Development and Characterisation of a Microneedle Sensor for Intrapartum Fetal Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Equipment
2.3. Electrochemical Characterisation of the Microneedles
2.4. Microneedle Electrode Cleaning
2.5. Electrodeposition of Iridium Oxide
2.6. Sensitivity and Stability of the pH Microneedle Sensors
2.7. Interference Testing
2.8. Negative Control Experiment
2.9. Skin Testing
3. Results and Discussion
3.1. Characterisation of the Electrodes
3.2. Electrodeposition of the Iridium Oxide Layer
3.3. Sensitivity and Stability
3.4. Interference
3.5. Negative Control Experiment
3.6. Ex Vivo Skin Testing: Evaluating Microneedle Sensor Performance and Tissue Integrity
3.7. Comparison with the Existing Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ag/AgCl | Silver/silver chloride |
CaCl2 | Calcium chloride |
CV | Cyclic voltammetry |
CTG | Cardiotocograph |
FCA | Ferrocene carboxylic acid |
H2O2 | Hydrogen peroxide |
HCl | Hydrochloric acid |
Hepes | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
IrCl4·H2O | Iridium chloride hydrate |
IrOx | Iridium oxide |
ISF | Interstitial fluid |
KCl | Potassium chloride |
MgCl2 | Magnesium chloride |
MgSO4 | Magnesium sulfate |
Na2CO3 | Sodium carbonate |
NaCl | Sodium chloride |
NaH2PO4 | Monosodium phosphate |
NaOH | Sodium hydroxide |
OCP | Open-circuit potential |
PBS | Phosphate buffered saline |
References
- Chandraharan, E.; Wiberg, N. Fetal scalp blood sampling during labor: An appraisal of the physiological basis and scientific evidence. ACTA Obstet. Gynecol. Scand. 2014, 93, 544–547. [Google Scholar] [CrossRef]
- Alfirevic, Z.; Devane, D.; Gyte, G. Continuous cardiotocogra-phy (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst. Rev. 2006, 3, CD006066. [Google Scholar]
- Vintzileos, A.M.; Antsaklis, A.; Varvarigos, I.; Papas, C.; Sofatzis, I.; Montgomery, J.T. A randomized trial of intrapartum electronic fetal heart rate monitoring versus intermittent auscultation. Obstet. Gynecol. 1993, 81, 899–907. [Google Scholar] [PubMed]
- MacDonald, D.; Grant, A.; Sheridan-Pereira, M.; Boylan, P.; Chalmers, I. The Dublin randomized controlled trial of intrapartum fetal heart rate monitoring. Am. J. Obstet. Gynecol. 1985, 152, 524–539. [Google Scholar] [CrossRef] [PubMed]
- Kelso, I.M.; Parsons, R.J.; Lawrence, G.F.; Arora, S.S.; Edmonds, D.K.; Cooke, I.D. An assessment of continuous fetal heart rate monitoring in labor. A randomized trial. Am. J. Obstet. Gynecol. 1978, 131, 526–532. [Google Scholar] [CrossRef]
- Grant, A.; O’Brien, N.; Joy, M.T.; Hennessy, E.; MacDonald, D. Cerebral palsy among children born during the Dublin randomised trial of intrapartum monitoring. Lancet 1989, 2, 1233–1236. [Google Scholar] [CrossRef]
- Grivell, R.M.; Alfirevic, Z.; Gyte, G.M.; Devane, D. Antenatal cardiotocography for fetal assessment. Cochrane Database Syst. Rev. 2015, 12, CD007863. [Google Scholar] [CrossRef]
- East, C.E.; Begg, L.; Colditz, P.B.; Lau, R. Fetal pulse oximetry for fetal assessment in labour. Cochrane Database Syst. Rev. 2014, 10, CD004075. [Google Scholar] [CrossRef]
- Nonnenmacher, A.; Hopp, H.; Dudenhausen, J. Predictive value of pulse oximetry for the development of fetal acidosis. J. Perinat. Med. 2010, 38, 83–86. [Google Scholar] [CrossRef]
- Rhöse, S.; Heinis, A.; Vandenbussche, F.; van Drongelen, J.; van Dillen, J. Inter- and intra-observer agreement of non-reassuring cardiotocography analysis and subsequent clinical management. Acta Obstet. Gynecol. Scand. 2014, 93, 596–602. [Google Scholar] [CrossRef]
- Osterman, M.J.K.; Hamilton, B.E.; Martin, J.A.; Driscoll, A.K.; Valenzuela, C.P. Births: Final Data for 2021. Natl. Vital Stat. Rep. 2023, 72, 1–53. [Google Scholar] [PubMed]
- Black, C.; Kaye, J.A.; Jick, H. Cesarean Delivery in the United Kingdom: Time Trends in the General Practice Research Database. Obstet. Gynecol. 2005, 106, 151–155. [Google Scholar] [CrossRef] [PubMed]
- NMPA Project Team. National Maternity and Perinatal Audit: Clinical Report 2022. Based on Births in NHS Maternity Services in England and Wales Between 1 April 2018 and 31 March 2019; RCOG: London, UK, 2022; Available online: https://maternityaudit.org.uk/FilesUploaded/Ref%20336%20NMPA%20Clinical%20Report_2022.pdf (accessed on 8 August 2024).
