Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging
Abstract
:1. Introduction
2. Recent Advance in FNPs for STED Imaging
2.1. QDs
2.2. PDs
2.3. CDs
2.4. UCNPs
2.5. AIEs
2.6. MCs
2.7. NDs
2.8. Dye-Loaded NPs
3. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sun, N.; Jia, Y.; Bai, S.; Li, Q.; Dai, L.; Li, J. The power of super-resolution microscopy in modern biomedical science. Adv. Colloid Interface Sci. 2023, 314, 102880. [Google Scholar] [CrossRef] [PubMed]
- Grove, J. Super-resolution microscopy: A virus’ eye view of the cell. Viruses 2014, 6, 1365–1378. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Park, H.J.; Jung, R.J.; Won, C.Y.; Ohk, S.O.; Kim, H.T.; Roh, N.K.; Yi, K.H. High-resolution 3-D scanning electron microscopy (SEM) images of DOT(TM) polynucleotides (PN): Unique scaffold characteristics and potential applications in biomedicine. Skin Res. Technol. 2024, 30, e13667. [Google Scholar] [CrossRef] [PubMed]
- Mentor, S.; Cummings, F.; Fisher, D. Preparation of biological monolayers for producing high-resolution scanning electron micrographs. PLoS ONE 2022, 17, e0266943. [Google Scholar] [CrossRef] [PubMed]
- Ede, J.M.; Beanland, R. Partial Scanning Transmission Electron Microscopy with Deep Learning. Sci. Rep. 2020, 10, 8332. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, Y.; Liu, L.; Chen, R.; Li, Y.; Wang, H.; Zhang, R. The Morphology and Ultrastructure of Dermal Telocytes Characterized by TEM and AFM. Cell Biochem. Biophys. 2024. [Google Scholar] [CrossRef] [PubMed]
- Tizro, P.; Choi, C.; Khanlou, N. Sample Preparation for Transmission Electron Microscopy. Methods Mol. Biol. 2019, 1897, 417–424. [Google Scholar] [PubMed]
- Xie, L.; Hong, J. Transmission Electron Microscopic Methods for Plant Virology. Methods Mol. Biol. 2022, 2400, 297–317. [Google Scholar] [PubMed]
- Wang, Y.; Sun, B.; Shibata, B.; Guo, F. Transmission electron microscopic analysis of myelination in the murine central nervous system. STAR Protoc. 2022, 3, 101304. [Google Scholar] [CrossRef]
- Elliott, A.D. Confocal Microscopy: Principles and Modern Practices. Curr. Protoc. Cytom. 2020, 92, e68. [Google Scholar] [CrossRef]
- Pack, C.G. Confocal Laser Scanning Microscopy and Fluorescence Correlation Methods for the Evaluation of Molecular Interactions. In Advanced Imaging and Bio Techniques for Convergence Science; Advances in Experimental Medicine and Biology; Springer: Singapore, 2021; Volume 1310, pp. 1–30. [Google Scholar]
- Ulrich, M. Konfokale Laserscanmikroskopie [Confocal laser scanning microscopy]. Hautarzt 2015, 66, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Fish, K.N. Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr. Protoc. 2022, 2, e517. [Google Scholar] [CrossRef]
- Midorikawa, M. Real-time imaging of synaptic vesicle exocytosis by total internal reflection fluorescence (TIRF) microscopy. Neurosci. Res. 2018, 136, 1–5. [Google Scholar] [CrossRef]
- Mattheyses, A.L.; Simon, S.M.; Rappoport, J.Z. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J. Cell Sci. 2010, 123 Pt 21, 3621–3628. [Google Scholar] [CrossRef]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Blom, H.; Widengren, J. Stimulated Emission Depletion Microscopy. Chem. Rev. 2017, 117, 7377–7427. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Xu, Y.; Wang, Z.; Zhou, Y.; Dang, D.; Meng, L. Recent Advances on Organic Fluorescent Probes for Stimulated Emission Depletion (STED) Microscopy. Comb. Chem. High. Throughput Screen. 2021, 24, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, X.; Xi, P. Stimulated emission depletion microscopy for biological imaging in four dimensions: A review. Microsc. Res. Tech. 2021, 84, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Strack, R. Hessian structured illumination microscopy. Nat. Methods 2018, 15, 407. [Google Scholar] [CrossRef]
