Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Equipment and Characterization
2.3. Synthesis of Compound HTTM-DMODPA
2.4. Synthesis of Radical TTM-DMODPA
2.5. Procedures for H2O2 Assay
2.6. Sample Preparation
3. Results and Discussion
3.1. Synthesis and Characterization of the Radical TTM-DMODPA
3.2. Feasibility Analysis
3.3. Colorimetric Determination of H2O2
3.4. Camera Photography Analysis
3.5. Urine Sample Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
H2O2 | hydrogen peroxide |
TTM | tris(2,4,6-trichlorophenyl)methyl |
TTM-DMODPA | 4,4′-dimethoxydiphenylamine-substituted tris(2,4,6-trichlorophenyl)methyl |
HTTM | tris(2,4,6-trichlorophenyl)methane |
HTTM-DMODPA | 4,4′-dimethoxydiphenylamine-substituted tris(2,4,6-trichlorophenyl)methane |
BINAP | 2,2′-bis(diphenylphosphino)-1,1′-binaphthalene |
t-BuONa | sodium tert-butoxide |
t-BuOK | potassium tert-butoxide |
References
- Sadiq, Z.; Al-Kassawneh, M.; Tali, S.H.S.; Jahanshahi-Anbuhi, S. Dextran-Gold Nanoparticle-Based Tablets and Swabs for Colorimetric Detection of Urinary H2O2. ACS Appl. Nano Mater. 2025, 8, 1008–1020. [Google Scholar] [CrossRef]
- Pinon-Balderrama, C.I.; Leyva-Porras, C.; Conejo-Davila, A.S.; Estrada-Monje, A.; Maldonado-Orozco, M.C.; Reyes-Lopez, S.Y.; Zaragoza-Contreras, E.A. Electrochemical Perovskite-Based Sensors for the Detection of Relevant Biomarkers for Human Kidney Health. Chemosensors 2023, 11, 507. [Google Scholar] [CrossRef]
- Yuen, J.W.M.; Benzie, I.F.F. Hydrogen peroxide in urine as a potential biomarker of whole body oxidative stress. Free Radic. Res. 2003, 37, 1209–1213. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, M.; Ohta, S.; Nakagawa, M.; Hiruta, Y.; Citterio, D. Colorimetric paper-based sarcosine assay with improved sensitivity. Anal. Bioanal. Chem. 2022, 414, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Long, L.H.; Yee, T.P.; Lim, S.; Kelly, R. Establishing biomarkers of oxidative stress: The measurement of hydrogen peroxide in human urine. Curr. Med. Chem. 2004, 11, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Clement, M.V.; Long, L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10–13. [Google Scholar] [CrossRef]
- Stapleton, A.E. The Vaginal Microbiota and Urinary Tract Infection. Microbiol. Spectr. 2016, 4, UTI-0025-2016. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Lu, Y.; Liu, Y.; Wang, T.; Yu, F. Human Urinary Kallidinogenase improves vascular endothelial injury by activating the Nrf2/HO-1 signaling pathway. Chem. Biol. Interact. 2024, 403, 111230. [Google Scholar] [CrossRef]
- Felisardo, R.J.A.; Magalha, C.H.; Santos, G.d.O.S.; Lanza, M.R.d.V. Unlocking the potential of in situ H2O2 generation in urine as a decentralized electro-sanitation strategy. Chem. Eng. J. 2025, 507, 160391. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; LeVatte, M.A.; Singh, U.; Issac, F.; Karim, M.; Ali, S.; Sieben, A.; Huang, S.; Wishart, D.S. A novel colorimetric assay for the detection of urinary N1, N12-diacetylspermine, a known biomarker for colorectal cancer. Anal. Biochem. 2025, 697, 115717. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, H.; Chen, S.; Yang, M.; Dong, R.; Yang, X.; Zang, L. Chemosensors for H2O2 Detection: Principles, Active Materials, and Applications. Chemosensors 2025, 13, 54. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Offenhaeusser, A.; Mourzina, Y. Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts. Biosensors 2025, 15, 124. