Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (593)

Search Parameters:
Keywords = microneedle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 902 KB  
Article
Comparative Study of Azelaic Acid Peeling vs. Tranexamic Acid Microneedling for the Treatment of Melasma
by Guilherme dos Anjos Camargo, Daniella Woinarovicz Menegheti, Leticia Simeoni Avais, Evelyn Assis de Andrade, Patrícia Mathias Döll Boscardin and Giovani Marino Favero
Dermato 2025, 5(3), 16; https://doi.org/10.3390/dermato5030016 - 4 Sep 2025
Abstract
Melasma is an acquired hyperpigmentation that is more common in women and mainly affects the face. It can significantly reduce quality of life due to its chronic nature and resistance to treatment. Objectives: This study aimed to compare the clinical efficacy of azelaic [...] Read more.
Melasma is an acquired hyperpigmentation that is more common in women and mainly affects the face. It can significantly reduce quality of life due to its chronic nature and resistance to treatment. Objectives: This study aimed to compare the clinical efficacy of azelaic acid peeling and combined tranexamic acid microneedling in patients with melasma, evaluating the impact of these therapies on skin depigmentation. Methods: This was a prospective clinical trial with a split-face design, using a convenience sample. Patients were recruited and divided into two groups for comparative treatment. Microneedling with 4 mg/mL tranexamic acid was applied to the right hemiface and 30% azelaic acid peeling to the left hemiface. The protocol included five sessions with a 15-day interval. Photographic records were taken before treatment, in the fifth session, and 15 days after the last session. The Melasma Area and Severity Index (MASI) and non-parametric tests were used to analyze the results. Results: The study included 10 patients, of whom 9 completed the treatment. The average age was 42 years. The most common skin phototype was type III (50%) and the predominant locations were the central facial area, forehead, and cheeks (55.6%). The photographic evaluation and MASI showed a significant improvement on both sides of the face, with the final values better than the initial ones. It was possible to observe that the azelaic acid peeling showed a significant whitening after the fourth session when compared to the other method. Conclusions: The clinical study of hemifaces concluded that both the azelaic acid peeling and microneedling with tranexamic acid are effective in the treatment of melasma, with the azelaic acid peeling showing results after the fourth session. Further studies with larger, randomized samples are recommended. Full article
Show Figures

Graphical abstract

17 pages, 2747 KB  
Article
Flexible and Stretchable Microneedle Electrode Arrays by Soft Lithography for Continuous Monitoring of Glucose
by Yong-Ho Choi, Honglin Piao, Jia Lee, Jaehyun Kim, Heon-Jin Choi and Dahl-Young Khang
Biosensors 2025, 15(9), 576; https://doi.org/10.3390/bios15090576 - 2 Sep 2025
Abstract
Continuous monitoring of glucose (CGM) level is of utmost importance to diabetic patients, especially with no or minimal pain. Microneedle arrays with desired electrode patterns have been fabricated by soft lithographic molding, and the patterned electrodes were formed via shadow evaporation through a [...] Read more.
Continuous monitoring of glucose (CGM) level is of utmost importance to diabetic patients, especially with no or minimal pain. Microneedle arrays with desired electrode patterns have been fabricated by soft lithographic molding, and the patterned electrodes were formed via shadow evaporation through a shadow mask that was made from a modified molding technique. With immobilization of glucose oxidase (GOx), the microneedle electrode arrays (MEAs) have been successfully employed for the in vitro CGM using impedance spectroscopy. The fabricated MEAs could monitor the varying glucose level continuously for up to ~10 days. Similar processes have been applied for the fabrication of stretchable MEAs, which can conform to complex curvilinear surfaces. The simple and low-cost fabrication of MEAs, either in flexible or stretchable forms, may find various applications in wearable health monitoring techniques. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