- National Institute for Health and Care Excellence. Fetal Monitoring in Labour (NICE Guideline NG229). 2022. Available online: https://www.nice.org.uk/guidance/ng229/resources/fetal-monitoring-in-labour-pdf-66143844065221 (accessed on 8 August 2024).
- Tuffnell, D.; Haw, W.L.; Wilkinson, K. How long does a fetal scalp blood sample take? BJOG Int. J. Obstet. Gynaecol. 2006, 113, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Marunaka, Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH. Int. J. Mol. Sci. 2018, 19, 3244. [Google Scholar] [CrossRef]
- Torres-Terán, I.; Venczel, M.; Klein, S. Prediction of subcutaneous drug absorption-do we have reliable data to design a simulated interstitial fluid? Int. J. Pharm. 2021, 610, 121257. [Google Scholar] [CrossRef]
- García-Guzmán, J.J.; Pérez-Ràfols, C.; Cuartero, M.; Crespo, G.A. Toward In Vivo Transdermal pH Sensing with a Validated Microneedle Membrane Electrode. ACS Sens. 2021, 6, 1129–1137. [Google Scholar] [CrossRef]
- Bollella, P.; Sharma, S.; Cass, A.E.G.; Antiochia, R. Minimally-invasive microneedle-based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid. Electroanalysis 2019, 31, 374–382. [Google Scholar] [CrossRef]
- Madden, J. Biosensing in dermal interstitial fluid using microneedle based electrochemical device. Sens. Bio-Sens. Res. 2020, 29, 100348. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.; Tunney, M.M.; Morrow, D.I.; McCarron, P.A.; O’Mahony, C.; Woolfson, A.D. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm. Res. 2009, 26, 2513–2522. [Google Scholar] [CrossRef]
- Kaushik, S.; Hord, A.H.; Denson, D.D.; McAllister, D.V.; Smitra, S.; Allen, M.G.; Prausnitz, M.R. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 2001, 92, 502–504. [Google Scholar] [CrossRef]
- Lee, W.; Jeong, S.H.; Lim, Y.W.; Lee, H.; Kang, J.; Lee, H.; Lee, I.; Han, H.S.; Kobayashi, S.; Tanaka, M.; et al. Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Sci. Adv. 2021, 7, eabi6290. [Google Scholar] [CrossRef]
- Mani, G.K.; Miyakoda, K.; Saito, A.; Yasoda, Y.; Kajiwara, K.; Kimura, M.; Tsuchiya, K. Microneedle pH Sensor: Direct, Label-Free, Real-Time Detection of Cerebrospinal Fluid and Bladder pH. ACS Appl. Mater. Interfaces 2017, 9, 21651–21659. [Google Scholar] [CrossRef]
- Zuliani, C.; Ng, F.S.; Alenda, A.; Eftekhar, A.; Peters, N.S.; Toumazou, C. An array of individually addressable micro-needles for mapping pH distributions. Analyst 2016, 141, 4659–4666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ding, F.; Tang, L.; Li, T.; Li, Y.; Zhang, Y.; Gong, H.; Li, Y.; Zhang, G. Monitoring of pH changes in a live rat brain with MoS2/PAN functionalized microneedles. Analyst 2018, 143, 4469–4475. [Google Scholar] [CrossRef] [PubMed]
- Girault, A.; Le Ray, C.; Garabedian, C.; Goffinet, F.; Tannier, X. Re-evaluating fetal scalp pH thresholds: An examination of fetal pH variations during labor. Acta Obstet. Gynecol. Scand. 2024, 103, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Al Wattar, B.H.; Lakhiani, A.; Sacco, A.; Siddharth, A.; Bain, A.; Calvia, A.; Kamran, A.; Tiong, B.; Warwick, B.; MacMahon, C.; et al. Evaluating the value of intrapartum fetal scalp blood sampling to predict adverse neonatal outcomes: A UK multicentre observational study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 240, 62–67. [Google Scholar] [CrossRef]
- Yamanaka, K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Jpn. J. Appl. Phys. 1989, 28, 632–637. [Google Scholar] [CrossRef]