- Temma, K.; Oketani, R.; Kubo, T.; Bando, K.; Maeda, S.; Sugiura, K.; Matsuda, T.; Heintzmann, R.; Kaminishi, T.; Fukuda, K.; et al. Selective-plane-activation structured illumination microscopy. Nat. Methods 2024, 21, 889–896. [Google Scholar] [CrossRef]
- Hirano, Y.; Matsuda, A.; Hiraoka, Y. Recent advancements in structured-illumination microscopy toward live-cell imaging. Microscopy 2015, 64, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Feng, F.; Mao, H.; Fan, J.; Chen, L. Structured illumination microscopy artefacts caused by illumination scattering. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200153. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ma, H.; Liu, Y. Stochastic Optical Reconstruction Microscopy (STORM). Curr. Protoc. Cytom. 2017, 81, 12.46.1–12.46.27. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, W.Q.; Bates, M.; Zhuang, X.W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.; Merino, D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J. Neurochem. 2015, 135, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.G.; McNamara, R.P.; Dittmer, D.P. Direct Stochastic Optical Reconstruction Microscopy of Extracellular Vesicles in Three Dimensions. J. Vis. Exp. 2021, 174, e62845. [Google Scholar]
- Jensen, L.G.; Hoh, T.Y.; Williamson, D.J.; Griffié, J.; Sage, D.; Rubin-Delanchy, P.; Owen, D.M. Correction of multiple-blinking artifacts in photoactivated localization microscopy. Nat. Methods 2022, 19, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; van Engelenburg, S.B.; Lippincott-Schwartz, J. Superresolution imaging of biological systems using photoactivated localization microscopy. Chem. Rev. 2014, 114, 3189–3202. [Google Scholar] [CrossRef]
- Bayle, V.; Fiche, J.B.; Burny, C.; Platre, M.P.; Nollmann, M.; Martinière, A.; Jaillais, Y. Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues. Nat. Protoc. 2021, 16, 1600–1628. [Google Scholar] [CrossRef]
- Sauer, M.; Heilemann, M. Single-Molecule Localization Microscopy in Eukaryotes. Chem. Rev. 2017, 117, 7478–7509. [Google Scholar] [CrossRef]
- Descloux, A.; Grussmayer, K.S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.L.; Lashuel, H.A.; Leutenegger, M.; et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nat. Photonics 2018, 12, 438. [Google Scholar] [CrossRef]
- Zeng, Z.; Ma, J.; Chen, X.; Xu, C. Lifetime super-resolution optical fluctuation imaging. J. Microsc. 2019, 274, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Glogger, M.; Spahn, C.; Enderlein, J.; Heilemann, M. Multi-Color, Bleaching-Resistant Super-Resolution Optical Fluctuation Imaging with Oligonucleotide-Based Exchangeable Fluorophores. Angew. Chem. Int. Ed. Engl. 2021, 60, 6310–6313. [Google Scholar] [CrossRef] [PubMed]
- Grußmayer, K.; Lukes, T.; Lasser, T.; Radenovic, A. Self-Blinking Dyes Unlock High-Order and Multiplane Super-Resolution Optical Fluctuation Imaging. ACS Nano 2020, 14, 9156–9165. [Google Scholar] [CrossRef] [PubMed]
