Challenges of Using Whole-Cell Bioreporter for Assessment of Heavy Metal Bioavailability in Soil/Sediment
Abstract
:1. Introduction
2. Comparative Methods for the Detection of HM Bioavailability in Soil/Sediment
2.1. Chemical Method
2.2. Indicative Plant/Animal Method
2.3. WCB Technology
2.3.1. Detection Mechanisms
2.3.2. Factors Influencing the Detection Performance of WCBs
2.3.3. Recent Technological Developments
3. Methods Used for the Correction of Soil/Sediment Blocking of WCB Optical Signals
3.1. Assumed Negligible Method
3.1.1. Aqueous Extract
3.1.2. Suspension
3.2. Non-Inducible Luminescent Control Method
3.3. Addition of a Standard to a Reference Soil Method
3.4. Pre-Exposure Bioreporter Method
4. Challenges and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, E.T. Environmental pollution by heavy metal: An overview. Environ. Chem. 2019, 12, 72–82. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, M.J.; Lan, J.J.; Huang, Y.; Zhang, J.X.; Huang, S.S.; Yang, Y.S.; Ru, J.J. Water quality degradation due to heavy metal contamination: Health impacts and eco-friendly approaches for heavy metal remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef]
- Zhang, X.K.; Qin, B.Q.; Deng, J.M.; Wells, M. Whole-cell bioreporters and risk assessment of environmental pollution: A proof-of-concept study using lead. Environ. Pollut. 2017, 229, 902–910. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Kapri, A.; Goel, R. Heavy metal pollution: Source, impact, and remedies. In Biomanagement of Metal-Contaminated Soils; Environmental Pollution; Springer: Dordrecht, The Netherlands, 2011; pp. 1–28. [Google Scholar]
- Cheng, S.P. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. Res. Int. 2003, 10, 192–198. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wang, J.S. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- Zhou, Q.X.; Liu, Y.X.; Li, T.; Zhao, H.Z.; Alessi, D.S.; Liu, W.T.; Konhauser, K.O. Cadmium adsorption to clay-microbe aggregates: Implications for marine heavy metals cycling. Geochim. Cosmochim. Acta 2020, 290, 124–136. [Google Scholar] [CrossRef]
- Zhou, Q.; Xue, W.; Cui, X.; Wang, P.; Zuo, S.; Mo, F.; Li, C.; Liu, G.; Ouyang, S.; Zhan, S. Oxygen-bridging Fe, Co dual-metal dimers boost reversible oxygen electrocatalysis for rechargeable Zn–air batteries. Proc. Natl. Acad. Sci. USA 2024, 121, e2404013121. [Google Scholar] [CrossRef]
- Wang, J.; Shi, D.; Ma, X.; Yang, L.; Ding, S.; Liu, E. Application of high-resolution techniques in the assessment of the mobility of Cr, Mo, and W at the sediment-water interface of Nansi Lake, China. Environ. Monit. Assess. 2023, 195, 980. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, S.; Liu, J.; Hu, X.; Liu, Y.; He, Y.; He, X.; Wu, X. Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems. Geosci. Front. 2022, 13, 101427. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, S.; Zhan, S. Superior photocatalytic disinfection effect of Ag-3D ordered mesoporous CeO2 under visible light. Appl. Catal. B-Environ. 2018, 224, 27–37. [Google Scholar] [CrossRef]
- Yu, T.; Jiang, T.; Liu, X.; Ma, X.; Yang, Z.; Hou, Q.; Xia, X.; Li, F. Research progress in current status of soil heavy metal pollution and analysis technology. Geol. China 2021, 48, 460–476. [Google Scholar] [CrossRef]
- Wei, S.H.; Zhou, Q.X.; Wang, X.; Zhang, K.S.; Guo, G.L.; Ma, Q.Y.L. A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chin. Sci. Bull. 2005, 50, 33–38. [Google Scholar] [CrossRef]
