Stamp-Imprinted Polymer EIS Biosensor for Amyloid-Beta Detection: A Novel Approach Towards Alzheimer’s Screening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. Stamp Creation and Imprinting
2.3. Testing Process and Data Analysis
3. Results
3.1. SIP-EIS Biosensor Response to Aβ-42 Concentration Variation
3.2. Effect of Imprint on the EIS Charge Transfer Resistance (RCT) Parameter in Response to Aβ-42 Concentration Variation
3.3. Effect of the Imprint on the EIS Geometric Capacitance (CG) Parameter in Response to Aβ-42
3.4. Evaluation of SIP Reusability and the Effect of Repeated Testing on Device Sensitivity
3.5. Investigating the PCL–BSA Interactions and Their Effect on Sensor Performance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Global Status Report on the Public Health Response to Dementia; 2021. Available online: https://www.who.int/publications/i/item/9789240033245 (accessed on 30 March 2025).
- Wu, W.; Ji, Y.; Wang, Z.; Wu, X.; Li, J.; Gu, F.; Chen, Z.; Wang, Z. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Med. Res. 2023, 28, 544. [Google Scholar] [CrossRef] [PubMed]
- Terao, I.; Kodama, W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: A systematic review and network meta-analysis. Ageing Res. Rev. 2024, 94, 102203. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, Z.; Liu, R.; Huang, Y.; Zhang, N.; Zhang, R. Memantine, Donepezil, or Combination Therapy-What is the best therapy for Alzheimer’s Disease? A Network Meta-Analysis. Brain Behav. 2020, 10, e01831. [Google Scholar] [CrossRef]
- Perneczky, R.; Jessen, F.; Grimmer, T.; Levin, J.; Flöel, A.; Peters, O.; Froelich, L. Anti-amyloid antibody therapies in Alzheimer’s disease. Brain 2023, 146, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Chowdhury, N.S. Novel anti-amyloid-beta (Aβ) monoclonal antibody lecanemab for Alzheimer’s disease: A systematic review. Int. J. Immunopathol. Pharmacol. 2023, 37, 03946320231209839. [Google Scholar] [CrossRef]
- Shoji, M.; Matsubara, E.; Kanai, M.; Watanabe, M.; Nakamura, T.; Tomidokoro, Y.; Shizuka, M.; Wakabayashi, K.; Igeta, Y.; Ikeda, Y.; et al. Combination assay of CSF Tau, Aβ1-40 and Aβ1-42(43) as a biochemical marker of Alzheimer’s disease. J. Neurol. Sci. 1998, 158, 134–140. [Google Scholar] [CrossRef]
- Lewczuk, P.; Esselmann, H.; Otto, M.; Maler, J.M.; Henkel, A.W.; Henkel, M.K.; Eikenberg, O.; Antz, C.; Krause, W.R.; Reulbach, U.; et al. Neurochemical diagnosis of Alzheimer’s dementia by CSF Aβ42, Aβ42/Aβ40 ratio and total tau. Neurobiol. Aging 2004, 25, 273–281. [Google Scholar] [CrossRef]
- Hansson, O.; Lehmann, S.; Otto, M.; Zetterberg, H.; Lewczuk, P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimer’s Res. Ther. 2019, 11, 34. [Google Scholar] [CrossRef]
- Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020, 19, 422–433. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.I.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S.; et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 2020, 26, 387–397. [Google Scholar] [CrossRef]