- Brockman, J.M.; Su, H.Q.; Blanchard, A.T.; Duan, Y.X.; Meyer, T.; Quach, M.E.; Glazier, R.; Bazrafshan, A.; Bender, R.L.; Kellner, A.V.; et al. Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat. Methods 2020, 17, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Delcanale, P.; Miret-Ontiveros, B.; Arista-Romero, M.; Pujals, S.; Albertazzi, L. Nanoscale Mapping Functional Sites on Nanoparticles by Points Accumulation for Imaging in Nanoscale Topography (PAINT). ACS Nano 2018, 12, 7629–7637. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Xie, X.; Gao, Z.; Li, Q. DNA-PAINT Super-Resolution Imaging for Characterization of Nucleic Acid Nanostructures. Chempluschem 2022, 87, e202200127. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.H.; Zhang, Z.; Kidd, P.; Zhang, Y.; Williams, N.D.; Rollins, B.; Yang, Y.; Lin, C.; Baddeley, D.; Bewersdorf, J. Fluorogenic DNA-PAINT for faster, low-background super-resolution imaging. Nat. Methods 2022, 19, 554–559. [Google Scholar] [CrossRef]
- Chen, F.; Tillberg, P.W.; Boyden, E.S. Optical imaging. Expansion microscopy. Science 2015, 347, 543–548. [Google Scholar] [CrossRef]
- Tillberg, P.W.; Chen, F.; Piatkevich, K.D.; Zhao, Y.; Yu, C.C.; English, B.P.; Gao, L.; Martorell, A.; Suk, H.J.; Yoshida, F.; et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 2016, 34, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Wassie, A.T.; Zhao, Y.; Boyden, E.S. Expansion microscopy: Principles and uses in biological research. Nat. Methods 2019, 16, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.B.; Chen, F.; Yoon, Y.G.; Jung, E.E.; Babcock, H.; Kang, J.S.; Asano, S.; Suk, H.J.; Pak, N.; Tillberg, P.W.; et al. Iterative expansion microscopy. Nat. Methods 2017, 14, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Otomo, K.; Hibi, T.; Kozawa, Y.; Nemoto, T. STED microscopy–super-resolution bio-imaging utilizing a stimulated emission depletion. Microscopy 2015, 64, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chizhik, A.I.; Chu, S.; Jin, D. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Xi, P.; Wang, B.; Zhang, L.; Enderlein, J.; van Oijen, A.M. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 2018, 15, 415–423. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, R.; Wang, Z.; Zhou, Y.; Shen, Q.; Ji, W.; Dang, D.; Meng, L.; Tang, B.Z. Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy. Chem. Soc. Rev. 2021, 50, 667–690. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peng, Z.; Peng, X.; Yan, W.; Yang, Z.; Qu, J. Shedding New Lights Into STED Microscopy: Emerging Nanoprobes for Imaging. Front. Chem. 2021, 9, 641330. [Google Scholar] [CrossRef]
- Li, W.; Kaminski Schierle, G.S.; Lei, B.; Liu, Y.; Kaminski, C.F. Fluorescent Nanoparticles for Super-Resolution Imaging. Chem. Rev. 2022, 122, 12495–12543. [Google Scholar] [CrossRef]
- Pramanik, S.K.; Sreedharan, S.; Tiwari, R.; Dutta, S.; Kandoth, N.; Barman, S.; Aderinto, S.O.; Chattopadhyay, S.; Das, A.; Thomas, J.A. Nanoparticles for super-resolution microscopy: Intracellular delivery and molecular targeting. Chem. Soc. Rev. 2022, 51, 9882–9916. [Google Scholar] [CrossRef]
- Arroyo-Camejo, S.; Adam, M.; Besbes, M.; Hugonin, P.; Jacques, V.; Greffet, J.; Roch, J.; Hell, S.; Treussart, F. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals. ACS Nano 2013, 7, 10912–10919. [Google Scholar] [CrossRef] [PubMed]
- Hanne, J.; Falk, H.J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S.J.; Hell, S.W. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 2015, 6, 7127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, Y.; Yang, X.; Zheng, X.; Wen, S.; Wang, F.; Vidal, X.; Zhao, J.; Liu, D.; Zhou, Z.; et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, W.; Bian, Y.; Ahn, T.K.; Shen, H.; Ji, B. ZnF(2)-Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence. Nano Lett. 2022, 22, 4067–4073. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y.; Zhang, C.Y. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem. Rev. 2015, 115, 11669–11717. [Google Scholar] [CrossRef] [PubMed]