- Barsova, N.; Yakimenko, O.; Tolpeshta, I.; Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation-A review. Environ. Pollut. 2019, 249, 200–207. [Google Scholar] [CrossRef]
- Li, X.C.; Bing, J.P.; Zhang, J.H.; Guo, L.Q.; Deng, Z.M.; Wang, D.W.; Liu, L.S. Ecological risk assessment and sources identification of heavy metals in surface sediments of a river-reservoir system. Sci. Total Environ. 2022, 842, 156683. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Wang, F.; Gao, M.; He, L.; Zhao, G.; Ye, S.; Liu, Y.; Hu, K. Ecological risk assessment of heavy metal(loid)s in riverine sediments along the East China Sea: A large-scale integrated analysis. Mar. Pollut. Bull. 2024, 203, 116382. [Google Scholar] [CrossRef]
- Zheng, M.-H.; Bai, D.-R.; Zhang, T.; Chen, T.; Wang, H.-T.; Yang, T.; Zhang, B.; Jin, J. Distribution characteristics and pollution risk of heavy metals in river sediment of Suzhou Water network area, China. Search. Life-Sci. Lit. 2023, 44, 198–209. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Jin, M.; Yuan, H.; Liu, B.; Peng, J.; Xu, L.; Yang, D. Review of the distribution and detection methods of heavy metals in the environment. Anal. Methods 2020, 12, 5747–5766. [Google Scholar] [CrossRef]
- Kim, R.-Y.; Yoon, J.-K.; Kim, T.-S.; Yang, J.E.; Owens, G.; Kim, K.-R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef]
- Duan, X.; Huang, N.; Wang, B. Development of exposure factors research methods in environmental health risk assessment. J. Environ. Health 2012, 29, 99–104. [Google Scholar]
- Zhou, Q.; Hu, X. Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets. J. Environ. Sci. Technol. 2017, 51, 2022–2030. [Google Scholar] [CrossRef]
- Xu, T.; Close, D.M.; Sayler, G.S.; Ripp, S. Genetically modified whole-cell bioreporters for environmental assessment. Ecol. Indic. 2013, 28, 125–141. [Google Scholar] [CrossRef]
- Huang, Z.F.; Gustave, W.; Bai, S.S.; Li, Y.S.; Li, B.L.; Elçin, E.; Jiang, B.; Jia, Z.M.; Zhang, X.K.; Shaheen, S.M.; et al. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. Environ. Res. 2024, 262, 119801. [Google Scholar] [CrossRef]
- Zeng, N.; Wu, Y.C.; Chen, W.L.; Huang, Q.Y.; Cai, P. Whole-cell microbial bioreporter for soil contaminants detection. Front. Bioeng. Biotech. 2021, 9, 622994. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Schillereff, D.N.; Chiverrell, R.C.; Tefsen, B.; Wells, M. Whole-cell biosensors for determination of bioavailable pollutants in soils and sediments: Theory and practice. Sci. Total Environ. 2022, 811, 152178. [Google Scholar] [CrossRef]
- Chen, H.Y.; Tian, Y.; Cai, Y.; Liu, Q.Y.; Ma, J.; Wei, Y.; Yang, A.F. A 50-year systemic review of bioavailability application in Soil environmental criteria and risk assessment. Environ. Pollut. 2023, 335, 122272. [Google Scholar] [CrossRef]
- Li, R.L.; Chai, M.W.; Qiu, G.Y. Distribution, fraction, and ecological assessment of heavy metals in sediment plant system in Mangrove Forest, South China Sea. PLoS ONE 2016, 11, e0147308. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Jin, Q.; Wang, P.P.; Huang, C.M. Distribution and speciation of heavy metal(loid)s in soils under multiple preservative-treated wooden trestles. Toxics 2023, 11, 249. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Evaluation of the apdc-mibk extraction method for the atomic-absorption analysis of trace-metals in river water. Int. J. Environ. Anal. Chem. 1979, 7, 41–54. [Google Scholar] [CrossRef]
- Ali, S.A.; Mittal, D.; Kaur, G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: Recent advances and outlook. World J. Microbiol. Biotechnol. 2021, 37, 24. [Google Scholar] [CrossRef]