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Ahmad, A.; Singh, I. Recent progress in nanomaterial-based electrochemical biosensors for hydrogen peroxide detection & their biological applications. Talanta 2025, 286, 127447. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Mockaitis, T.; Shikuwa, R.; Oba, K.; Hiramoto, K.; Morkvenaite-Vilkonciene, I.; Abe, H.; Shiku, H. Recent advances in electrochemiluminescence sensing for in vitro cell analysis: A review. Anal. Sci. 2025, 41, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Ghaedamini, H.; Kim, D.-S. Recent advances in electrochemical detection of reactive oxygen species: A review. Analyst 2025, 150, 1490–1517. [Google Scholar] [CrossRef]
- Pundir, C.S.; Deswal, R.; Narwal, V. Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioprocess. Biosyst. Eng. 2018, 41, 313–329. [Google Scholar] [CrossRef]
- Rigoletto, M.; Laurenti, E.; Tummino, M.L. An Overview of Environmental Catalysis Mediated by Hydrogen Peroxide. Catalysts 2024, 14, 267. [Google Scholar] [CrossRef]
- Li, M.; You, F.; Zhang, K.; Xu, J.; Zhuang, W.; Ge, J.; Wang, Z. Biomimetic mineralization materials for heterogeneous chemo-enzymatic cascade catalytic systems: Theaters and players. Chem. Eng. J. 2025, 509, 161282. [Google Scholar] [CrossRef]
- Galligan, J.J.; Baeumner, A.J.; Duerkop, A. Recent advances and trends in optical devices and sensors for hydrogen peroxide detection. TrAC Trends Anal. Chem. 2024, 180, 117948. [Google Scholar] [CrossRef]
- Modic, A.; Filip, L.; Jovanovski, V. Determination of Gaseous H2O2 Using UV-Vis Spectroscopy. Chemosensors 2025, 13, 157. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, L.; Zhang, X.; Zhang, J.; Gao, M.; Xu, G. Fluorescent nanosensors for the detection of hydrogen peroxide: Materials, design strategies and applications. Dyes Pigm. 2025, 235, 112592. [Google Scholar] [CrossRef]
- Pirsa, S.; Purghorbani, F. An overview of hydrogen peroxide sensors and their applications in food quality control. Sens. Rev. 2024, 44, 159–170. [Google Scholar] [CrossRef]
- Guo, N.; Yang, J.; Li, Y.; Wang, W.; Liang, X.; Xu, Q.; Du, L.; Qin, J. A review of a colorimetric biosensor based on Fe3O4 nanozymes for food safety detection. Anal. Bioanal. Chem. 2025, 417, 1713–1730. [Google Scholar] [CrossRef]
- Liu, J.; Yang, D.; Hu, W.; Huang, N.; Rong, Y.; Long, Y.; Zheng, H. Piezoelectric BaTiO3 nanoparticles as oxidase mimics breaking pH limitation for colorimetric detection of glutathione reductase. Chem. Eng. J. 2024, 481, 148609. [Google Scholar] [CrossRef]
- Xu, L.; Yang, B.; Guo, L. Oxidized 3,3′,5,5′-tetramethylbenzidine nanobelts enhance colorimetric sensing of H2O2. Talanta 2024, 279, 126584. [Google Scholar] [CrossRef]
- Talapphet, N.; Huh, C.S. A Smartphone Colorimetric Development with TMB/H2O2/HRP Reaction System for Hydrogen Peroxide Detection and its Applications. J. Anal. Chem. 2024, 79, 57–64. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, J.; Wang, H.; Luan, Y.; Zhang, Z. Porphyrin-based covalent organic framework as oxidase mimic for highly sensitive colorimetric detection of pesticides. Microchim. Acta 2024, 191, 296. [Google Scholar] [CrossRef] [PubMed]
- Sairaj, V.; Poovethamkandiyil, A.S.; Hinder, S.J.; Pillai, S.C.; Vijayan, B.K. Enhanced photooxidation and colorimetric sensing application of praseodymium oxide-modified boron-doped g-C3N4. New J. Chem. 2025, 49, 7495–7505. [Google Scholar] [CrossRef]
