; Yu, Q.; Xu, Q.; Demir, M.; Colak, S.G.; Farghaly, A.A.; Wang, L.; Hu, X. Enhanced CO2 Adsorption Capacity in Highly Porous Carbon Materials Derived from Melamine-Formaldehyde Resin. Energy Fuels 2024, 38, 13186–13195. [Google Scholar] [CrossRef]
- Dorieh, A.; Farajollah Pour, M.; Ghafari Movahed, S.; Pizzi, A.; Pouresmaeel Selakjani, P.; Valizadeh Kiamahalleh, M.; Hatefnia, H.; Shahavi, M.H.; Aghaei, R. A review of recent progress in melamine-formaldehyde resin based nanocomposites as coating materials. Prog. Org. Coat. 2022, 165, 106768. [Google Scholar] [CrossRef]
- Jiang, K.; Lei, Z.; Yi, M.; Lv, W.; Jing, M.; Feng, Q.; Tan, H.; Chen, Y.; Xiao, H. Improved performance of soy protein adhesive with melamine–urea–formaldehyde prepolymer. RSC Adv. 2021, 11, 27126–27134. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, K. Chapter 31-Melamine. In Biomarkers in Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: New York, NY, USA, 2019; pp. 551–560. [Google Scholar] [CrossRef]
- Bann, B.; Miller, S.A. Melamine And Derivatives Of Melamine. Chem. Rev. 1958, 58, 131–172. [Google Scholar] [CrossRef]
- Tyan, Y.-C.; Yang, M.-H.; Jong, S.-B.; Wang, C.-K.; Shiea, J. Melamine contamination. Anal. Bioanal. Chem. 2009, 395, 729–735. [Google Scholar] [CrossRef]
- Li, L.; Chin, W.S. Rapid and sensitive SERS detection of melamine in milk using Ag nanocube array substrate coupled with multivariate analysis. Food Chem. 2021, 357, 129717. [Google Scholar] [CrossRef]
- Skinner, C.G.; Thomas, J.D.; Osterloh, J.D. Melamine Toxicity. J. Med. Toxicol. 2010, 6, 50–55. [Google Scholar] [CrossRef]
- Rajpoot, M.; Bhattacharya, R.; Sharma, S.; Gupta, S.; Sharma, V.; Sharma, A.K. Melamine contamination and associated health risks: Gut microbiota does make a difference. Biotechnol. Appl. Biochem. 2021, 68, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, P.; Wen, J. Melamine and food safety: A 10-year review. Curr. Opin. Food Sci. 2019, 30, 79–84. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Q.; Huang, F.; Yang, Q.; Wang, Y.; Wang, H.; Sun, Y.; Yan, Y.; He, G.; Zhao, G.; et al. Exposure to melamine and its derivatives in Chinese adults: The cumulative risk assessment and the effect on routine blood parameters. Ecotoxicol. Environ. Saf. 2022, 241, 113714. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Dong, R.; Chen, J.; Yuan, Y.; Long, Q.; Guo, J.; Li, S.; Chen, B. An assessment of melamine exposure in Shanghai adults and its association with food consumption. Environ. Int. 2020, 135, 105363. [Google Scholar] [CrossRef] [PubMed]
- Melough, M.M.; Foster, D.; Fretts, A.M.; Sathyanarayana, S. Dietary Sources of Melamine Exposure among US Children and Adults in the National Health and Nutrition Examination Survey 2003–2004. Nutrients 2020, 12, 3844. [Google Scholar] [CrossRef]
- Xiao, G.; Li, L.; Yan, A.; He, X. Direct detection of melamine in infant formula milk powder solution based on SERS effect of silver film over nanospheres. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117269. [Google Scholar] [CrossRef]
- Hau, A.K.-C.; Kwan, T.H.; Li, P.K.-T. Melamine Toxicity and the Kidney. J. Am. Soc. Nephrol. 2009, 20, 245–250. [Google Scholar] [CrossRef]