- Soliman, N.F.; El Zokm, G.M.; Okbah, M.A. Risk assessment and chemical fractionation of selected elements in surface sediments from Lake Qarun, Egypt using modified BCR technique. Chemosphere 2018, 191, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yang, J.; Cai, X.; Liu, Z.; Huang, W.; Shi, R.; Ma, T. Assessing soil remediation effect of Cr and Pb based on bioavailability using DGT, BCR and standardized determination method. Sci. Total Environ. 2024, 953, 175947. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Chen, J.; Zhu, F.; Chai, L.; Lin, Z.; Zhang, K.; Shi, Y. Biological toxicity of heavy metal (loid) s in natural environments: From microbes to humans. Front. Env. Sci. 2022, 10, 920957. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Li, X.; Wang, L.; Ma, J.; Chen, Y.; Weng, L. Development and application of chemical speciation models for heavy metals in environmental soil samples. J. Agro-Environ. Sci. 2018, 37, 1350–1361. [Google Scholar] [CrossRef]
- Bade, R.; Oh, S.; Shin, W.S. Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations. Sci. Total Environ. 2012, 416, 127–136. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, H.; Shen, J.; Guo, L.; Yan, J.; Jiang, J.; Hong, Z.; Xu, R. A new simple index for characterizing the labile heavy metal concentration in soil by diffusive gradients in thin films technique. Environ. Pollut. 2024, 351, 124061. [Google Scholar] [CrossRef]
- Wei, T.J.; Guan, D.X.; Li, X.Y.; Hao, Y.L.; Teng, H.H.; Yang, J.F.; Xu, Y.Y.; Li, G. Analysis of studies on environmental measurements using diffusive gradients in thin-films (DGT) from 1994 to 2020. J. Soils Sediments 2022, 22, 1069–1079. [Google Scholar] [CrossRef]
- Rui, C.; Nuo, C.; Guoyu, D.; Fumin, R.; Jungang, L.; Rongguang, S. Predictive model for cadmium uptake by maize and rice grains on the basis of bioconcentration factor and the diffusive gradients in thin-films technique. Environ. Pollut. 2021, 289, 117841. [Google Scholar] [CrossRef]
- Chen, R.; Mu, X.; Liu, J.; Cheng, N.; Shi, R.; Hu, M.; Chen, Z.; Wang, H. Predictive and estimation model of Cd, Ni, and Zn bioaccumulations in maize based on diffusive gradients in thin films. Sci. Total Environ. 2023, 860, 160523. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O.; Senila, L.; Angyus, B.S. Simulated bioavailability of heavy metals (Cd, Cr, Cu, Pb, Zn) in contaminated soil amended with natural zeolite using diffusive gradients in thin-films (DGT) technique. Agriculture 2022, 12, 321. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Zhang, C.; Liu, X.; Liang, X.; Liu, R.; Zhao, Y. Mechanisms of S cooperating with Fe and Mn to regulate the conversion of Cd and Cu during soil redox process revealed by LDHs-DGT technology. Sci. Total Environ. 2023, 867, 161431. [Google Scholar] [CrossRef] [PubMed]
- Kreuzeder, A.; Santner, J.; Zhang, H.; Prohaska, T.; Wenzel, W.W. Uncertainty evaluation of the diffusive gradients in thin films technique. Environ. Sci. Technol. 2015, 49, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Velasco, N.; Carrero, J.A.; Urionabarrenetxea, E.; Doni, L.; Zaldibar, B.; Izagirre, U.; Soto, M. Innovative in vivo and in vitro bioassays for the establishment of toxicity thresholds of pollutants in sediment quality assessment using polychaetes and their immune cells. Chemosphere 2023, 311, 136935. [Google Scholar] [CrossRef]
- Ma, Q.; Zhao, W.F.; Guan, D.X.; Teng, H.H.; Ji, J.F.; Ma, L.N.Q. Comparing CaCl2+, EDTA and DGT methods to predict sCd and Ni accumulation in rice grains from contaminated soils. Environ. Pollut. 2020, 260, 114042. [Google Scholar] [CrossRef]