19 pages, 5988 KB  
Article
Design of Hydrogel Microneedle Arrays for Physiology Monitoring of Farm Animals
by Laurabelle Gautier, Sandra Wiart-Letort, Alexandra Massé, Caroline Xavier, Lorraine Novais-Gameiro, Antoine Hoang, Marie Escudé, Ilaria Sorrentino, Muriel Bonnet, Florence Gondret, Claire Verplanck and Isabelle Texier
Micromachines 2025, 16(9), 1015; https://doi.org/10.3390/mi16091015 - 31 Aug 2025
Viewed by 166
Abstract
For monitoring animal adaptation when facing environmental challenges, and more specifically when addressing the impacts of global warming—particularly responses to heat stress and short-term fluctuations in osmotic regulations in the different organs influencing animal physiology—there is an increasing demand for digital tools to [...] Read more.
For monitoring animal adaptation when facing environmental challenges, and more specifically when addressing the impacts of global warming—particularly responses to heat stress and short-term fluctuations in osmotic regulations in the different organs influencing animal physiology—there is an increasing demand for digital tools to understand and monitor a range of biomarkers. Microneedle arrays (MNAs) have recently emerged as promising devices minimally invasively penetrating human skin to access dermal interstitial fluid (ISF) to monitor deviations in physiology and consequences on health. The ISF is a blood filtrate where the concentrations of ions, low molecular weight metabolites (<70 kDa), hormones, and drugs, often closely correlate with those in blood. However, anatomical skin differences between human and farm animals, especially large animals, as well as divergent tolerances of such devices among species with behavior specificities, motivate new MNA designs. We addressed technological challenges to design higher microneedles for farm animal (pigs and cattle) measurements. We designed microneedle arrays composed of 37 microneedles, each 2.8 mm in height, using dextran-methacrylate, a photo-crosslinked biocompatible biopolymer-based hydrogel. The arrays were characterized geometrically and mechanically. Their abilities to perforate pig and cow skin were demonstrated through histological analysis. The MNAs successfully absorbed approximately 10 µL of fluid within 3 h of application. Full article
Show Figures

Figure 1

21 pages, 2978 KB  
Article
Photopolymerization 3D-Printed Dual-Modal Flexible Sensor for Glucose and pH Monitoring
by Shao Lin, Yu Li, Zhenyao Yang, Qiuzheng Li, Bohua Pang, Yin Feng, Jianglin Fu, Guangmeng Ma and Yu Long
Sensors 2025, 25(17), 5358; https://doi.org/10.3390/s25175358 - 29 Aug 2025
Viewed by 322
Abstract
Currently, flexible sensors based on electrochemical principles are predominantly limited to single-parameter detection, making it challenging to meet the demand for synchronous monitoring of multiple analytes in complex physiological environments. This study presents a 3D-printed flexible sensor for synchronous glucose/pH detection. Glucose was [...] Read more.
Currently, flexible sensors based on electrochemical principles are predominantly limited to single-parameter detection, making it challenging to meet the demand for synchronous monitoring of multiple analytes in complex physiological environments. This study presents a 3D-printed flexible sensor for synchronous glucose/pH detection. Glucose was quantified via H2O2 oxidation current (GOD-catalyzed reaction), while pH was measured through polyaniline (PANI) resistance changes. The ionogel-based microneedle electrode ensures mechanical robustness. At 0.2 V, optimal signal decoupling was achieved: glucose oxidation current dominates, while PANI’s polarization effect is minimized. Neutral pH minimally affected glucose oxidase (GOD) activity, and low glucose concentrations induced negligible pH interference, ensuring orthogonality. In artificial interstitial fluid, the sensor showed glucose: linear response (0.5–2.5 g·L−1, 0.288 μA·mM−1·cm−2); pH: piecewise-linear sensitivity (0.155 Ω/pH·cm2 for pH > 7; 0.135 Ω/pH·cm2 for pH < 7). The design enables real-time multiparameter monitoring with high selectivity, addressing current limitations in flexible electrochemical sensors. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

19 pages, 4580 KB  
Article
Rapidly Dissolving Microneedles Incorporating Lidocaine Hydrochloride: A PVP/PVA-Based Approach for Local Anesthesia
by Su Young Jin, Eugene Jae-Jin Park, Sae Min Kwon, Hyoung-Seok Jung and Dong Wuk Kim
Pharmaceutics 2025, 17(9), 1100; https://doi.org/10.3390/pharmaceutics17091100 - 23 Aug 2025
Viewed by 483
Abstract
Background/Objectives: Lidocaine is a widely used local anesthetic, but injections and topical creams are often painful or slow in onset. This study aimed to develop dissolving microneedles incorporating lidocaine hydrochloride for rapid and convenient local anesthesia. Methods: Six formulations were prepared with polyvinylpyrrolidone [...] Read more.
Background/Objectives: Lidocaine is a widely used local anesthetic, but injections and topical creams are often painful or slow in onset. This study aimed to develop dissolving microneedles incorporating lidocaine hydrochloride for rapid and convenient local anesthesia. Methods: Six formulations were prepared with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) and evaluated for mechanical strength, skin insertion, drug release, and transdermal permeability. Results: Sharp pyramidal microneedles were successfully fabricated, with PVP–PVA mixtures producing stronger needles than single polymers. The optimized F5 formulation showed high strength (>32 N), efficient skin insertion (four parafilm layers), and rapid release (>80% within 15 min). In ex vivo studies, F5 delivered >600 µg/mL lidocaine in 15 min, over three times the therapeutic level and much faster than Emla cream (5%). Conclusions: PVP–PVA microneedles represent a promising platform for painless, rapid local anesthesia, combining the benefits of injections and topical creams while minimizing their drawbacks. Full article
Show Figures