- Bilan, R.; Fleury, F.; Nabiev, I.; Sukhanova, A. Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug. Chem. 2015, 26, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, K.; Wang, H.; Liu, Y.; Wang, F.; Zhang, X.; Shi, K.; Gao, J.; Jin, D.; Xi, P. Versatile Application of Fluorescent Quantum Dot Labels in Superresolution Fluorescence Microscopy. ACS Photonics 2016, 3, 1611–1618. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, B.; Huang, L.; Cao, H.; Lin, D.; Jing, Y.; Wali, F.; Qu, J. Nonblinking Core–Multishell InP/ZnSe/ZnS Quantum Dot Bioconjugates for Super-resolution Imaging. ACS Appl. Nano Mater. 2022, 5, 18742–18752. [Google Scholar] [CrossRef]
- Ye, S.; Yan, W.; Zhao, M.; Peng, X.; Song, J.; Qu, J. Low-Saturation-Intensity, High-Photostability, and High-Resolution STED Nanoscopy Assisted by CsPbBr(3) Quantum Dots. Adv. Mater. 2018, 30, e1800167. [Google Scholar] [CrossRef]
- Ye, S.; Guo, J.; Song, J.; Qu, J. Achieving high-resolution of 21 nm for STED nanoscopy assisted by CdSe@ZnS quantum dots. Appl. Phys. Lett. 2020, 116, 041101. [Google Scholar] [CrossRef]
- Bai, X.; Wang, K.; Chen, L.; Zhou, J.; Wang, J. Semiconducting polymer dots as fluorescent probes for in vitro biosensing. J. Mater. Chem. B. 2022, 10, 6248–6262. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shi, C.; Wang, G.; Sun, H.; Yin, S. Recent advances in the development and applications of conjugated polymer dots. J. Mater. Chem. B. 2022, 10, 2995–3015. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Hou, W.; Qin, W.; Wu, C. Recent advances in semiconducting polymer dots as optical probes for biosensing. Biomater. Sci. 2021, 9, 328–346. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Schneider, T.; Zeigler, M.; Yu, J.; Schiro, P.G.; Burnham, D.R.; McNeill, J.D.; Chiu, D.T. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 2010, 132, 15410–15417. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ruan, H.; Zhao, R.; Dong, Z.; Li, W.; Tang, X.; Yuan, J.; Fang, X. Ultrastable Fluorescent Polymer Dots for Stimulated Emission Depletion Bioimaging. Adv. Opt. Mater. 2018, 6, 1800333. [Google Scholar] [CrossRef]
- Wu, Y.; Ruan, H.; Dong, Z.; Zhao, R.; Yu, J.; Tang, X.; Kou, X.; Zhang, X.; Wu, M.; Luo, F.; et al. Fluorescent Polymer Dot-Based Multicolor Stimulated Emission Depletion Nanoscopy with a Single Laser Beam Pair for Cellular Tracking. Anal. Chem. 2020, 92, 12088–12096. [Google Scholar] [CrossRef] [PubMed]
- Xin, N.; Gao, D.; Su, B.; Zhou, T.; Zhu, Y.; Wu, C.; Wei, D.; Sun, J.; Fan, H. Orange-Emissive Carbon Dots with High Photostability for Mitochondrial Dynamics Tracking in Living Cells. ACS Sens. 2023, 8, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, B.; Yang, Y.; Li, J. Photoluminescent chiral carbon dots derived from glutamine. Chin. Chem. Lett. 2021, 32, 3916–3920. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, N.; Fang, W.; Tan, Q.; Ji, R.; Yang, L.; Wei, S.; Zhang, X.; Miao, A. Photodegradation of carbon dots cause cytotoxicity. Nat Commun. 2021, 12, 812. [Google Scholar] [CrossRef]
- He, H.; Liu, X.; Li, S.; Wang, X.; Wang, Q.; Li, J.; Wang, J.; Ren, H.; Ge, B.; Wang, S.; et al. High-Density Super-Resolution Localization Imaging with Blinking Carbon Dots. Anal. Chem. 2017, 89, 11831–11838. [Google Scholar] [CrossRef]
- Lemenager, G.; De Luca, E.; Sun, Y.P.; Pompa, P.P. Super-resolution fluorescence imaging of biocompatible carbon dots. Nanoscale 2014, 6, 8617–8623. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ye, S.; Guo, J.; Wang, H.; Yan, W.; Song, J.; Qu, J. Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Res. 2019, 12, 3075–3084. [Google Scholar] [CrossRef]