- Zhu, H.; Kannan, K. Melamine and cyanuric acid in foodstuffs from the United States and their implications for human exposure. Environ. Int. 2019, 130, 104950. [Google Scholar] [CrossRef]
- Abedini, R.; Khaniki, G.J.; Naderi, M.; Aghaee, E.M.; Sadighara, P. Investigation of melamine and cyanuric acid concentration in several brands of liquid milk and its non-carcinogenic risk assessment in adults and infants. J. Food Sci. Technol. 2023, 60, 3054–3066. [Google Scholar] [CrossRef]
- Liu, C.-C.; Hsieh, T.-J.; Wu, C.-F.; Lee, C.-H.; Tsai, Y.-C.; Huang, T.-Y.; Wen, S.-C.; Lee, C.-H.; Chien, T.-M.; Lee, Y.-C.; et al. Interrelationship of environmental melamine exposure, biomarkers of oxidative stress and early kidney injury. J. Hazard. Mater. 2020, 396, 122726. [Google Scholar] [CrossRef]
- Gossner Céline, M.-E.; Schlundt, J.; Ben Embarek, P.; Hird, S.; Lo-Fo-Wong, D.; Beltran Jose Javier, O.; Teoh Keng, N.; Tritscher, A. The Melamine Incident: Implications for International Food and Feed Safety. Environ. Health Perspect. 2009, 117, 1803–1808. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Tacken, G.M.L.; Liu, Y.; Sijtsema, S.J. Consumer trust in the dairy value chain in China: The role of trustworthiness, the melamine scandal, and the media. J. Dairy Sci. 2021, 104, 8554–8567. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Huang, W.; Zhang, L.; Thomas, M.; Pei, X. Milk adulteration with melamine in China: Crisis and response. Qual. Assur. Saf. Crops Foods 2009, 1, 111–116. [Google Scholar] [CrossRef]
- Qiao, G.; Guo, T.; Klein, K.K. Melamine in Chinese milk products and consumer confidence. Appetite 2010, 55, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Guo, T.; Klein, K.K. Melamine and other food safety and health scares in China: Comparing households with and without young children. Food Control 2012, 26, 378–386. [Google Scholar] [CrossRef]
- Smulders, F.J.M.; Rietjens, I.M.C.M.; Rose, M. Chemical Hazards in Foods of Animal Origin; Wageningen Academic: Leiden, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Pei, X.; Tandon, A.; Alldrick, A.; Giorgi, L.; Huang, W.; Yang, R. The China melamine milk scandal and its implications for food safety regulation. Food Policy 2011, 36, 412–420. [Google Scholar] [CrossRef]
- Chan, E.Y.Y.; Griffiths, S.M.; Chan, C.W. Public-health risks of melamine in milk products. Lancet 2008, 372, 1444–1445. [Google Scholar] [CrossRef]
- Venkatasami, G.; Sowa, J.R. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Anal. Chim. Acta 2010, 665, 227–230. [Google Scholar] [CrossRef]
- Lutter, P.; Savoy-Perroud, M.-C.; Campos-Gimenez, E.; Meyer, L.; Goldmann, T.; Bertholet, M.-C.; Mottier, P.; Desmarchelier, A.; Monard, F.; Perrin, C.; et al. Screening and confirmatory methods for the determination of melamine in cow’s milk and milk-based powdered infant formula: Validation and proficiency-tests of ELISA, HPLC-UV, GC-MS and LC-MS/MS. Food Control 2011, 22, 903–913. [Google Scholar] [CrossRef]
- Qin, Z.; Jiang, Y.; Piao, H.; Li, J.; Tao, S.; Ma, P.; Wang, X.; Song, D.; Sun, Y. MIL-101(Cr)/MWCNTs-functionalized melamine sponges for solid-phase extraction of triazines from corn samples, and their subsequent determination by HPLC-MS/MS. Talanta 2020, 211, 120676. [Google Scholar] [CrossRef]
