Atomic Pt-Layer-Coated Au Peroxidase Nanozymes with Enhanced Activity for Ultrasensitive Colorimetric Immunoassay of Interleukin-12
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ~40 nm AuNPs
2.2. Synthesis of Au@Pt4LNPs
2.3. Investigation of Peroxidase-like Catalytic Activity of Au@Pt4LNPs
2.4. Steady-State Kinetic Analyses
2.5. Preparation of SA-Conjugated Au@Pt4LNPs (Denoted as “SA-Au@Pt4LNP Conjugates”)
2.6. Detection of IL-12 Using Au@Pt4LNP-Enhanced CELISA
3. Results and Discussion
3.1. Synthesis and Characterization of Au@Pt4LNPs
3.2. Peroxidase-like Catalytic Properties of Au@Pt4LNPs
3.3. Influence of Pt Content on the Activity of Au@PtNPs
3.4. Preparation and Verification of SA-Au@Pt4LNP Conjugates
3.5. Analytical Performance of Au@Pt4LNP-Enhanced CELISA
3.6. Application in Analysis of Serum Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CELISAs | Colorimetric enzyme-linked immunosorbent assays |
AuNPs | Au nanoparticles |
Au@PtNPs | (Au core)@(Pt shell) nanoparticles |
HRP | Horseradish peroxidase |
LOD | Limit of detection |
IL-12 | Interleukin-12 |
Kcat | Catalytic constant |
CAbs | Capture antibodies |
DAbs | Detection antibodies |
SA | Streptavidin |
TMB | 3,3′,5,5′-Tetramethylbenzidine |
oxTMB | Oxidized TMB |
H2O2 | Hydrogen peroxide |
TEM | Transmission electron microscopy |
EDX | Energy-dispersive X-ray |
ICP-OES | Inductively coupled plasma-optical emission spectrometry |
fcc | Face-centered cubic |
Km | Michaelis constant |
Vmax | Maximal reaction velocity |
ν | Initial reaction velocity |
Kcat-mass-specific | Mass-specific catalytic efficiency |
SD | Standard deviation |
CV | Coefficient of variation |
FBS | Fetal bovine serum |
DI | Deionized |
PBS | Phosphate-buffered saline |
PBST | PBS buffer (pH 7.4) containing 0.05% Tween 20 |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
ESR | Electron spin resonance |
References
- Zundler, S.; Neurath, M.F. Interleukin-12: Functional activities and implications for disease. Cytokine Growth Factor Rev. 2015, 26, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Hildenbrand, K.; Aschenbrenner, I.; Franke, F.C.; Devergne, O.; Feige, M.J. Biogenesis and engineering of interleukin 12 family cytokines. Trends Biochem. Sci. 2022, 47, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.W.L.; Bowman, E.P.; McElwee, J.J.; Smyth, M.J.; Casanova, J.-L.; Cooper, A.M.; Cua, D.J. IL-12 and IL-23 cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 2015, 21, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Pope, R.M.; Shahrara, S. Possible roles of IL-12-family cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2013, 9, 252–256. [Google Scholar] [CrossRef]
- Kulig, P.; Musiol, S.; Freiberger, S.N.; Schreiner, B.; Gyülveszi, G.; Russo, G.; Pantelyushin, S.; Kishihara, K.; Alessandrini, F.; Kündig, T.; et al. IL-12 protects from psoriasiform skin inflammation. Nat. Commun. 2016, 7, 13466. [Google Scholar] [CrossRef]
- Verstockt, B.; Salas, A.; Sands, B.E.; Abraham, C.; Leibovitzh, H.; Neurath, M.F.; Vande Casteele, N.; Danese, S.; D’Haens, G.; Eckmann, L.; et al. IL-12 and IL-23 pathway inhibition in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 433–446. [Google Scholar] [CrossRef]
- Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: From biology to therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Tan, Y.; Gao, Z.; Ye, H.; Dong, H. High-visual-resolution colorimetric immunoassay with attomolar sensitivity using kinetically controlled growth of Ag in AuAg nanocages and poly-enzyme-boosted tyramide signal amplification. Talanta 2025, 286, 127432. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, J.; Cai, T.; Stephens, A.; Su, S.-H.; Sandford, E.; Flora, C.; Singer, B.H.; Ghosh, M.; Choi, S.W.; et al. Machine learning-based cytokine microarray digital immunoassay analysis. Biosens. Bioelectron. 2021, 180, 113088. [Google Scholar] [CrossRef]