- O’Connor, A.; Karikari, T.K.; Poole, T.; Ashton, N.J.; Lantero Rodriguez, J.; Khatun, A.; Swift, I.; Heslegrave, A.J.; Abel, E.; Chung, E.; et al. Plasma phospho-tau181 in presymptomatic and symptomatic familial Alzheimer’s disease: A longitudinal cohort study. Mol. Psychiatry 2021, 26, 5967–5976. [Google Scholar] [CrossRef]
- Brickman, A.M.; Manly, J.J.; Honig, L.S.; Sanchez, D.; Reyes-Dumeyer, D.; Lantigua, R.A.; Lao, P.J.; Stern, Y.; Vonsattel, J.P.; Teich, A.F.; et al. Plasma p-tau181, p-tau217, and other blood-based Alzheimer’s disease biomarkers in a multi-ethnic, community study. Alzheimer’s Dement. 2021, 17, 1353–1364. [Google Scholar] [CrossRef]
- Verberk, I.M.W.; Thijssen, E.; Koelewijn, J.; Mauroo, K.; Vanbrabant, J.; De Wilde, A.; Zwan, M.D.; Verfaillie, S.C.J.; Ossenkoppele, R.; Barkhof, F.; et al. Combination of plasma amyloid beta((1–42/1–40)) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. Alzheimer’s. Res. Ther. 2020, 12, 118. [Google Scholar] [CrossRef]
- Verberk, I.M.; Slot, R.E.; Verfaillie, S.C.; Heijst, H.; Prins, N.D.; van Berckel, B.N.; Scheltens, P.; Teunissen, C.E.; van der Flier, W.M. Plasma Amyloid as Prescreener for the Earliest Alzheimer Pathological Changes. Ann. Neurol. 2018, 84, 648–658. [Google Scholar] [CrossRef]
- Doecke, J.D.; Pérez-Grijalba, V.; Fandos, N.; Fowler, C.; Villemagne, V.L.; Masters, C.L.; Pesini, P.; Sarasa, M.; AIBL Research Group. Total Aβ42/Aβ40 ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. Neurology 2020, 94, e1580–e1591. [Google Scholar] [CrossRef]
- Karikari, T.K.; Ashton, N.J.; Brinkmalm, G.; Brum, W.S.; Benedet, A.L.; Montoliu-Gaya, L.; Lantero-Rodriguez, J.; Pascoal, T.A.; Suárez-Calvet, M.; Rosa-Neto, P.; et al. Blood phospho-tau in Alzheimer disease: Analysis, interpretation, and clinical utility. Nat. Rev. Neurol. 2022, 18, 400–418. [Google Scholar] [CrossRef]
- Khan, S.; Barve, K.H.; Kumar, M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020, 18, 1106–1125. [Google Scholar] [CrossRef]
- Korecka, M.; Shaw, L.M. Mass spectrometry-based methods for robust measurement of Alzheimer’s disease biomarkers in biological fluids. J. Neurochem. 2021, 159, 211–233. [Google Scholar] [CrossRef]
- Stupin, D.D.; Kuzina, E.A.; Abelit, A.A.; Emelyanov, A.K.; Nikolaev, D.M.; Ryazantsev, M.N.; Koniakhin, S.V.; Dubina, M.V. Bioimpedance spectroscopy: Basics and applications. ACS Biomater. Sci. Eng. 2021, 7, 1962–1986. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, L.; Huang, L.; Zuo, Z.; Ho, V.; Jin, L.; Lu, Y.; Chen, X.; Zhao, J.; Qian, D.; et al. Microfluidic integrated capacitive biosensor for C-reactive protein label-free and real-time detection. Analyst 2021, 146, 5380–5388. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Gurbuz, Y.; Kallempudi, S.; Niazi, J.H. Label-free RNA aptamer-based capacitive biosensor for the detection of C-reactive protein. Phys. Chem. Chem. Phys. 2010, 12, 9176–9182. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Label-free detection of cardiac biomarker using aptamer based capacitive biosensor. Procedia Eng. 2010, 5, 828–830. [Google Scholar] [CrossRef]