- Han, G.; Zhao, J.; Zhang, R.; Tian, X.; Liu, Z.; Wang, A.; Liu, R.; Liu, B.; Han, M.Y.; Gao, X.; et al. Membrane-Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angew. Chem. Int. Ed. Engl. 2019, 58, 7087–7091. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.W.; Bao, Y.W.; Zeng, J.; Wu, F.G. Nucleolus-Targeted Red Emissive Carbon Dots with Polarity-Sensitive and Excitation-Independent Fluorescence Emission: High-Resolution Cell Imaging and in Vivo Tracking. ACS Appl. Mater. Interfaces 2019, 11, 32647–32658. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, X.; Ma, Y.; Gao, G.; Chen, X.; Jia, H.; Li, Y.; Chen, Z.; Wu, F. Carbon Dot-Based Platform for Simultaneous Bacterial Distinguishment and Antibacterial Applications. ACS Appl. Mater. Interfaces 2016, 8, 32170–32181. [Google Scholar] [CrossRef] [PubMed]
- De Camillis, S.; Ren, P.; Cao, Y.; Ploschner, M.; Denkova, D.; Zheng, X.; Lu, Y.; Piper, J.A. Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance. Nanoscale 2020, 12, 20347–20355. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Huang, B.; Peng, X.; He, S.; Zhan, Q. Non-bleaching fluorescence emission difference microscopy using single 808-nm laser excited red upconversion emission. Opt. Express 2017, 25, 30885–30894. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wu, Q.; Peng, X.; Yao, L.; Peng, D.; Zhan, Q. One-scan fluorescence emission difference nanoscopy developed with excitation orthogonalized upconversion nanoparticles. Nanoscale 2018, 10, 21025–21030. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, J.H.; Jang, J.; Lee, H.; Kim, S.; Hahn, Y.K.; Kim, S.K.; Lee, K.H.; Lee, S.; Pyo, H.; et al. Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosens. Bioelectron. 2018, 112, 209–215. [Google Scholar] [CrossRef]
- Li, S.; Song, X.; Zhu, W.; Chen, Y.; Zhu, R.; Wang, L.; Chen, X.; Song, J.; Yang, H. Light-Switchable Yolk-Mesoporous Shell UCNPs@MgSiO(3) for Nitric Oxide-Evoked Multidrug Resistance Reversal in Cancer Therapy. ACS Appl. Mater. Interfaces 2020, 12, 30066–30076. [Google Scholar] [CrossRef]
- Gao, P.; Prunsche, B.; Zhou, L.; Nienhaus, K.; Nienhaus, G.U. Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nat. Photonics 2017, 11, 163–169. [Google Scholar] [CrossRef]
- Chen, C.; Wang, F.; Wen, S.; Su, Q.P.; Wu, M.C.L.; Liu, Y.; Wang, B.; Li, D.; Shan, X.; Kianinia, M.; et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun. 2018, 9, 3290. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Liu, H.; Wang, B.; Wu, Q.; Pu, R.; Zhou, C.; Huang, B.; Peng, X.; Agren, H.; He, S. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1058. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Liu, B.L.; Liu, Y.T.; Liao, J.Y.; Shan, X.C.; Wang, F.; Jin, D.Y. Heterochromatic Nonlinear Optical Responses in Upconversion Nanoparticles for Super-Resolution Nanoscopy. Adv. Mater. 2021, 33, e2008847. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, S.; Wang, F.; Zuo, C.; Chen, C.; Zhou, J.; Jin, D. Population Control of Upconversion. Energy Transfer for Stimulation Emission Depletion Nanoscopy. Adv. Sci. 2023, 10, e2205990. [Google Scholar] [CrossRef]
- Chen, C.; Ni, X.; Tian, H.W.; Liu, Q.; Guo, D.S.; Ding, D. Calixarene-Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image-Guided Cancer Surgery. Angew. Chem. Int. Ed. Engl. 2020, 59, 10008–10012. [Google Scholar] [CrossRef]
- Dang, D.; Zhang, H.; Xu, Y.; Xu, R.; Wang, Z.; Kwok, R.T.K.; Lam, J.W.Y.; Zhang, L.; Meng, L.; Tang, B.Z. Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS Nano 2019, 13, 11863–11873. [Google Scholar] [CrossRef]