- Öztürk, S.; Demir, N. Development of a novel IMAC sorbent for the identification of melamine in dairy products by HPLC. J. Food Compos. Anal. 2021, 100, 103931. [Google Scholar] [CrossRef]
- Pan, X.-D.; Wu, P.-G.; Yang, D.-J.; Wang, L.-Y.; Shen, X.-H.; Zhu, C.-Y. Simultaneous determination of melamine and cyanuric acid in dairy products by mixed-mode solid phase extraction and GC–MS. Food Control 2013, 30, 545–548. [Google Scholar] [CrossRef]
- Wu, C.-F.; Cheng, C.-M.; Hsu, Y.-M.; Li, S.-S.; Huang, C.-Y.; Chen, Y.-H.; Kuo, F.-C.; Wu, M.-T. Development of analytical method of melamine in placenta from pregnant women by isotope-dilution liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8599. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Kannan, K. Determination of melamine and its derivatives in textiles and infant clothing purchased in the United States. Sci. Total Environ. 2020, 710, 136396. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Liu, J.; Zhang, T.; Li, W.; Liu, W.; Meng, M.; He, F.; Wan, Y.; Feng, C.; Wang, S.; et al. Preparation of Monoclonal Antibody for Melamine and Development of an Indirect Competitive ELISA for Melamine Detection in Raw Milk, Milk Powder, and Animal Feeds. J. Agric. Food Chem. 2010, 58, 8152–8157. [Google Scholar] [CrossRef]
- Garber, E.A.E. Detection of Melamine Using Commercial Enzyme-Linked Immunosorbent Assay Technology. J. Food Prot. 2008, 71, 590–594. [Google Scholar] [CrossRef]
- Pan, B.; He, Q.; Yu, X.; De Choch, D.; Lam, K.S.; Hammock, B.D.; Sun, G. Versatility and stability of melamine foam-based biosensors (f-ELISA) using antibodies, nanobodies, and peptides as sensing probes. Talanta 2024, 279, 126634. [Google Scholar] [CrossRef]
- Han, M.; Gong, L.; Wang, J.; Zhang, X.; Jin, Y.; Zhao, R.; Yang, C.; He, L.; Feng, X.; Chen, Y. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk. Sens. Actuators B Chem. 2019, 292, 94–104. [Google Scholar] [CrossRef]
- Chen, Q.; Qie, M.; Peng, X.; Chen, Y.; Wang, Y. Immunochromatographic assay for melamine based on luminescent quantum dot beads as signaling probes. RSC Adv. 2020, 10, 3307–3313. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 2022, 1, 87. [Google Scholar] [CrossRef]
- Garrell, R.L. Surface-enhanced Raman spectroscopy. Anal. Chem. 1989, 61, 401A–411A. [Google Scholar] [CrossRef]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957–2976. [Google Scholar] [CrossRef] [PubMed]
- Silly, F.; Shaw, A.Q.; Castell, M.R.; Briggs, G.A.D.; Mura, M.; Martsinovich, N.; Kantorovich, L. Melamine Structures on the Au(111) Surface. J. Phys. Chem. C 2008, 112, 11476–11480. [Google Scholar] [CrossRef]
- Zhang, C.; You, T.; Yang, N.; Gao, Y.; Jiang, L.; Yin, P. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Food Chem. 2019, 287, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, C.; Gu, J.; Wu, Y.; Zhu, C.; Li, L.; Gao, H.; Yin, W.; Wang, Z.; Chen, G. Detection of melamine by using carboxyl-functionalized Ag-COF as a novel SERS substrate. Food Chem. 2023, 401, 134078. [Google Scholar] [CrossRef]
- Huang, C.; Jiang, S.; Kou, F.; Guo, M.; Li, S.; Yu, G.; Zheng, B.; Xie, F.; Zhang, C.; Yu, H.; et al. Development of jellyfish-like ZnO@Ag substrate for sensitive SERS detection of melamine in milk. Appl. Surf. Sci. 2022, 600, 154153. [Google Scholar] [CrossRef]