- O’Mahony, C.; Grygoryev, K.; Ciarlone, A.; Giannoni, G.; Kenthao, A.; Galvin, P. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes. J. Micromech. Microeng. 2016, 26, 084005. [Google Scholar] [CrossRef]
- Bocchino, A.; Marquez-Grana, C.; Singh, O.P.; Melnik, E.; Kurzhals, S.; Mutinati, G.C.; Coulman, S.; Martin, C.; Ng, K.W.; Massufero Vergilio, M.; et al. A multifunctional platform for the production and customization of polymer-based microneedle devices. Sens. Actuators A Phys. 2025, 388, 116491. [Google Scholar] [CrossRef]
- Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016, 104, 1–32. [Google Scholar] [CrossRef]
- Cowley, A.; Woodward, B. A healthy future: Platinum in medical applications platinum group metals enhance the quality of life of the global population. Platin. Met. Rev. 2011, 55, 98–107. [Google Scholar] [CrossRef]
- Bocchino, A.; Teixeira, S.; Iadanza, S.; Melnik, E.; Kurzhals, S.; Mutinati, G.C.; O’Mahony, C. Development and Characterization of Passivation Methods for Microneedle- based Biosensors. In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC 2022), Glasgow, UK, 11–15 July 2022; pp. 1275–1278. [Google Scholar]
- Steegstra, P.; Ahlberg, E. Involvement of nanoparticles in the electrodeposition of hydrous iridium oxide films. Electrochim. Acta 2012, 68, 206–213. [Google Scholar] [CrossRef]
- Steegstra, P.; Ahlberg, E. Influence of oxidation state on the pH dependence of hydrous iridium oxide films. Electrochim. Acta 2012, 76, 26–33. [Google Scholar] [CrossRef]
- Hussain, N.M.; Amin, B.; O’Halloran, M.; Elahi, A. Development and Characterization of Interstitial-Fluid-Mimicking Solutions for Pre-Clinical Assessment of Hypoxia. Diagnostics 2023, 13, 3125. [Google Scholar] [CrossRef] [PubMed]
- Marin-Grez, M.; Vallés, P. Effect of metabolic alkalosis and metabolic acidosis on urinary kallikrein excretion of anaesthetized rats: Evidence for a role of blood pH as regulator of renal kallikrein secretion. Pflug. Arch. 1996, 432, 202–206. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, K.; Zheng, Y.; Su, J.; Zhao, Y.; Ryan, D.; Wu, H. Fabrication of a microfluidic Ag/AgCl reference electrode and its application for portable and disposable electrochemical microchips. Electrophoresis 2010, 31, 3083–3089. [Google Scholar] [CrossRef]
- Polk, B.; Stelzenmuller, A.; Mijares, G.; MacCrehan, W.; Gaitan, M. Ag/AgCl Microelectrodes with Improved Stability for Microfluidics. Sens. Actuators B Chem. 2006, 114, 239–247. [Google Scholar] [CrossRef]
- Inzelt, G. Handbook of Reference Electrodes; Springer: Berlin, Germany, 2013; p. 5. [Google Scholar]
- Dervisevic, M.; Dervisevic, E.; Esser, L.; Easton, C.D.; Cadarso, V.J.; Voelcker, N.H. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens. Bioelectron. 2023, 222, 114955. [Google Scholar] [CrossRef]
- Kashaninejad, N.; Munaz, A.; Moghadas, H.; Yadav, S.; Umer, M.; Nguyen, N. Microneedle Arrays for Sampling and Sensing Skin Interstitial Fluid. Chemosensors 2021, 9, 83. [Google Scholar] [CrossRef]
- Xi, Y.; Guo, Z.; Wang, L.; Xu, Q.; Ruan, T.; Liu, J. Fabrication and Characterization of Iridium Oxide pH Microelectrodes Based on Sputter Deposition Method. Sensors 2021, 21, 4996. [Google Scholar] [CrossRef]
- Hong, S.; Kim, M.; Weon, Y.; Park, D.; Park, Y.; Kim, Y.; Lee, K. Iridium oxide nano-needles using electrodeposition for highly stable and sensitive pH sensor. J. Electroanal. Chem. 2025, 979, 118921. [Google Scholar] [CrossRef]
- Huang, W.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J. A flexible pH sensor based on the iridium oxide sensing film. Sens. Actuators A Phys. 2011, 169, 1–11. [Google Scholar] [CrossRef]