- Fang, X.; Chen, X.; Li, R.; Liu, Z.; Chen, H.; Sun, Z.; Ju, B.; Liu, Y.; Zhang, S.X.; Ding, D.; et al. Multicolor Photo-Crosslinkable AIEgens toward Compact Nanodots for Subcellular Imaging and STED Nanoscopy. Small 2017, 13, e1702118. [Google Scholar] [CrossRef]
- Xu, R.; Dang, D.; Wang, Z.; Zhou, Y.; Xu, Y.; Zhao, Y.; Wang, X.; Yang, Z.; Meng, L. Facilely prepared aggregation-induced emission (AIE) nanocrystals with deep-red emission for super-resolution imaging. Chem. Sci. 2022, 13, 1270–1280. [Google Scholar] [CrossRef]
- Cao, S.; Tian, X.; Cao, M.; Wang, J.; Niu, G.; Tang, B.Z. Solvatochromic Near-Infrared Aggregation-Induced Emission-Active Acrylonitriles by Acceptor Modulation for Low-Power Stimulated Emission Depletion Nanoscopy. Chem. Mater. 2023, 35, 2472–2485. [Google Scholar] [CrossRef]
- Li, D.; Qin, W.; Xu, B.; Qian, J.; Tang, B.Z. AIE Nanoparticles with High Stimulated Emission Depletion Efficiency and Photobleaching Resistance for Long-Term Super-Resolution Bioimaging. Adv. Mater. 2017, 29, e1703643. [Google Scholar] [CrossRef]
- Pyo, K.; Thanthirige, V.D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)–Thiolate Shell. J. Am. Chem. Soc. 2015, 137, 8244–8250. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; Zheng, K.; Xie, J. Bio-NCs—The marriage of ultrasmall metal nanoclusters with biomolecules. Nanoscale 2014, 6, 13328–13347. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Phipps, M.L.; Werner, J.H.; Chakraborty, S.; Martinez, J.S. DNA Templated Metal Nanoclusters: From Emergent Properties to Unique Applications. Acc. Chem. Res. 2018, 51, 2756–2763. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wu, Y.; Ruan, H.; Guo, F.; Liang, Y.; Qin, G.; Liu, X.; Zhang, Z.; Yuan, J.; Fang, X. Surface-Engineered Gold Nanoclusters for Stimulated Emission Depletion and Correlated Light and Electron Microscopy Imaging. Anal. Chem. 2022, 94, 3056–3064. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Xiao, Y.; Fu, X.; Yang, H.; Fang, L.; Xu, R.; Ping, J.; Han, D.; Jiang, Y.; Fang, X. Monodispersed and Monofunctionalized DNA-Caged Au Nano-Clusters with Enhanced Optical Properties for STED Imaging. Small 2024, e2400238. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ta, H.; Ullal, C.; Wang, F.; Wang, C.; Dong, G. Aptamer functionalized silver clusters for STED microscopy. RSC Adv. 2017, 7, 11821–11826. [Google Scholar] [CrossRef]
- Zhang, B.; Fang, C.Y.; Chang, C.C.; Peterson, R.; Maswadi, S.; Glickman, R.D.; Chang, H.C.; Ye, J.Y. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles. Biomed. Opt. Express 2012, 3, 1662–1669. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y.; Alonas, E.; Zhao, W.; Santangelo, P.J.; Jin, D.; Piper, J.A.; Teng, J.; Ren, Q.; Xi, P. Achieving lambda/10 resolution CW STED nanoscopy with a Ti:Sapphire oscillator. PLoS ONE 2012, 7, e40003. [Google Scholar]
- Tzeng, Y.K.; Faklaris, O.; Chang, B.M.; Kuo, Y.; Hsu, J.H.; Chang, H.C. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed. Engl. 2011, 50, 2262–2265. [Google Scholar] [CrossRef]
- Han, K.Y.; Willig, K.I.; Rittweger, E.; Jelezko, F.; Eggeling, C.; Hell, S.W. Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett. 2009, 9, 3323–3329. [Google Scholar] [CrossRef] [PubMed]
- Laporte, G.; Psaltis, D. STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers. Biomed. Opt. Express 2016, 7, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, N.; Peurla, M.; Koho, S.; Deguchi, T.; Nareoja, T.; Chang, H.C.; Rosenholm, J.M.; Hanninen, P.E. STED-TEM Correlative Microscopy Leveraging Nanodiamonds as Intracellular Dual-Contrast Markers. Small 2018, 14, 1701807. [Google Scholar] [CrossRef] [PubMed]