- López, L.; Martínez, L.M.; Caicedo, J.R.; Fernández-Vega, L.; Cunci, L. Measurement of Neuropeptide Y in Aptamer-Modified Planar Electrodes. Electrochim. Acta 2024, 488, 144243. [Google Scholar] [CrossRef]
- Chen, H.J.; Chen, R.L.; Hsieh, B.C.; Hsiao, H.Y.; Kung, Y.; Hou, Y.T.; Cheng, T.J. Label-free and reagentless capacitive aptasensor for thrombin. Biosens. Bioelectron. 2019, 131, 53–59. [Google Scholar] [CrossRef]
- Wang, L.; Veselinovic, M.; Yang, L.; Geiss, B.J.; Dandy, D.S.; Chen, T. A sensitive DNA capacitive biosensor using interdigitated electrodes. Biosens. Bioelectron. 2017, 87, 646–653. [Google Scholar] [CrossRef]
- Arya, S.K.; Zhurauski, P.; Jolly, P.; Batistuti, M.R.; Mulato, M.; Estrela, P. Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens. Bioelectron. 2018, 102, 106–112. [Google Scholar] [CrossRef]
- Massey, R.S.; Appadurai, R.R.; Prakash, R. A Surface Imprinted Polymer EIS Sensor for Detecting Alpha-Synuclein, a Parkinson’s Disease Biomarker. Micromachines 2024, 15, 273. [Google Scholar] [CrossRef]
- Carrara, S.; Bhalla, V.; Stagni, C.; Benini, L.; Ferretti, A.; Valle, F.; Gallotta, A.; Riccò, B.; Samorì, B. Label-free cancer markers detection by capacitance biochip. Sens. Actuators B Chem. 2009, 136, 163–172. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, Y.; Zhao, Q.; Sun, J.; Wang, Z.; Sun, X. The Fabrication of an Impedance Immunosensor Based on Interdigitated Array Microelectrodes and Normalized Impedance Changes for Chlorpyrifos Residue Detection. Int. J. Electrochem. Sci. 2020, 15, 293–303. [Google Scholar] [CrossRef]
- Sampaio, I.; Takeuti, N.N.K.; Gusson, B.; Machado, T.R.; Zucolotto, V. Capacitive immunosensor for COVID-19 diagnosis. Microelectron. Eng. 2023, 267, 111912. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Wang, E.; Yang, X. Capacitive detection of glucose using molecularly imprinted polymers. Biosens. Bioelectron. 2001, 16, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Mattiasson, B.; Hedström, M. Capacitive biosensors for ultra-sensitive assays. TrAC Trends Anal. Chem. 2016, 79, 233–238. [Google Scholar] [CrossRef]
- Sunayama, H.; Kitayama, Y.; Takeuchi, T. Regulation of protein-binding activities of molecularly imprinted polymers via post-imprinting modifications to exchange functional groups within the imprinted cavity. J. Mol. Recognit. 2018, 3, e2633. [Google Scholar] [CrossRef]
- Sunayama, H.; Takeuchi, T. Molecularly imprinted protein recognition cavities bearing exchangeable binding sites for postimprinting site-directed introduction of reporter molecules for readout of binding events. ACS Appl. Mater. Interfaces 2014, 6, 20003–20009. [Google Scholar] [CrossRef]
- Sunayama, H.; Takeuchi, T. Protein-imprinted polymer films prepared via cavity-selective multi-step post-imprinting modifications for highly selective protein recognition. Anal. Bioanal. Chem. 2021, 413, 6183–6189. [Google Scholar] [CrossRef]
- Ertürk, G.; Berillo, D.; Hedström, M.; Mattiasson, B. Microcontact-BSA imprinted capacitive biosensor for real-time, sensitive and selective detection of BSA. Biotechnol. Rep. 2014, 3, 65–72. [Google Scholar] [CrossRef]