- Masurier, A.; Sieskind, R.; Gines, G.; Rondelez, Y. DNA circuit-based immunoassay for ultrasensitive protein pattern classification. Analyst 2024, 149, 5052–5062. [Google Scholar] [CrossRef]
- García-Rodrigo, L.; Ramos-López, C.; Sánchez-Tirado, E.; Agüí, L.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical immunosensing of crohn’s disease biomarkers using diazonium salt-grafted crystalline nanocellulose/carbon nanotube-modified electrodes. Microchim. Acta 2024, 192, 4. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, M.S.; Ahmed, M. Enzyme-linked immunosorbent assay (ELISA). In Cancer Cell Biology: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2022; pp. 115–134. [Google Scholar]
- Hayrapetyan, H.; Tran, T.; Tellez-Corrales, E.; Madiraju, C. Enzyme-linked immunosorbent assay: Types and applications. In Elisa: Methods and Protocols; Matson, R.S., Ed.; Springer: New York, NY, USA, 2023; pp. 1–17. [Google Scholar]
- Li, S.; Zhang, Y.; Wang, Q.; Lin, A.; Wei, H. Nanozyme-enabled analytical chemistry. Anal. Chem. 2022, 94, 312–323. [Google Scholar] [CrossRef]
- Wu, D.; Milutinovic, M.D.; Walt, D.R. Single molecule array (SIMOA) assay with optimal antibody pairs for cytokine detection in human serum samples. Analyst 2015, 140, 6277–6282. [Google Scholar] [CrossRef]
- Ye, H.; Yang, K.; Tao, J.; Liu, Y.; Zhang, Q.; Habibi, S.; Nie, Z.; Xia, X. An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 2017, 11, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Lu, D.; Zhang, G.; Zhang, D.; Shi, X. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021, 223, 121722. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, B.; Fan, K.; Gao, L.; Yan, X. Designing nanozymes for in vivo applications. Nat. Rev. Bioeng. 2024, 2, 849–868. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, G.; Liu, W.; Li, T.; Wang, Y.; Zhou, M.; Liu, Y.; Wang, X.; Wei, H. Nanozymes for nanohealthcare. Nat. Rev. Methods Primers 2024, 4, 36. [Google Scholar] [CrossRef]
- Shamsabadi, A.; Haghighi, T.; Carvalho, S.; Frenette, L.C.; Stevens, M.M. The nanozyme revolution: Enhancing the performance of medical biosensing platforms. Adv. Mater. 2024, 36, 2300184. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Bu, Z.; Tang, Z.; Diao, Q.; Tian, Q.; Li, S.; Chen, X.; Liu, J.; Liang, H.; Niu, X. Target-triggered oxygen vacancy increase of Co3O4 nanoparticles with promoted peroxidase-like activity for specific turn-on colorimetric sensing of uranyl ions. Sens. Actuators B Chem. 2024, 420, 136499. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Q.; Li, Q.; Li, H.; Li, F. Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Anal. Chem. 2021, 93, 4084–4091. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ding, Y.; Dahlgren, R.A.; Sun, Y.; Gu, J.; Li, Y.; Liu, T.; Wang, X. Ultrafine V2O5-anchored 3d N-doped carbon nanocomposite with augmented dual-enzyme mimetic activity for evaluating total antioxidant capacity. Anal. Chim. Acta 2023, 1252, 341072. [Google Scholar] [CrossRef]
- Feng, F.; Zhang, Y.; Zhang, X.; Mu, B.; Zhang, J.; Qu, W.; Tong, W.; Liang, M.; An, Q.; Guo, Z.; et al. Enhancing the peroxidase-like activity of MoS2-based nanozymes by introducing attapulgite for antibacterial application and sensitive detection of glutathione. Nano Res. 2024, 17, 7415–7426. [Google Scholar] [CrossRef]