- Stankovic, J.D.; Sabovljevic, A.D.; Sabovljevic, M.S. Bryophytes and heavy metals: A review. Acta Bot. Croat. 2018, 77, 109–118. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; Jolly, Y.N.; Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; De-la-Torre, G.E.; Khandaker, M.U.; Alsubaie, A.; Almalki, A.S.A.; Bradley, D.A. Macroalgae in biomonitoring of metal pollution in the Bay of Bengal coastal waters of Cox’s Bazar and surrounding areas. Sci. Rep. 2021, 11, 20999. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, J.; Zou, M.; Du, X.; Zhang, Y.; Yang, Y.; Li, J. The detection and monitoring of available heavy metal content in soil: A review. Chin. J. Eco-Agric. 2017, 25, 605–615. [Google Scholar] [CrossRef]
- Wieczorek, J.; Baran, A.; Bubak, A. Mobility, bioaccumulation in plants, and risk assessment of metals in soils. Sci. Total Environ. 2023, 882, 163574. [Google Scholar] [CrossRef]
- Petrov, D.S.; Korotaeva, A.E.; Pashkevich, M.A.; Chukaeva, M.A. Assessment of heavy metal accumulation potential of aquatic plants for bioindication and bioremediation of aquatic environment. Environ. Monit. Assess. 2023, 195, 122. [Google Scholar] [CrossRef]
- Watts, M.J.; Mitra, S.; Marriott, A.L.; Sarkar, S.K. Source, distribution and ecotoxicological assessment of multielements in superficial sediments of a tropical turbid estuarine environment: A multivariate approach. Mar. Pollut. Bull. 2017, 115, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, Y.; Zhan, C.; Liu, H.; Zhang, J.; Guo, K.; Hu, T.; Kunwar, B.; Fang, L.; Wang, Y. Assessing bioavailability risks of heavy metals in polymetallic mining regions: A comprehensive analysis of soils with varied land uses. Environ. Monit. Assess. 2024, 196, 975. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.; El-Gendy, K.; Gad, A. Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review. Chemosphere 2020, 257, 127218. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, Z.; Xiao, H.; Abou-Elwafa, S.F.; Alshehri, M.A.; Wu, Y.; Yu, H.; Tan, W. Response of soil heavy metal forms and bioavailability to the application of microplastics across five years in different soil types. J. Hazard. Mater. 2024, 480, 136068. [Google Scholar] [CrossRef]
- Silva, M.S.S.; Pires, A.; Almeida, M.; Oliveira, M. The use of Hediste diversicolor in the study of emerging contaminants. Mar. Environ. Res. 2020, 159, 105013. [Google Scholar] [CrossRef]
- Rosner, A.; Ballarin, L.; Barnay-Verdier, S.; Borisenko, I.; Drago, L.; Drobne, D.; Eliso, M.C.; Harbuzov, Z.; Grimaldi, A.; Guy-Haim, T.; et al. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol. Rev. 2024, 99, 131–176. [Google Scholar] [CrossRef]
- Kaur, H.; Kumar, R.; Babu, J.N.; Mittal, S. Advances in arsenic biosensor development—A comprehensive review. Biosens. Bioelectron. 2015, 63, 533–545. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook. Process Saf. Environ. Protect. 2019, 124, 8–17. [Google Scholar] [CrossRef]
- Jia, J.L.; Li, H.B.; Zong, S.; Jiang, B.; Li, G.H.; Ejenavi, O.; Zhu, J.R.; Zhang, D.Y. Magnet bioreporter device for ecological toxicity assessment on heavy metal contamination of coal cinder sites. Sens. Actuator B-Chem. 2016, 222, 290–299. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Zhang, Q.-Q.; Yao, S.-Y.; Cui, H.-W.; Zou, Y.-L.; Zhao, L.-X. Dual-recognition “turn-off-on” fluorescent Biosensor triphenylamine-based continuous detection of copper ion and glyphosate applicated in environment and living system. J. Hazard. Mater. 