Graphical abstract

26 pages, 925 KB  
Review
Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats
by Iljin Kim and Jang-Hyuk Yun
Pharmaceutics 2025, 17(9), 1098; https://doi.org/10.3390/pharmaceutics17091098 - 23 Aug 2025
Viewed by 619
Abstract
Background/Objectives: Diabetes mellitus (DM) is an increasingly prevalent endocrine disorder affecting humans and companion animals. Type 1 DM (T1DM) and type 2 DM (T2DM) are well characterized in humans, and canine DM most often resembles T1DM, marked by insulin dependence and β-cell destruction. [...] Read more.
Background/Objectives: Diabetes mellitus (DM) is an increasingly prevalent endocrine disorder affecting humans and companion animals. Type 1 DM (T1DM) and type 2 DM (T2DM) are well characterized in humans, and canine DM most often resembles T1DM, marked by insulin dependence and β-cell destruction. Conversely, feline DM shares key features with human T2DM, including insulin resistance, obesity-related inflammation, and islet amyloidosis. This review provides a comprehensive comparative analysis of antidiabetic therapies in humans, dogs, and cats, focusing on three core areas: disease pathophysiology, pharmacological and delivery strategies, and translational implications. In human medicine, a wide array of insulin analogs, oral hypoglycemic agents, and incretin-based therapies, including glucagon-like peptide-1 receptor agonists (liraglutide) and sodium-glucose cotransporter-2 inhibitors (empagliflozin), are available. Veterinary treatments remain limited to species-adapted insulin formulations and off-label use of human drugs. Interspecies differences in gastrointestinal physiology, drug metabolism, and behavioral compliance influence therapeutic efficacy and pharmacokinetics. Recent innovations, such as microneedle patches for insulin delivery and continuous glucose monitoring systems, show promise in humans and animals. Companion animals with naturally occurring diabetes serve as valuable models for preclinical testing of novel delivery platforms and long-acting formulations under real-world settings. While these technologies show potential, challenges remain in regulatory approval and behavioral adaptation in animals. Conclusions: Future research should prioritize pharmacokinetic bridging studies, veterinary-specific formulation trials, and device validation in animal models. By highlighting shared and species-specific characteristics of DM pathogenesis and treatment, this review advocates a One Health approach toward optimized antidiabetic therapies that benefit human and veterinary medicine. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

15 pages, 1141 KB  
Article
Enhanced Transdermal Delivery of Lidocaine Hydrochloride via Dissolvable Microneedles (LH-DMNs) for Rapid Local Anesthesia
by Shengtai Bian, Jie Chen, Ran Chen, Shilun Feng and Zizhen Ming
Biosensors 2025, 15(8), 552; https://doi.org/10.3390/bios15080552 - 21 Aug 2025
Viewed by 480
Abstract
Microneedles represent an emerging transdermal drug delivery platform offering painless, minimally invasive penetration of the stratum corneum. This study addresses limitations of conventional lidocaine hydrochloride formulations, such as slow onset and poor patient compliance, by developing lidocaine hydrochloride-loaded dissolvable microneedles (LH-DMNs) for rapid [...] Read more.
Microneedles represent an emerging transdermal drug delivery platform offering painless, minimally invasive penetration of the stratum corneum. This study addresses limitations of conventional lidocaine hydrochloride formulations, such as slow onset and poor patient compliance, by developing lidocaine hydrochloride-loaded dissolvable microneedles (LH-DMNs) for rapid local anesthesia. LH-DMNs were fabricated via centrifugal casting using polyvinyl alcohol (PVA) as the matrix material in polydimethylsiloxane (PDMS) negative molds, which imparts high mechanical strength to the microneedles. Biocompatibility assessments showed negligible skin irritation, resolving within 3 min. And drug-loading capacity reached 24.0 ± 2.84 mg per patch. Pharmacodynamic evaluation via mouse hot plate tests demonstrated significant analgesia, increasing paw withdrawal latency to 36.11 ± 1.62 s at 5 min post-application (p < 0.01). The results demonstrated that the LH-DMNs significantly elevated the pain threshold in mice within 5 min, surpassing the efficacy of conventional anesthetic gels and providing a rapid and effective solution for pain relief. These findings validate the system’s rapid drug release and efficacy, positioning dissolvable microneedles as a clinically viable alternative for enhanced transdermal anesthesia. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and MEMS in Biosensing Applications)
Show Figures