- Hong, C.; Chen, L.; Wu, C.; Yang, D.; Dai, J.-Y.; Huang, Z.; Cai, R.; Tan, W. Green synthesis of Au@WSe2 hybrid nanostructures with the enhanced peroxidase-like activity for sensitive colorimetric detection of glucose. Nano Res. 2022, 15, 1587–1592. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Zhang, X.; Zhang, J.; Ren, N.; Ding, L.; Wang, A.; Liu, J.; Liu, H.; Yu, X. Nitrogen vacancy modulation of tungsten nitride peroxidase-mimetic activity for bacterial infection therapy. ACS Nano 2024, 18, 24469–24483. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zhou, S. Progress and perspective on carbon-based nanozymes for peroxidase-like applications. J. Phys. Chem. Lett. 2021, 12, 11751–11760. [Google Scholar] [CrossRef]
- Wang, W.; Cao, Q.; He, J.; Xie, Y.; Zhang, Y.; Yang, L.; Duan, M.-H.; Wang, J.; Li, W. Palladium/platinum/ruthenium trimetallic dendritic nanozymes exhibiting enhanced peroxidase-like activity for signal amplification of lateral flow immunoassays. Nano Lett. 2024, 24, 8311–8319. [Google Scholar] [CrossRef]
- Wei, Z.; Luciano, K.; Xia, X. Catalytic gold-iridium nanoparticles as labels for sensitive colorimetric lateral flow assay. ACS Nano 2022, 16, 21609–21617. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Nallathambi, V.; Liu, Y.; Kresse, J.; Hübner, R.; Reichenberger, S.; Gault, B.; Zhan, J.; Eychmüller, A.; et al. Structural regulation of Au-Pt bimetallic aerogels for catalyzing the glucose cascade reaction. Adv. Mater. 2024, 36, 2405200. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, X. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coord. Chem. Rev. 2022, 465, 214578. [Google Scholar] [CrossRef]
- Loynachan, C.N.; Thomas, M.R.; Gray, E.R.; Richards, D.A.; Kim, J.; Miller, B.S.; Brookes, J.C.; Agarwal, S.; Chudasama, V.; McKendry, R.A.; et al. Platinum nanocatalyst amplification: Redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 2018, 12, 279–288. [Google Scholar] [CrossRef]
- Gao, Z.; Ye, H.; Tang, D.; Tao, J.; Habibi, S.; Minerick, A.; Tang, D.; Xia, X. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017, 17, 5572–5579. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xianyu, Y. Tuning the plasmonic and catalytic signals of Au@Pt nanoparticles for dual-mode biosensing. Biosens. Bioelectron. 2023, 237, 115553. [Google Scholar] [CrossRef]
- Iglesias-Mayor, A.; Amor-Gutiérrez, O.; Novelli, A.; Fernández-Sánchez, M.-T.; Costa-García, A.; de la Escosura-Muñiz, A. Bifunctional Au@Pt/Au core@shell nanoparticles as novel electrocatalytic tags in immunosensing: Application for alzheimer’s disease biomarker detection. Anal. Chem. 2020, 92, 7209–7217. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lim, B.; Lee, E.P.; Xia, Y. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95. [Google Scholar] [CrossRef]
- Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 2021, 16, 140–147. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.; Zhang, A.; Yan, X.; Xue, W.; Peng, B.; Xin, H.L.; Pan, X.; Duan, X.; Huang, Y. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 2022, 17, 968–975. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, X.; Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966. [Google Scholar] [CrossRef]
- Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q.N.; Xia, Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735. [Google Scholar] [CrossRef] [PubMed]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Ziegler, C.; Eychmüller, A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15−300 nm. J. Phys. Chem. C 2011, 115, 4502–4506. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, C.; He, J.; Chen, P. Pd@Pt nanodendrites as peroxidase nanomimics for enhanced colorimetric ELISA of cytokines with femtomolar sensitivity. Chemosensors 2022, 10, 359. [Google Scholar] [CrossRef]