- Massey, R.S.; McConnell, E.M.; Chan, D.; Holahan, M.R.; DeRosa, M.C.; Prakash, R. Non-invasive Monitoring of α-Synuclein in Saliva for Parkinson’s Disease Using Organic Electrolyte-Gated FET Aptasensor. ACS Sens. 2023, 8, 3116–3126. [Google Scholar] [CrossRef]
- Gamero, B.; Bebe, S.; Prakash, R. Molecularly Imprinted Electrochemical impedance Sensor for Detection of 8-Isoprostane in Exhaled Breath Condensate. IEEE Sens. Lett. 2021, 5, 4500404. [Google Scholar] [CrossRef]
- Cui, F.; Zhou, Z.; Zhou, H.S. Molecularly Imprinted Polymers and Surface Imprinted Polymers Based Electrochemical Biosensor for Infectious Diseases. Sensors 2020, 20, 996. [Google Scholar] [CrossRef] [PubMed]
- Werner, M.; Glück, M.S.; Bräuer, B.; Bismarck, A.; Lieberzeit, P.A. Investigations on sub-structures within cavities of surface imprinted polymers using AFM and PF-QNM. Soft Matter 2022, 18, 2245–2251. [Google Scholar] [CrossRef] [PubMed]
Concentration of Aβ-42 (/mL) | Charge Transfer Resistance RCT (kΩ, µ ± σ) | |||||
---|---|---|---|---|---|---|
NIP | SIP 1 | SIP 2 | ||||
DI water | 297.2 | ±9.84 | 115.9 | ±1.98 | 122.3 | ±8.68 |
100 fg | 85.3 | ±0.90 | 113.7 | ±2.90 | 100.4 | ±0.70 |
1 pg | 105.3 | ±1.27 | 161.5 | ±1.09 | 166.3 | ±1.68 |
10 pg | 51.2 | ±0.25 | 282.3 | ±0.30 | 194.4 | ±2.99 |
100 pg | 80.2 | ±0.44 | 246.3 | ±1.05 | 227.4 | ±1.55 |
1 ng | 98.2 | ±0.77 | 224.4 | ±0.28 | 207.5 | ±0.43 |
10 ng | 75.6 | ±0.67 | 171.7 | ±0.10 | 178.8 | ±0.02 |
100 ng | 17.7 | ±0.05 | 116.9 | ±0.58 | 118.5 | ±1.02 |
1 µg | 43.4 | ±0.05 | 43.4 | ±0.67 |
Concentration of Aβ-42 (/mL) | Geometric Capacitance CG (pF, µ ± σ) | |||||
---|---|---|---|---|---|---|
NIP | SIP 1 | SIP 2 | ||||
DI water | 201.58 | ±6.44 | 232.87 | ±17.43 | 203.86 | ±16.74 |
100 fg | 219.72 | ±2.28 | 206.81 | ±5.27 | 209.54 | ±1.48 |
1 pg | 219.05 | ±2.62 | 224.88 | ±1.52 | 218.32 | ±2.21 |
10 pg | 217.09 | ±1.05 | 201.98 | ±0.21 | 228.28 | ±3.55 |
100 pg | 219.98 | ±1.20 | 180.13 | ±0.77 | 219.42 | ±1.50 |
1 ng | 218.02 | ±1.70 | 161.80 | ±0.20 | 213.82 | ±0.45 |
10 ng | 208.83 | ±1.84 | 179.04 | ±0.10 | 223.30 | ±0.02 |
100 ng | 212.22 | ±0.56 | 189.99 | ±0.94 | 210.70 | ±1.82 |
1 µg | 214.12 | ±0.23 | 217.43 | ±0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidson, C.E.D.; Prakash, R. Stamp-Imprinted Polymer EIS Biosensor for Amyloid-Beta Detection: A Novel Approach Towards Alzheimer’s Screening. Biosensors 2025, 15, 228. https://doi.org/10.3390/bios15040228
Davidson CED, Prakash R. Stamp-Imprinted Polymer EIS Biosensor for Amyloid-Beta Detection: A Novel Approach Towards Alzheimer’s Screening. Biosensors. 2025; 15(4):228. https://doi.org/10.3390/bios15040228
Chicago/Turabian StyleDavidson, Chloé E. D., and Ravi Prakash. 2025. "Stamp-Imprinted Polymer EIS Biosensor for Amyloid-Beta Detection: A Novel Approach Towards Alzheimer’s Screening" Biosensors 15, no. 4: 228. https://doi.org/10.3390/bios15040228
APA StyleDavidson, C. E. D., & Prakash, R. (2025). Stamp-Imprinted Polymer EIS Biosensor for Amyloid-Beta Detection: A Novel Approach Towards Alzheimer’s Screening. Biosensors, 15(4), 228. https://doi.org/10.3390/bios15040228