- Man, Z.; Cui, H.; Lv, Z.; Xu, Z.; Wu, Z.; Wu, Y.; Liao, Q.; Liu, M.; Xi, P.; Zheng, L.; et al. Organic Nanoparticles-Assisted Low-Power STED Nanoscopy. Nano Lett. 2021, 21, 3487–3494. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Gao, P.; Wang, H.; Popescu, R.; Gerthsen, D.; Nienhaus, G.U. Protein-based fluorescent nanoparticles for super-resolution STED imaging of live cells. Chem. Sci. 2017, 8, 2396–2400. [Google Scholar] [CrossRef] [PubMed]
- Man, Z.W.; Lv, Z.; Xu, Z.Z.; Yao, J.N.; Fu, H.B. Strategic Engineering of Sub-5 nm Dyes@CDs Nanoassemblies Platform for Super Resolution Imaging. Adv. Funct. Mater. 2021, 31, e2106516. [Google Scholar] [CrossRef]
- Peuschel, H.; Ruckelshausen, T.; Cavelius, C.; Kraegeloh, A. Quantification of Internalized Silica Nanoparticles via STED Microscopy. Biomed Res. Int. 2015, 2015, 961208. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Zhang, N.; Wang, X.; Dang, D.; Jing, X.; Xi, D.; Hao, Y.; Tang, B.; Meng, L. Deep-Red Fluorescent Organic Nanoparticles with High Brightness and Photostability for Super-Resolution in Vitro and in Vivo Imaging Using STED Nanoscopy. ACS Appl. Mater. Interfaces 2020, 12, 6814–6826. [Google Scholar] [CrossRef]
Type | Advantages | Disadvantages |
---|---|---|
QDs | Photostable; Narrow emission band; High PL QY. | Broad absorption band and risk of multiphoton excitation; Potential toxicity of heavy metals; interference from photo-blinking. |
PDs | Large extinction coefficients; Easy functionalization; Good photostability; High biocompatibility; Fast fluorescence radiation rate. | Difficult to control particle size and surface functional groups. |
CDs | Facile preparation; Superior biocompatibility; Easy surface functionalization. | Lack red and infrared emission; Broad absorption bandwidths. |
UCNPs | Sharp emission band; Deep tissue penetration; Avoids background autofluorescence; Photostable. | Poor water solubility; Low PL QY; Excitation/emission bands are nearly invariable; Potential photothermal effect; Potential toxicity of metals; Large size. |
AIEs | Tunable particle size; Easy surface functionalization; Avoid aggregation-induced quenching through AIE effect. | Difficult to control particle size and surface functional groups; Relatively broad excitation and emission bandwidths. |
NDs | Biocompatible; High PL QY; Remarkable photostability. | Difficult to prepare; Limited emission wavelength; Tendency to aggregate. |
MCs | Small size; Tunable PL emission; Photostable. | Low PL QY; Tendency to aggregate; Sensitive to environment. |
Dye-loaded NPs | Biocompatible; Broad choice of fluorophores. | Prone to aggregation-induced quenching; Difficult to control dye-loading efficiency. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Liu, S.; Ping, J.; Yao, X.; Chen, L.; Yang, D.; Liu, Y.; Wang, C.; Xiao, Y.; Qi, L.; et al. Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging. Biosensors 2024, 14, 314. https://doi.org/10.3390/bios14070314
Qi L, Liu S, Ping J, Yao X, Chen L, Yang D, Liu Y, Wang C, Xiao Y, Qi L, et al. Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging. Biosensors. 2024; 14(7):314. https://doi.org/10.3390/bios14070314
Chicago/Turabian StyleQi, Liqing, Songlin Liu, Jiantao Ping, Xingxing Yao, Long Chen, Dawei Yang, Yijun Liu, Chenjing Wang, Yating Xiao, Lubin Qi, and et al. 2024. "Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging" Biosensors 14, no. 7: 314. https://doi.org/10.3390/bios14070314
APA StyleQi, L., Liu, S., Ping, J., Yao, X., Chen, L., Yang, D., Liu, Y., Wang, C., Xiao, Y., Qi, L., Jiang, Y., & Fang, X. (2024). Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging. Biosensors, 14(7), 314. https://doi.org/10.3390/bios14070314