- Gao, Z.; Lv, S.; Xu, M.; Tang, D. High-index {hk0} faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Analyst 2017, 142, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, G.T. Bioconjugate Techniques; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Banerjee, I.; Kumaran, V.; Santhanam, V. Synthesis and characterization of Au@Pt nanoparticles with ultrathin platinum overlayers. J. Phys. Chem. C 2015, 119, 5982–5987. [Google Scholar] [CrossRef]
- Williams, B.P.; Yaguchi, M.; Lo, W.-S.; Kao, C.-R.; Lamontagne, L.K.; Sneed, B.T.; Brodsky, C.N.; Chou, L.-Y.; Kuo, C.-H.; Tsung, C.-K. Investigating lattice strain impact on the alloyed surface of small Au@PdPt core–shell nanoparticles. Nanoscale 2020, 12, 8687–8692. [Google Scholar] [CrossRef]
- Song, H.; Kim, F.; Connor, S.; Somorjai, G.A.; Yang, P. Pt nanocrystals: Shape control and langmuir−blodgett monolayer formation. J. Phys. Chem. B 2005, 109, 188–193. [Google Scholar] [CrossRef]
- Josephy, P.D.; Eling, T.; Mason, R.P. The horseradish peroxidase-catalyzed oxidation of 3, 5, 3′, 5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J. Biol. Chem. 1982, 257, 3669–3675. [Google Scholar] [CrossRef]
- He, W.; Liu, Y.; Yuan, J.; Yin, J.-J.; Wu, X.; Hu, X.; Zhang, K.; Liu, J.; Chen, C.; Ji, Y.; et al. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011, 32, 1139–1147. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D. Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal. Chim. Acta 2013, 776, 79–86. [Google Scholar] [CrossRef]
- Ge, C.; Wu, R.; Chong, Y.; Fang, G.; Jiang, X.; Pan, Y.; Chen, C.; Yin, J.-J. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial: Infections implication for wound healing. Adv. Funct. Mater. 2018, 28, 1801484. [Google Scholar] [CrossRef]
- Sangwan, S.; Seth, R. Synthesis, characterization and stability of gold nanoparticles (AuNPs) in different buffer systems. J. Clust. Sci. 2022, 33, 749–764. [Google Scholar] [CrossRef]
- Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Q.; Zhao, H.; Zhang, L.; Su, Y.; Lv, Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 2012, 137, 4552–4558. [Google Scholar] [CrossRef]
- André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H.-C.; Müller, W.E.G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-Like activity. Adv. Funct. Mater. 2011, 21, 501–509. [Google Scholar] [CrossRef]
- Ye, H.; Mohar, J.; Wang, Q.; Catalano, M.; Kim, M.J.; Xia, X. Peroxidase-like properties of ruthenium nanoframes. Sci. Bull. 2016, 61, 1739–1745. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, J.; Lu, N.; Kim, M.J.; Ghale, K.; Xu, Y.; McKenzie, E.; Liu, J.; Ye, H. Pd–Ir core–shell nanocubes: A type of highly efficient and versatile peroxidase mimic. ACS Nano 2015, 9, 9994–10004. [Google Scholar] [CrossRef]
- Wan, S.; Wang, Q.; Ye, H.; Kim, M.J.; Xia, X. Pd–Ru bimetallic nanocrystals with a porous structure and their enhanced catalytic properties. Part. Part. Syst. Charact. 2018, 35, 1700386. [Google Scholar] [CrossRef]
- Ye, H.; Liu, Y.; Chhabra, A.; Lilla, E.; Xia, X. Polyvinylpyrrolidone (PVP)-capped Pt nanocubes with superior peroxidase-like activity. ChemNanoMat 2017, 3, 33–38. [Google Scholar] [CrossRef]
- Davidson, E.; Xi, Z.; Gao, Z.; Xia, X. Ultrafast and sensitive colorimetric detection of ascorbic acid with Pd-Pt core-shell nanostructure as peroxidase mimic. Sens. Int. 2020, 1, 100031. [Google Scholar] [CrossRef]
- Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J.; Chen, H.; Huo, Q. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130, 2780–2782. [Google Scholar] [CrossRef] [PubMed]
- Thobhani, S.; Attree, S.; Boyd, R.; Kumarswami, N.; Noble, J.; Szymanski, M.; Porter, R.A. Bioconjugation and characterisation of gold colloid-labelled proteins. J. Immunol. Methods 2010, 356, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Avvakumova, S.; Colombo, M.; Galbiati, E.; Mazzucchelli, S.; Rotem, R.; Prosperi, D. Chapter 6—Bioengineered approaches for site orientation of peptide-based ligands of nanomaterials. In Biomedical Applications of Functionalized Nanomaterials; Sarmento, B., das Neves, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 139–169. [Google Scholar]