- Ramgopal, N.C.; Mukherjee, P.; Kamilya, T.; Basavegowda, N.; Mahanthappa, M.; Aljarba, N.H.; Alqahtani, R.A.; Alkahtani, S.; Park, J.; Vishwanath, R.S. Etched Co-Fe Prussian blue analog nanozymes with superior peroxidase activity for colorimetric biosensing of hydrogen peroxide and dopamine. Int. J. Biol. Macromol. 2025, 288, 138766. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Gong, H.; Gu, J.; Liu, T.; Wang, X. Superior oxidase-mimetic activity of FeCo-NC dual-atom nanozyme for smartphone-based visually colorimetric assay of organophosphorus pesticides. Microchim. Acta 2024, 191, 368. [Google Scholar] [CrossRef]
- Leili, Z.; Asadpour, S.; Saberi, Z. Exploring peroxidase mimetic activity of carbon nano-onions for colorimetric detection of H2O2 and glucose. J. Taiwan Inst. Chem. Eng. 2025, 170, 106029. [Google Scholar] [CrossRef]
- Deng, Z.; Cao, J.; Zhao, L.; Zhang, Z.; Yuan, J. Trimetallic FeCoNi Metal-Organic Framework with Enhanced Peroxidase-like Activity for the Construction of a Colorimetric Sensor for Rapid Detection of Thiophenol in Water Samples. Molecules 2024, 29, 3739. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.; Ding, L.; Akram, R.; Zhu, W.; Long, L.; Wang, K. Construction of a novel Au@Os mediated TMB-H2O2 platform with dual-signal output for rapid and accurate detection of ziram in food. Food Chem. 2025, 462, 140988. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Singh, R.; Guin, D.; Tripathi, C.S.P. BaTiO3-MoS2 Nanocomposite as a New Peroxidase Mimic for the Colorimetric and Smartphone-Assisted Detection of H2O2. J. Cluster Sci. 2024, 35, 2393–2404. [Google Scholar] [CrossRef]
- Lu, X.; Gopalakrishna, T.Y.; Phan, H.; Herng, T.S.; Jiang, Q.; Liu, C.; Li, G.; Ding, J.; Wu, J. Global Aromaticity in Macrocyclic Cyclopenta-Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. Angew. Chem. Int. Ed. 2018, 57, 13052–13056. [Google Scholar] [CrossRef]
- Ballesteros, P.; Cuadrado, A.; Gilabert, A.; Fajarí, L.; Sirés, I.; Brillas, E.; Almajano, M.P.; Velasco, D.; Anglada, J.M.; Juliá, L. Formation of a stable biradical triplet state cation versus a closed shell singlet state cation by oxidation of adducts of 3,6-dimethoxycarbazole and polychlorotriphenylmethyl radicals. Phys. Chem. Chem. Phys. 2019, 21, 20225–20231. [Google Scholar] [CrossRef]
- Fajarí, L.; Papoular, R.; Reig, M.; Brillas, E.; Jorda, J.L.; Vallcorba, O.; Rius, J.; Velasco, D.; Juliá, L. Charge Transfer States in Stable Neutral and Oxidized Radical Adducts from Carbazole Derivatives. J. Org. Chem. 2014, 79, 1771–1777. [Google Scholar] [CrossRef]
- Abdurahman, A.; Hele, T.J.H.; Gu, Q.; Zhang, J.; Peng, Q.; Zhang, M.; Friend, R.H.; Li, F.; Evans, E.W. Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nat. Mater. 2020, 19, 1224–1229. [Google Scholar] [CrossRef]
- Bai, X.; Tan, W.; Abdurahman, A.; Li, X.; Li, F. Stable red nanoparticles loaded neutral luminescent radicals for fluorescence imaging. Dyes Pigm. 2022, 202, 110260. [Google Scholar] [CrossRef]
- Chen, L.; Arnold, M.; Kittel, Y.; Blinder, R.; Jelezko, F.; Kuehne, A.J.C. 2,7-Substituted N-Carbazole Donors on Tris(2,4,6-trichlorophenyl)methyl Radicals with High Quantum Yield. Adv. Opt. Mater. 2022, 10, 2102101. [Google Scholar] [CrossRef]
- Yan, C.; An, D.; Chen, W.; Zhang, N.; Qiao, Y.; Fang, J.; Lu, X.; Zhou, G.; Liu, Y. Stable Diarylamine-Substituted Tris(2,4,6-trichlorophenyl)methyl Radicals: One-Step Synthesis, Near-Infrared Emission, and Redox Chemistry. CCS Chem. 2022, 4, 3190–3203. [Google Scholar] [CrossRef]