- Liu, S.; Kannegulla, A.; Kong, X.; Sun, R.; Liu, Y.; Wang, R.; Yu, Q.; Wang, A.X. Simultaneous colorimetric and surface-enhanced Raman scattering detection of melamine from milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 231, 118130. [Google Scholar] [CrossRef]
- Lou, T.; Wang, Y.; Li, J.; Peng, H.; Xiong, H.; Chen, L. Rapid detection of melamine with 4-mercaptopyridine-modified gold nanoparticles by surface-enhanced Raman scattering. Anal. Bioanal. Chem. 2011, 401, 333–338. [Google Scholar] [CrossRef]
- Zhuang, H.; Zhu, W.; Yao, Z.; Li, M.; Zhao, Y. SERS-based sensing technique for trace melamine detection–A new method exploring. Talanta 2016, 153, 186–190. [Google Scholar] [CrossRef]
- Sharma, V.; Som, N.N.; Pillai, S.B.; Jha, P.K. Utilization of doped GQDs for ultrasensitive detection of catastrophic melamine: A new SERS platform. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117352. [Google Scholar] [CrossRef]
- Yazgan, N.N.; Boyacı, İ.H.; Topcu, A.; Tamer, U. Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles. Anal. Bioanal. Chem. 2012, 403, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Giovannozzi, A.M.; Rolle, F.; Sega, M.; Abete, M.C.; Marchis, D.; Rossi, A.M. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering. Food Chem. 2014, 159, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Luo, Y.; Shi, J.; Gao, L.; Duan, G. Bowl-like Pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder. Sens. Actuators B Chem. 2019, 301, 127087. [Google Scholar] [CrossRef]
- Jay, G.D. Lubricin and surfacing of articular joints. Curr. Opin. Orthop. 2004, 15, 355–359. [Google Scholar] [CrossRef]
- Jay, G.D.; Harris, D.A.; Cha, C.-J. Boundary lubrication by lubricin is mediated by O-linked β(1-3)Gal-GalNAc oligosaccharides. Glycoconj. J. 2001, 18, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Ikegawa, S.; Sano, M.; Koshizuka, Y.; Nakamura, Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenet. Genome Res. 2000, 90, 291–297. [Google Scholar] [CrossRef]
- Swann, D.A.; Silver, F.H.; Slayter, H.S.; Stafford, W.; Shore, E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 1985, 225, 195–201. [Google Scholar] [CrossRef]
- Russo, M.J.; Han, M.Y.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Doeven, E.; Guijt, R.; Silva, S.M.; Greene, G.W. Lubricin (PRG4) reduces fouling susceptibility and improves sensitivity of carbon-based electrodes. Electrochim. Acta 2020, 333, 135574. [Google Scholar] [CrossRef]
- Han, M.; Berry, J.D.; Silva, S.M.; Vidallon, M.L.P.; Lei, W.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Tabor, R.; Greene, G.W. Self-Assembly of Lubricin (PRG-4) Brushes on Graphene Oxide Affords Stable 2D-Nanosheets in Concentrated Electrolytes and Complex Fluids. ACS Appl. Nano Mater. 2020, 3, 11527–11542. [Google Scholar] [CrossRef]
- Han, M.; Silva, S.M.; Lei, W.; Quigley, A.; Kapsa, R.M.I.; Moulton, S.E.; Greene, G.W. Adhesion and Self-Assembly of Lubricin (PRG4) Brush Layers on Different Substrate Surfaces. Langmuir 2019, 35, 15834–15848. [Google Scholar] [CrossRef]