- Kuzuya, A.; Numajiri, K.; Kimura, M.; Komiyama, M. Single-molecule accommodation of streptavidin in nanometer-scale wells formed in DNA nanostructures. Nucleic Acids Symp. Ser. 2008, 52, 681–682. [Google Scholar] [CrossRef]
Catalyst | Size (nm) | [E] (M) | Substance | Km (M) | Vmax (M s−1) | Kcat (s−1) | Kcat-mass-specfic (s−1 mg−1Pt) | Refs. |
---|---|---|---|---|---|---|---|---|
HRP | N/A | 2.5 × 10−11 | TMB | 4.3 × 10−4 | 1.0 × 10−7 | 4.0 × 103 | N/A | [23] |
Fe3O4 particles | 300 | 1.1 × 10−12 | TMB | 9.8 × 10−5 | 3.4 × 10−8 | 3.0 × 104 | N/A | [23] |
Co3O4 cubes | 20 | 3.4 × 10−10 | TMB | 3.7 × 10−5 | 6.3 × 10−8 | 1.8 × 102 | N/A | [57] |
MnO2 particles | 4.5 | 3.0 × 10−8 | OPD | 3.1 × 10−4 | 8.2 × 10−8 | 2.7 × 100 | N/A | [58] |
V2O5 wires | 100 × 500 | 1.1 × 10−4 | ABTS | 4.0 × 10−7 | 2.8 × 10−1 | 2.5 × 103 | N/A | [59] |
Au particles | 40 | 6.7 × 10−12 | TMB | N/A | 4.8 × 10−8 | 7.2 × 103 | N/A | [36] |
Ru frames | 10 | 1.1 × 10−12 | TMB | 6.0 × 10−5 | 1.3 × 10−7 | 1.3 × 104 | N/A | [60] |
Au@Pt rods | 30 × 70 | 1.3 × 10−11 | TMB | 2.7 × 10−5 | 1.8 × 10−7 | 1.4 × 104 | N/A | [53] |
Pt particles | 5–7 | 8.1 × 10−11 | TMB | 1.2 × 10−4 | 1.3 × 10−6 | 2.3 × 104 | 1.64 × 1019 | [54] |
Pd cubes | 18 | 1.4 × 10−12 | TMB | 5.4 × 10−5 | 9.7 × 10−8 | 6.9 × 104 | N/A | [61] |
Pd-Ru cubes | 20 | N/A | TMB | N/A | N/A | 4.8 × 105 | N/A | [62] |
Pt cubes | 7.4 | 4.1 × 10−13 | TMB | 7.3 × 10−4 | 3.3 × 10−7 | 8.2 × 105 | 9.63 × 1019 | [63] |
Pd-Ir cubes | 19.2 | 3.4 × 10−14 | TMB | 1.3 × 10−4 | 6.5 × 10−8 | 1.9 × 106 | N/A | [61] |
Pd@Pt cubes | 20 | 2.6 × 10−13 | TMB | 3.4 × 10−4 | 6.0 × 10−7 | 2.3 × 106 | 4.40 × 1019 | [64] |
Concave Pt cubes | 44 | 2.5 × 10−14 | TMB | N/A | 1.5 × 10−7 | 6.0 × 106 | 3.28 × 1018 | [47] |
Pd@Pt dendrites | 27 | 2.44 × 10−14 | TMB | 6.63 × 10−4 | 2.21 × 10−7 | 9.1 × 106 | 8.20 × 1019 | [46] |
Au@Pt4LNPs | 42 | 3.78 × 10−14 | TMB | 8.91 × 10−4 | 1.61 × 10−7 | 4.25 × 106 | 4.13 × 1019 | This work |
Sample No. | Spiked (pg mL−1) | Found (Mean ± SD) (pg mL−1) | CV (%, n = 3) | Recovery (%) |
---|---|---|---|---|
1 | 0.2 | 0.185 ± 0.015 | 8.30 | 92.53 |
2 | 0.5 | 0.479 ± 0.025 | 5.25 | 95.87 |
3 | 1 | 1.043 ± 0.093 | 8.90 | 104.30 |
4 | 2 | 2.055 ± 0.176 | 8.57 | 102.75 |
5 | 5 | 5.118 ± 0.280 | 5.47 | 102.36 |
6 | 10 | 10.555 ± 0.534 | 5.06 | 105.55 |
7 | 20 | 19.666 ± 1.038 | 5.28 | 98.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Peng, X.; Song, H.; Tan, Y.; Xu, J.; Li, Q.; Gao, Z. Atomic Pt-Layer-Coated Au Peroxidase Nanozymes with Enhanced Activity for Ultrasensitive Colorimetric Immunoassay of Interleukin-12. Biosensors 2025, 15, 239. https://doi.org/10.3390/bios15040239
Zhang H, Peng X, Song H, Tan Y, Xu J, Li Q, Gao Z. Atomic Pt-Layer-Coated Au Peroxidase Nanozymes with Enhanced Activity for Ultrasensitive Colorimetric Immunoassay of Interleukin-12. Biosensors. 2025; 15(4):239. https://doi.org/10.3390/bios15040239
Chicago/Turabian StyleZhang, Han, Xiang Peng, Hao Song, Yongfeng Tan, Jianglian Xu, Qunfang Li, and Zhuangqiang Gao. 2025. "Atomic Pt-Layer-Coated Au Peroxidase Nanozymes with Enhanced Activity for Ultrasensitive Colorimetric Immunoassay of Interleukin-12" Biosensors 15, no. 4: 239. https://doi.org/10.3390/bios15040239
APA StyleZhang, H., Peng, X., Song, H., Tan, Y., Xu, J., Li, Q., & Gao, Z. (2025). Atomic Pt-Layer-Coated Au Peroxidase Nanozymes with Enhanced Activity for Ultrasensitive Colorimetric Immunoassay of Interleukin-12. Biosensors, 15(4), 239. https://doi.org/10.3390/bios15040239