- Yan, C.; Fang, J.; Zhu, J.; Chen, W.; Wang, M.; Chi, K.; Lu, X.; Zhou, G.; Liu, Y. Donor Engineering of Diphenylamine-substituted Tris(2,4,6-trichlorophenyl)methyl Radicals for Controlling the Intramolecular Charge Transfer and Near-infrared Photothermal Conversion. J. Mater. Chem. C 2023, 11, 2729–2736. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, W.; Ma, H.; Obolda, A.; Yan, W.; Dong, S.; Zhang, M.; Li, F. Novel Luminescent Benzimidazole-Substituent Tris(2,4,6-trichlorophenyl)methyl Radicals: Photophysics, Stability, and Highly Efficient Red-Orange Electroluminescence. Chem. Mater. 2017, 29, 6733–6739. [Google Scholar] [CrossRef]
- Peng, Q.; Obolda, A.; Zhang, M.; Li, F. Organic Light-Emitting Diodes Using a Neutral π Radical as Emitter: The Emission from a Doublet. Angew. Chem. Int. Ed. 2015, 54, 7091–7095. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Xiong, L.; Yu, L.; Wu, D.; Yang, C.; Xiao, Y. An enzyme-free fluorescent sensing platform for the detection of uric acid in human urine. J. Lumin. 2021, 236, 118076. [Google Scholar] [CrossRef]
- Mohan, B.; Virender; Kumar Gupta, R.; Pombeiro, A.J.L.; Ren, P. Advanced luminescent metal–organic framework (MOF) sensors engineered for urine analysis applications. Coord. Chem. Rev. 2024, 519, 216090. [Google Scholar] [CrossRef]
- Paul, F.; Patt, J.; Hartwig, J.F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J. Am. Chem. Soc. 1994, 116, 5969–5970. [Google Scholar] [CrossRef]
- Ai, X.; Chen, Y.; Feng, Y.; Li, F. A Stable Room-Temperature Luminescent Biphenylmethyl Radical. Angew. Chem. Int. Ed. 2018, 57, 2869–2873. [Google Scholar] [CrossRef]
- Murto, P.; Li, B.; Fu, Y.; Walker, L.E.; Brown, L.; Bond, A.D.; Zeng, W.; Chowdhury, R.; Cho, H.-H.; Yu, C.P.; et al. Steric Control of Luminescence in Phenyl-Substituted Trityl Radicals. J. Am. Chem. Soc. 2024, 146, 13133–13141. [Google Scholar] [CrossRef]
- Nasir, M.; Rauf, S.; Muhammad, N.; Hasnain Nawaz, M.; Anwar Chaudhry, A.; Hamza Malik, M.; Ahmad Shahid, S.; Hayat, A. Biomimetic nitrogen doped titania nanoparticles as a colorimetric platform for hydrogen peroxide detection. J. Colloid Interface Sci. 2017, 505, 1147–1157. [Google Scholar] [CrossRef]
- Peng, L.-J.; Zhou, H.-Y.; Zhang, C.-Y.; Yang, F.-Q. Study on the peroxidase-like activity of cobalt phosphate and its application in colorimetric detection of hydrogen peroxide. Colloids Surf. A 2022, 647, 129031. [Google Scholar] [CrossRef]
- Xi, X.; Peng, X.; Xiong, C.; Shi, D.; Zhu, J.; Wen, W.; Zhang, X.; Wang, S. Iron doped graphitic carbon nitride with peroxidase like activity for colorimetric detection of sarcosine and hydrogen peroxide. Microchim. Acta 2020, 187, 383. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, Q.; Wang, Y.; Yuan, C.; Qin, X.; Xu, Y. Colorimetric detection of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of papain. RSC Adv. 2019, 9, 16566–16570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-Y.; Peng, L.-J.; Chen, G.-Y.; Zhang, H.; Yang, F.-Q. Investigation on the Peroxidase-like Activity of Vitamin B6 and Its Applications in Colorimetric Detection of Hydrogen Peroxide and Total Antioxidant Capacity Evaluation. Molecules 2022, 27, 4262. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liao, L.; Liu, X.; Zhang, J.; Wu, F. Porphyrin-based porous organic frameworks as efficient peroxidase mimics for selective detection of hydrogen peroxide and glucose. Inorg. Chem. Commun. 2023, 155, 111011. [Google Scholar] [CrossRef]