2024, 477, 135216. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, G.; Lai, X.; Su, L.; He, W.; Lai, W.; Deng, S. Polyethyleneimine-induced fluorescence enhancement strategy for AIEgen: The mechanism and application. Anal. Bioanal.Chem. 2023, 415, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Brányiková, I.; Lucáková, S.; Kuncová, G.; Trögl, J.; Synek, V.; Rohovec, J.; Navrátil, T. Estimation of Hg(II) in Soil Samples by Bioluminescent Bacterial Bioreporter E. coli ARL1, and the Effect of Humic Acids and Metal Ions on the Biosensor Performance. Sensors 2020, 20, 3138. [Google Scholar] [CrossRef]
- Rathnayake, I.V.N.; Megharaj, M.; Naidu, R. Green fluorescent protein based whole cell bacterial biosensor for the detection of bioavailable heavy metals in soil environment. Environ. Technol. Innov. 2021, 23, 10. [Google Scholar] [CrossRef]
- Zhu, X.; Xiang, Q.; Chen, L.; Chen, J.; Wang, L.; Jiang, N.; Hao, X.; Zhang, H.; Wang, X.; Li, Y.; et al. Engineered Bacillus subtilis Biofilm@Biochar living materials for in-situ sensing and bioremediation of heavy metal ions pollution. J. Hazard. Mater. 2024, 465, 133119. [Google Scholar] [CrossRef] [PubMed]
- Ivask, A.; Green, T.; Polyak, B.; Mor, A.; Kahru, A.; Virta, M.; Marks, R. Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens. Bioelectron. 2007, 22, 1396–1402. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Zhang, D.; Zhang, H. Simultaneous determination of heavy metal concentrations and toxicities by diffusive gradient in thin films containing Acinetobacter whole-cell bioreporters (Bio-DGT). Environ. Pollut. 2023, 320, 121050. [Google Scholar] [CrossRef]
- Liu, Y.E.; Guo, M.Z.; Du, R.X.; Chi, J.N.; He, X.Y.; Xie, Z.X.; Huang, K.L.; Luo, Y.B.; Xu, W.T. A gas reporting whole-cell microbial biosensor system for rapid on-site detection of mercury contamination in soils. Biosens. Bioelectron. 2020, 170, 7. [Google Scholar] [CrossRef]
- Rathnayake, I.V.N.; Munagamage, T.; Pathirathne, A.; Megharaj, M. Whole cell microalgal-cyanobacterial array biosensor for monitoring Cd, Cr and Zn in aquatic systems. Water Sci. Technol. 2021, 84, 1579–1593. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, B.; Tian, S.; Tang, H.; Liu, Z.; Li, C.; Jia, J.; Huang, W.E.; Zhang, X.; Li, G. A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environ. Pollut. 2014, 195, 178–184. [Google Scholar] [CrossRef]
- Wei, H.; Ze-Ling, S.; Le-Le, C.; Wen-hui, Z.; Chuan-Chao, D. Specific detection of bioavailable phenanthrene and mercury by bacterium reporters in the red soil. Int. J. Environ. Sci. Technol. 2014, 11, 685–694. [Google Scholar] [CrossRef]
- Jiang, B.; Zhu, D.; Song, Y.; Zhang, D.; Liu, Z.; Zhang, X.; Huang, W.E.; Li, G. Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium (VI)-contaminated soils. Biotechnol. Lett. 2015, 37, 343–348. [Google Scholar] [CrossRef]
- Babapoor, A.; Hajimohammadi, R.; Jokar, S.M.; Paar, M. Biosensor Design for Detection of Mercury in Contaminated Soil Using Rhamnolipid Biosurfactant and Luminescent Bacteria. J. Chem. 2020, 2020, 8. [Google Scholar] [CrossRef]
- Hui, C.-y.; Guo, Y.; Li, H.; Gao, C.-x.; Yi, J. Detection of environmental pollutant cadmium in water using a visual bacterial biosensor. Sci. Rep. 2022, 12, 6898. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-García, L.I.; Alarcón-Herrera, M.T.; Ayala-García, V.M.; Barraza-Salas, M.; Salas-Pacheco, J.M.; Díaz-Valles, J.F.; Pedraza-Reyes, M. Design of a whole-cell biosensor based on Bacillus subtilis spores and the green fluorescent protein to monitor arsenic. Microbiol. Spectr. 2023, 11, e00432-23. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Luo, Y.; Lin, T.; Xie, Z.; Qi, X. Gold nanoclusters-based fluorescence resonance energy transfer for rapid and sensitive detection of Pb2+. Spectrochim. Acta. A 2024, 315, 124302. [Google Scholar] [CrossRef]