- Greene, G.W.; Martin, L.L.; Tabor, R.F.; Michalczyk, A.; Ackland, L.M.; Horn, R. Lubricin: A versatile, biological anti-adhesive with properties comparable to polyethylene glycol. Biomaterials 2015, 53, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Aninwene, G.E.; Abadian, P.N.; Ravi, V.; Taylor, E.N.; Hall, D.M.; Mei, A.; Jay, G.D.; Goluch, E.D.; Webster, T.J. Lubricin: A novel means to decrease bacterial adhesion and proliferation. J. Biomed. Mater. Res. Part A 2015, 103, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.P.; Guilak, F.; Jay, G.D.; Zauscher, S. Interaction of lubricin with type II collagen surfaces: Adsorption, friction, and normal forces. J. Biomech. 2014, 47, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.A.; Sullivan, D.A.; Knop, E.; Richards, S.M.; Knop, N.; Liu, S.; Sahin, A.; Darabad, R.R.; Morrison, S.; Kam, W.R.; et al. Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface. JAMA Ophthalmol. 2013, 131, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Subbaraman, L.N.; Schmidt, T.A.; Sheardown, H. Proteoglycan 4 (lubricin) Enhances the Wettability of Model Conventional And Silicone Hydrogel Contact Lenses. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6097. [Google Scholar]
- Zappone, B.; Ruths, M.; Greene, G.W.; Jay, G.D.; Israelachvili, J.N. Adsorption, Lubrication, and Wear of Lubricin on Model Surfaces: Polymer Brush-Like Behavior of a Glycoprotein. Biophys. J. 2007, 92, 1693–1708. [Google Scholar] [CrossRef]
- Han, M.; Russo, M.J.; Desroches, P.E.; Silva, S.M.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Greene, G.W. Calcium ions have a detrimental impact on the boundary lubrication property of hyaluronic acid and lubricin (PRG-4) both alone and in combination. Colloids Surf. B Biointerfaces 2024, 234, 113741. [Google Scholar] [CrossRef]
- Ye, H.; Han, M.; Huang, R.; Schmidt, T.A.; Qi, W.; He, Z.; Martin, L.L.; Jay, G.D.; Su, R.; Greene, G.W. Interactions between Lubricin and Hyaluronic Acid Synergistically Enhance Antiadhesive Properties. ACS Appl. Mater. Interfaces 2019, 11, 18090–18102. [Google Scholar] [CrossRef]
- Greene, G.W.; Ortiz, V.; Pozo-Gonzalo, C.; Moulton, S.E.; Wang, X.; Martin, L.L.; Michalczky, A.; Howlett, P.C. Lubricin Antiadhesive Coatings Exhibit Size-Selective Transport Properties that Inhibit Biofouling of Electrode Surfaces with Minimal Loss in Electrochemical Activity. Adv. Mater. Interfaces 2018, 5, 1701296. [Google Scholar] [CrossRef]
- Han, M.; Silva, S.M.; Russo, M.J.; Desroches, P.E.; Lei, W.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Stoddart, P.R.; Greene, G.W. Lubricin (PRG-4) anti-fouling coating for surface-enhanced Raman spectroscopy biosensing: Towards a hierarchical separation system for analysis of biofluids. Analyst 2024, 149, 63–75. [Google Scholar] [CrossRef]
- Li, M.; Abeyrathne, C.; Langley, D.P.; Cossins, L.R.; Samudra, A.N.; Green, G.W.; Moulton, S.E.; Silva, S.M. Highly specific lubricin-lectin electrochemical sensor for glycoprotein cancer biomarker detection. Electrochim. Acta 2023, 457, 142508. [Google Scholar] [CrossRef]