- Doan, V.-D.; Pham, Q.-H.; Huynh, B.-A.; Nguyen, T.-L.-H.; Nguyen, A.-T.; Nguyen, T.-D. Kinetic analysis of nitrophenol reduction and colourimetric detection of hydrogen peroxide based on gold nanoparticles catalyst biosynthesised from Cynomorium songaricum. J. Environ. Chem. Eng. 2021, 9, 106590. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, B.; Yuan, Y.; Wei, L.; Wang, M.; Chen, Z. A Benzil- and BODIPY-Based Turn-On Fluorescent Probe for Detection of Hydrogen Peroxide. Molecules 2024, 29, 229. [Google Scholar] [CrossRef]
- Tang, J.; Li, F.; Liu, C.; Shu, J.; Yue, J.; Xu, B.; Liu, X.; Zhang, K.; Jiang, W. Attractive benzothiazole-based fluorescence probe for the highly efficient detection of hydrogen peroxide. Anal. Chim. Acta 2022, 1214, 339939. [Google Scholar] [CrossRef]
- Zhu, G.; Huang, D.; Liu, L.; Yia, Y.; Wu, Y.; Huang, Y. One-Step Green Preparation of N-Doped Silicon Quantum Dots for the on-off Fluorescent Determination of Hydrogen Peroxide. Anal. Lett. 2020, 53, 1834–1849. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, Y.; An, X.; Jiang, X.; Li, D.; Xu, Q.; Zhang, X.; Zhang, J.; Xu, L.; Gao, M. High dispersibility ratiometric fluorescence sensor designed by functionalized mesoporous silica nanopraticles for sensing and imaging of hydrogen peroxide. Colloids Surf. A 2024, 683, 132971. [Google Scholar] [CrossRef]
- Jin, Z.; Yim, W.; Retout, M.; Housel, E.; Zhong, W.; Zhou, J.; Strano, M.S.; Jokerst, J.V. Colorimetric sensing for translational applications: From colorants to mechanisms. Chem. Soc. Rev. 2024, 53, 7681–7741. [Google Scholar] [CrossRef]
- Tomassetti, M.; Pezzilli, R.; Prestopino, G.; Di Natale, C.; Medaglia, P.G. Novel Electrochemical Sensors Based on L-Proline Assisted LDH for H2O2 Determination in Healthy and Diabetic Urine. Sensors 2022, 22, 7159. [Google Scholar] [CrossRef]
Determination System | Analytical Method | Linear Range (µM) | LOD (µM) | References |
---|---|---|---|---|
N-TiO2 + TMB | colorimetric | 10–300 | 2.5 | [49] |
Co3(PO4)2•8H2O + TMB | colorimetric | 15–100 | 4.385 | [50] |
Fe-doped g-C3N4 + TMB | colorimetric | 2–100 | 1.8 | [51] |
Papain + TMB | colorimetric | 5–90 | 2.10 | [52] |
VB6 + TMB | colorimetric | 50–600 | 12.1 | [53] |
Fe-POF + TMB | colorimetric | 5–150 | 1.8 | [54] |
CS-Au + TMB | colorimetric | 10–400 | 2.25 | [55] |
BOD | fluorometric | 25–125 | 4.41 | [56] |
TZ-BO | fluorometric | 0–50 | 1.0 | [57] |
N-SiQDs/Ag | fluorometric | 5–200 | 1.5 | [58] |
Radical TTM-DMODPA | colorimetric | 2.5–250 | 1.275 | This work |
Samples 1 | Added (µM) | Found (µM) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|
1 | 5.0 | 4.8 | 96 | 4.2 |
2 | 10.0 | 9.8 | 98 | 3.3 |
3 | 50.0 | 51.6 | 104 | 1.6 |
4 | 100.0 | 102.5 | 103 | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Q.; Rong, X.; Wu, T.; Yan, C. Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing. Biosensors 2025, 15, 490. https://doi.org/10.3390/bios15080490
Zhong Q, Rong X, Wu T, Yan C. Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing. Biosensors. 2025; 15(8):490. https://doi.org/10.3390/bios15080490
Chicago/Turabian StyleZhong, Qingmei, Xiaomei Rong, Tingting Wu, and Chuan Yan. 2025. "Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing" Biosensors 15, no. 8: 490. https://doi.org/10.3390/bios15080490
APA StyleZhong, Q., Rong, X., Wu, T., & Yan, C. (2025). Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing. Biosensors, 15(8), 490. https://doi.org/10.3390/bios15080490