- Belkin, S.; Cheng, J.Y. Miniaturized bioluminescent whole-cell sensor systems. Curr. Opin. Biotechnol. 2023, 82, 8. [Google Scholar] [CrossRef]
- Axelrod, T.; Eltzov, E.; Marks, R.S. Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Talanta 2016, 149, 290–297. [Google Scholar] [CrossRef]
- Miskimmin, B.M.; Rudd, J.W.; Kelly, C.A. Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water. Can. J. Fish. Aquat.Sci. 1992, 49, 17–22. [Google Scholar] [CrossRef]
- Preston, S.; Coad, N.; Townend, J.; Killham, K.; Paton, G.I. Biosensing the acute toxicity of metal interactions: Are they additive, synergistic, or antagonistic? Environ. Toxicol. Chem. Int. J. 2000, 19, 775–780. [Google Scholar] [CrossRef]
- Pang, Y.L.; Ren, X.J.; Li, J.H.; Liang, F.; Rao, X.Y.; Gao, Y.; Wu, W.H.; Li, D.; Wang, J.J.; Zhao, J.G.; et al. Development of a Sensitive Escherichia coli Bioreporter Without Antibiotic Markers for Detecting Bioavailable Copper in Water Environments. Front. Microbiol. 2020, 10, 15. [Google Scholar] [CrossRef]
- Kim, C.S.; Choi, B.H.; Seo, J.H.; Lim, G.; Cha, H.J. Mussel adhesive protein-based whole cell array biosensor for detection of organophosphorus compounds. Biosens. Bioelectron. 2013, 41, 199–204. [Google Scholar] [CrossRef]
- Ravikumar, S.; Ganesh, I.; Yoo, I.-K.; Hong, S.H. Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem. 2012, 47, 758–765. [Google Scholar] [CrossRef]
- Dey, P.; Kaur, M.; Khajuria, A.; Kaur, D.; Singh, M.; Alajangi, H.K.; Singla, N.; Singh, G.; Barnwal, R.P. Heavy metal ion detection with Nano-Engineered Materials: Scaling down for precision. Microchem. J. 2024, 196, 109672. [Google Scholar] [CrossRef]
- Kaiser, K.L.; Palabrica, V.S. Photobacterium phosphoreum toxicity data index. Water Qual. Res. J. Can. 1991, 26, 361–431. [Google Scholar] [CrossRef]
- Zhu, Y.; Elcin, E.; Jiang, M.; Li, B.; Wang, H.; Zhang, X.; Wang, Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front. Chem. 2022, 10, 1018124. [Google Scholar] [CrossRef]
- Hakkila, K.; Green, T.; Leskinen, P.; Ivask, A.; Marks, R.; Virta, M. Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J. Appl. Toxicol. 2004, 24, 333–342. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, L.; Li, M.O. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity 2023, 56, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zhang, Y.; Li, Y.; Miao, Y.; Gao, S.; Lin, F.; Deng, Y.; Geng, L. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review. Biosens. Bioelectron. 2019, 126, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, H.; Zhuo, Y.; Song, D.; Li, C.; Zhu, A.; Long, F. Reusable smartphone-facilitated mobile fluorescence biosensor for rapid and sensitive on-site quantitative detection of trace pollutants. Biosens. Bioelectron. 2022, 199, 113863. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, P.; Ren, H.; Jia, P.; Ji, J.; Cao, L.; Yang, P.; Li, Y.; Liu, J.; Li, Z.; et al. Synthetic biology-powered biosensors based on CRISPR/Cas mediated cascade signal amplification for precise RNA detection. Chem. Eng. J. 2022, 446, 136864. [Google Scholar] [CrossRef]
- Wang, B.; Barahona, M.; Buck, M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron. 2013, 40, 368–376. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Li, X.; Xu, F.; Li, Z. Modularized synthetic biology enabled intelligent biosensors. Trends Biotechnol. 2023, 41, 1055–1065. [Google Scholar] [CrossRef]