- Silva, S.M.; Langley, D.P.; Cossins, L.R.; Samudra, A.N.; Quigley, A.F.; Kapsa, R.M.I.; Tothill, R.W.; Greene, G.W.; Moulton, S.E. Rapid Point-of-Care Electrochemical Sensor for the Detection of Cancer Tn Antigen Carbohydrate in Whole Unprocessed Blood. ACS Sens. 2022, 7, 3379–3388. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Martin, L.L.; Horn, R.G.; Greene, G.W. Use of optical interferometry to measure gold nanoparticle adsorption on silica. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 383–392. [Google Scholar] [CrossRef]
- Russo, M.J.; Han, M.; Desroches, P.E.; Manasa, C.S.; Dennaoui, J.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Guijt, R.M.; Greene, G.W.; et al. Antifouling Strategies for Electrochemical Biosensing: Mechanisms and Performance toward Point of Care Based Diagnostic Applications. ACS Sens. 2021, 6, 1482–1507. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qiu, X.; Xie, L.; Jay, G.D.; Schmidt, T.A.; Zeng, H. Probing the Molecular Interactions and Lubrication Mechanisms of Purified Full-length Recombinant Human Proteoglycan 4 (rhPRG4) and Hyaluronic Acid (HA). Biomacromolecules 2019, 20, 1056–1067. [Google Scholar] [CrossRef]
- Chang, D.P.; Abu-Lail, N.I.; Coles, J.M.; Guilak, F.; Jay, G.D.; Zauscher, S. Friction Force Microscopy of Lubricin and Hyaluronic Acid between Hydrophobic and Hydrophilic Surfaces. Soft Matter 2009, 5, 3438–3445. [Google Scholar] [CrossRef]
- Samsom, M.; Iwabuchi, Y.; Sheardown, H.; Schmidt, T.A. Proteoglycan 4 and hyaluronan as boundary lubricants for model contact lens hydrogels. J. Biomed. Mater. Research. Part B Appl. Biomater. 2018, 106, 1329–1338. [Google Scholar] [CrossRef]
- Ma, Y.; Cao, X.; Feng, X.; Ma, Y.; Zou, H. Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°. Polymer 2007, 48, 7455–7460. [Google Scholar] [CrossRef]
- Russo, M.J.; Han, M.; Menon, N.G.; Quigley, A.F.; Kapsa, R.M.I.; Moulton, S.E.; Guijt, R.M.; Silva, S.M.; Schmidt, T.A.; Greene, G.W. Novel Boundary Lubrication Mechanisms from Molecular Pillows of Lubricin Brush-Coated Graphene Oxide Nanosheets. Langmuir 2022, 38, 5351–5360. [Google Scholar] [CrossRef]
- Mircescu, N.E.; Oltean, M.; Chiş, V.; Leopold, N. FTIR, FT-Raman, SERS and DFT study on melamine. Vib. Spectrosc. 2012, 62, 165–171. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Hlaing, M.M.; Stoddart, P.R.; Greene, G.W. Self-Assembled Lubricin (PRG-4)-Based Biomimetic Surface-Enhanced Raman Scattering Sensor for Direct Droplet Detection of Melamine in Undiluted Milk. Biosensors 2024, 14, 591. https://doi.org/10.3390/bios14120591
Han M, Hlaing MM, Stoddart PR, Greene GW. Self-Assembled Lubricin (PRG-4)-Based Biomimetic Surface-Enhanced Raman Scattering Sensor for Direct Droplet Detection of Melamine in Undiluted Milk. Biosensors. 2024; 14(12):591. https://doi.org/10.3390/bios14120591
Chicago/Turabian StyleHan, Mingyu, Mya Myintzu. Hlaing, Paul R. Stoddart, and George W. Greene. 2024. "Self-Assembled Lubricin (PRG-4)-Based Biomimetic Surface-Enhanced Raman Scattering Sensor for Direct Droplet Detection of Melamine in Undiluted Milk" Biosensors 14, no. 12: 591. https://doi.org/10.3390/bios14120591
APA StyleHan, M., Hlaing, M. M., Stoddart, P. R., & Greene, G. W. (2024). Self-Assembled Lubricin (PRG-4)-Based Biomimetic Surface-Enhanced Raman Scattering Sensor for Direct Droplet Detection of Melamine in Undiluted Milk. Biosensors, 14(12), 591. https://doi.org/10.3390/bios14120591