- Yang, J.; Kwak, T.; Zhang, X.; McClain, R.; Chang, W.; Gunasekaran, S. Digital pH test strips for in-field pH monitoring using iridium oxide-reduced graphene oxide hybrid thin films. ACS Sens. 2016, 1, 1235–1243. [Google Scholar] [CrossRef]
- Kim, T.; Yang, S. Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing. Sens. Actuators B Chem. 2014, 196, 31–38. [Google Scholar] [CrossRef]
- Choe, S.; Lee, B.; Cho, M.; Kim, H.; Henkensmeier, D.; Yoo, S.; Kim, J.; Lee, S.; Park, H.; Jang, J. Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers. Appl. Catal. B Environ. 2018, 226, 289–294. [Google Scholar] [CrossRef]
- Savinell, R.F.; Zeller, R.L.; Adams, J.A. Electrochemically Active Surface Area: Voltammetric Charge Correlations for Ruthenium and Iridium Dioxide Electrodes. J. Electrochem. Soc. 1990, 137, 489. [Google Scholar] [CrossRef]
- Rahman, F.; Ryan, A.; Bocchino, A.; Galvin, P.; Teixeira, S.R. Microneedle-based electrochemical sensors for real-time pH and sodium monitoring in physiological environments. Sens. Bio-Sens. Res. 2025, 48, 100777. [Google Scholar] [CrossRef]
- Yang, H.; Kang, S.K.; Choi, C.A.; Kim, H.; Shin, D.; Kim, Y.S.; Kim, Y.T. An iridium oxide reference electrode for use in microfabricated biosensors and biochips. Lab Chip 2004, 4, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Sun, X.; He, S. Iridium Oxide Enabled Sensors Applications. Catalysts 2021, 11, 1164. [Google Scholar] [CrossRef]
- Chen, Y.; Chung, T.; Wu, P.; Chen, P. A cost-effective fabrication of iridium oxide films as biocompatible electrostimulation electrodes for neural interface applications. J. Alloys Compd. 2017, 692, 339–345. [Google Scholar] [CrossRef]
- Torriero, A.A. Understanding the Differences between a Quasi-Reference Electrode and a Reference Electrode. Med. Anal. Chem. Int. J. 2019, 3, 000144. [Google Scholar] [CrossRef]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Novotný, F.; Webster, R.D.; Pumera, M. 3D-printed Ag/AgCl pseudo-reference electrodes. Electrochem. Commun. 2019, 103, 104–108. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Tarasov, A.V.; Vidrevich, M.B. Silver Chloride/Ferricyanide-Based Quasi-Reference Electrode for Potentiometric Sensing Applications. Chemosensors 2020, 8, 15. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E.; Bühlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Guo, Y.; Gu, X.; Liu, X.; Zhang, J.; Song, C.; Wang, L. Flexible plasmonic microneedle array-based SERS sensor for pH monitoring of skin interstitial fluid. Microchem. J. 2024, 206, 111546. [Google Scholar] [CrossRef]
- Michel, M.; L’Heureux, N.; Auger, F.A.; Germain, L. From newborn to adult: Phenotypic and functional properties of skin equivalent and human skin as a function of donor age. J. Cell. Physiol. 1997, 171, 179–189. [Google Scholar] [CrossRef]
- Fairley, J.A.; Rasmussen, J.E. Comparison of stratum corneum thickness in children and adults. J. Am. Acad. Dermatol. 1983, 8, 652–654. [Google Scholar] [CrossRef]
- Holbrook, K.A. A histologic comparison of infant and adult skin. Perspect. Pediatr. Pathol. 1982, 8, 23–42. [Google Scholar]
- van der Maaden, K.; Luttge, R.; Vos, P.J.; Bouwstra, J.; Kersten, G.; Ploemen, I. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 2015, 5, 397–406. [Google Scholar] [CrossRef]
- Kenny, L.C.; Myers, J.E. (Eds.) Obstetrics by Ten Teachers, 20th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Medical, C. The Amnioscope Range. Available online: https://www.kebomed.no/files/454/cruinn_medical_amnioscope_and_fetal_scalp_kit_brochure_1.pdf (accessed on 5 June 2025).