- Yoon, Y.; Kang, Y.; Chae, Y.; Kim, S.; Lee, Y.; Jeong, S.-W.; An, Y.-J. Arsenic bioavailability in soils before and after soil washing: The use of Escherichia coli whole-cell bioreporters. Environ. Sci. Pollut. Res. Int. 2016, 23, 2353–2361. [Google Scholar] [CrossRef]
- Ivask, A.; Virta, M.; Kahru, A. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol. Biochem. 2002, 34, 1439–1447. [Google Scholar] [CrossRef]
- Lappalainen, J.O.; Karp, M.T.; Nurmi, J.; Juvonen, R.; Virta, M.P.J. Comparison of the total mercury content in sediment samples with a mercury sensor bacteria test and Vibrio fischeri toxicity test. Environ. Toxicol. 2000, 15, 443–448. [Google Scholar] [CrossRef]
- Brandt, K.K.; Holm, P.E.; Nybroe, O. Bioavailability and toxicity of soil particle-associated copper as determined by two bioluminescent Pseudomonas fluorescens biosensor strains. Environ. Toxicol. Chem. 2006, 25, 1738–1741. [Google Scholar] [CrossRef] [PubMed]
- Leedjärv, A.; Ivask, A.; Virta, M.; Kahru, A. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Chemosphere 2006, 64, 1910–1919. [Google Scholar] [CrossRef]
- Everhart, J.L.; McNear, D., Jr.; Peltier, E.; Van der Lelie, D.; Chaney, R.L.; Sparks, D. Assessing nickel bioavailability in smelter-contaminated soils. Sci. Total Environ. 2006, 367, 732–744. [Google Scholar] [CrossRef]
- Ivask, A.; Dubourguier, H.-C.; Põllumaa, L.; Kahru, A. Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria: Effect of soil particulate matter. J. Soils Sediments 2011, 11, 231–237. [Google Scholar] [CrossRef]
- Dong, M.; Jiang, M.; He, L.; Zhang, Z.; Gustave, W.; Vithanage, M.; Niazi, N.K.; Chen, B.; Zhang, X.; Wang, H. Challenges in safe environmental applications of biochar: Identifying risks and unintended consequence. Biochar 2025, 7, 12. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, Y.; Yin, X.; Zhang, Y.; Yang, Z.; Wang, H.; Yang, W.; Pang, P. Electrochemical determination of Pb2+ based on DNAzyme-triggered rolling circle amplification and DNA-templated silver nanoclusters amplification strategy. Microchem. J. 2023, 189, 108544. [Google Scholar] [CrossRef]
HM | Strain | Reporter Gene | Medium | Concentration Range | Response Time | Reference |
---|---|---|---|---|---|---|
Hg2+ | Pseudomonas putida | phnS-luxCDABE, merR-egfp | Soil | 0–24 µg/kg | Several days | [71] |
Cr6+ | Acinetobacter baylyi ADPWH_recA | zntA | Soil | 2 µM | 5 h | [72] |
Cu2+ Hg2+ Pb2+ | Escherichia coli (E. coli) MC106 | matgBFP eGFP mCherry | Soil | 0.1–100 μM 0.01–4 μM 0.1–100 μM | 12 h | [73] |
Cd Cu Zn | Bacillus megaterium VR1 | gfp | Soil | 0–10 mg/L 0–20 mg/L 0–100 mg/L | 4 h 4 h 7 h | [64] |
Hg2+ Cd2+ | E. coli TOP10 | eGFP and mCherry | Soil | 0–40 μM 0–200 μM | 8 h | [74] |
As3+ | Bacillus subtilis 168 | gfpmut3a | Soil/water | 0.1–1000 μM | 4 h | [75] |
Cu2+ | Not mentioned | Not mentioned | Soil/water/ Living cell | 0.459 μM | Not mentioned | [76] |
Advantages | Disadvantages | Application Scenarios | |
---|---|---|---|
Assumed negligible method | It is easy to operate, no additional equipment and steps are required, and the cost is low. | The error rate can be very high, up to by an order of magnitude, that it does not accurately reflect the actual biological availability of the pollutant. It is not suitable for scenarios that require high-precision quantitative analysis. | It is suitable for situations where accuracy is not required, such as preliminary screening or the rough estimation of the bioavailability of pollutants. |