- BridgeMaster Medical Limited. Electronically Illuminated Amnioscope (ELA) and OmniScope. Available online: https://www.bmmedical.co.uk/datasheets/bridgemaster-ela-datasheet.pdf (accessed on 25 April 2025).
- Donnelly, R.F.; Mooney, K.; Caffarel-Salvador, E.; Torrisi, B.M.; Eltayib, E.; McElnay, J.C. Microneedle-mediated minimally invasive patient monitoring. Ther. Drug Monit. 2014, 36, 10–17. [Google Scholar] [CrossRef]
- Whiteley, M.S.; Davey, S.E.; Placzek, G.M. The access and invasiveness-based classification of medical procedures to clarify non-invasive from different forms of minimally invasive and open surgery. J. Minimal Access Surg. 2024, 20, 301–310. [Google Scholar] [CrossRef]
- Hegarty, C.; McConville, A.; McGlynn, R.J.; Mariotti, D.; Davis, J. Design of composite microneedle sensor systems for the measurement of transdermal pH. Mater. Chem. Phys. 2019, 227, 340–346. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Pina, C.D.; Falletta, E. Advances in Polyaniline for Biomedical Applications. Curr. Med. Chem. 2022, 29, 329–357. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Lee, J. Iridium oxide fabrication and application: A review. J. Energy Chem. 2020, 46, 152–172. [Google Scholar] [CrossRef]
Selectivity Value (V) | Selectivity Coefficient Difference (V) | p-Value | |
---|---|---|---|
pH 7.0 | −0.03606 | Target ion | |
NaCl | −0.03883 | 0.00277 | 0.543 |
KCl | −0.03444 | 0.00162 | 0.842 |
MgCl2 | −0.03339 | 0.00267 | 0.889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, J.M.; Thatte, C.V.; Sebastian, R.; O’Mahony, C.; Greene, R.A.; Higgins, J.R.; Galvin, P.; McCarthy, F.P.; Teixeira, S.R. Development and Characterisation of a Microneedle Sensor for Intrapartum Fetal Monitoring. Biosensors 2025, 15, 517. https://doi.org/10.3390/bios15080517
Mitchell JM, Thatte CV, Sebastian R, O’Mahony C, Greene RA, Higgins JR, Galvin P, McCarthy FP, Teixeira SR. Development and Characterisation of a Microneedle Sensor for Intrapartum Fetal Monitoring. Biosensors. 2025; 15(8):517. https://doi.org/10.3390/bios15080517
Chicago/Turabian StyleMitchell, J. M., C. V. Thatte, R. Sebastian, C. O’Mahony, R. A. Greene, J. R. Higgins, P. Galvin, F. P. McCarthy, and S. R. Teixeira. 2025. "Development and Characterisation of a Microneedle Sensor for Intrapartum Fetal Monitoring" Biosensors 15, no. 8: 517. https://doi.org/10.3390/bios15080517
APA StyleMitchell, J. M., Thatte, C. V., Sebastian, R., O’Mahony, C., Greene, R. A., Higgins, J. R., Galvin, P., McCarthy, F. P., & Teixeira, S. R. (2025). Development and Characterisation of a Microneedle Sensor for Intrapartum Fetal Monitoring. Biosensors, 15(8), 517. https://doi.org/10.3390/bios15080517