Non-inducible luminescent control method | The method is relatively simple and easy to implement to evaluate the effect of particles on the signal by using the control biosensing strain of non-induced luminescence. The signal loss caused by particle scattering and reflection can be partially corrected. | If the optical intensity difference between the control and the detected strain is significant, the accuracy of the correction will be affected. When the signal strength varies greatly, a single correction factor may not be applicable. | This method is suitable for occasions where the signal strength changes little and accuracy is required. When the optical properties of the control strain are similar to those of the detection strain, the correction effect is good. |
Addition of a standard to reference soil | Adding a standard solution to the control soil simulates the actual detection environment. It can more truly reflect the influence of particles on the signal, making the correction effect better. | If the properties of the control and target soil are very different, or the contact time between the standard solution and the soil is too long, resulting in adsorption, a large error will be generated. | It is suitable for occasions where the soil properties are similar to the target soil, and the contact time between the standard solution and the soil can be controlled. However, it should be noted that the difference between the properties of the control and target soils should not be too large to avoid introducing new errors. |
Pre-exposure bioreporter method | By correcting the degree of blockage of the luminescence signal by solid particles, the correction effect is better than the previous two methods, and it is especially suitable for occasions with high accuracy requirements. | The operation is relatively complex, requiring the identification of appropriate concentrations of contaminants to induce the WCB and the need for precise control of experimental conditions. | This method is suitable for applications where high precision is required and complex operations can be performed, such as precise quantitative analysis of specific pollutants in research laboratories. It can correct the influence of particles on the signal and improve the detection accuracy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, S.; Liu, Z.; Xu, J.; Li, Y.; Zhang, Z.; Huang, Z.; Gustave, W.; Li, B.; Zhang, X.; He, F. Challenges of Using Whole-Cell Bioreporter for Assessment of Heavy Metal Bioavailability in Soil/Sediment. Biosensors 2025, 15, 260. https://doi.org/10.3390/bios15040260
Bai S, Liu Z, Xu J, Li Y, Zhang Z, Huang Z, Gustave W, Li B, Zhang X, He F. Challenges of Using Whole-Cell Bioreporter for Assessment of Heavy Metal Bioavailability in Soil/Sediment. Biosensors. 2025; 15(4):260. https://doi.org/10.3390/bios15040260
Chicago/Turabian StyleBai, Shanshan, Zhipeng Liu, Jiazhi Xu, Yongshuo Li, Zirun Zhang, Zefeng Huang, Williamson Gustave, Boling Li, Xiaokai Zhang, and Feng He. 2025. "Challenges of Using Whole-Cell Bioreporter for Assessment of Heavy Metal Bioavailability in Soil/Sediment" Biosensors 15, no. 4: 260. https://doi.org/10.3390/bios15040260
APA StyleBai, S., Liu, Z., Xu, J., Li, Y., Zhang, Z., Huang, Z., Gustave, W., Li, B., Zhang, X., & He, F. (2025). Challenges of Using Whole-Cell Bioreporter for Assessment of Heavy Metal Bioavailability in Soil/Sediment. Biosensors, 15(4), 260. https://doi.org/10.3390/bios15040260