Graphical abstract

15 pages, 302 KB  
Review
Revolutionizing Veterinary Vaccines: Overcoming Cold-Chain Barriers Through Thermostable and Novel Delivery Technologies
by Rabin Raut, Roshik Shrestha, Ayush Adhikari, Arjmand Fatima and Muhammad Naeem
Appl. Microbiol. 2025, 5(3), 83; https://doi.org/10.3390/applmicrobiol5030083 - 19 Aug 2025
Viewed by 628
Abstract
Veterinary vaccines are essential tools for controlling infectious and zoonotic diseases, safeguarding animal welfare, and ensuring global food security. However, conventional vaccines are hindered by cold-chain dependence, thermal instability, and logistical challenges, particularly in low- and middle-income countries (LMICs). This review explores next-generation [...] Read more.
Veterinary vaccines are essential tools for controlling infectious and zoonotic diseases, safeguarding animal welfare, and ensuring global food security. However, conventional vaccines are hindered by cold-chain dependence, thermal instability, and logistical challenges, particularly in low- and middle-income countries (LMICs). This review explores next-generation veterinary vaccines, emphasizing innovations in thermostability and delivery platforms to overcome these barriers. Recent advances in vaccine drying technologies, such as lyophilization and spray drying, have improved antigen stability and storage resilience, facilitating effective immunization in remote settings. Additionally, novel delivery systems, including nanoparticle-based formulations, microneedles, and mucosal routes (intranasal, aerosol, and oral), enhance vaccine efficacy, targeting immune responses at mucosal surfaces while minimizing invasiveness and cost. These approaches reduce reliance on cold-chain logistics, improve vaccine uptake, and enable large-scale deployment in field conditions. The integration of thermostable formulations with innovative delivery technologies offers scalable solutions to immunize livestock and aquatic species against major pathogens. Moreover, these strategies contribute significantly to One Health objectives by mitigating zoonotic spillovers, reducing antibiotic reliance, and supporting sustainable development through improved animal productivity. The emerging role of artificial intelligence (AI) in vaccine design—facilitating epitope prediction, formulation optimization, and rapid diagnostics—further accelerates vaccine innovation, particularly in resource-constrained environments. Collectively, the convergence of thermostability, advanced delivery systems, and AI-driven tools represents a transformative shift in veterinary vaccinology, with profound implications for public health, food systems, and global pandemic preparedness. Full article
15 pages, 5132 KB  
Article
Characterisation of a Biodegradable Electrode Substrate Based on Psyllium Husk–Carbon Nanoparticle Composites
by Cliodhna McCann, Victoria Gilpin, Regan McMath, Chris I. R. Gill, Karl McCreadie, James Uhomoibhi, Pagona Papakonstantinou and James Davis
C 2025, 11(3), 64; https://doi.org/10.3390/c11030064 - 17 Aug 2025
Viewed by 438
Abstract
Unrefined psyllium husk derived from Plantago ovata constitutes a complex mixture of water-soluble and insoluble polymeric chains that form an interpenetrating network capable of entrapping carbon nanoparticles. While the resulting composite was found to swell in aqueous electrolyte, it exhibited hydrogel-like properties where [...] Read more.
Unrefined psyllium husk derived from Plantago ovata constitutes a complex mixture of water-soluble and insoluble polymeric chains that form an interpenetrating network capable of entrapping carbon nanoparticles. While the resulting composite was found to swell in aqueous electrolyte, it exhibited hydrogel-like properties where the electrochemical activity was retained and found to be stable upon repetitive voltammetric cycling. Planar film systems were characterized by electron microscopy, Raman spectroscopy, tensile testing, gravimetric analysis, contact angle and cyclic voltammetry. A key advantage of the composite lies in its ability to be cast in 3D geometric forms such as pyramidal microneedle arrays (700 μm high × 200 μm base × 500 μm pitch) that could serve as viable electrode sensors. In contrast to conventional composite electrode materials that rely on non-aqueous solvents, the psyllium mixture is processed entirely from an aqueous solution. This, along with its plant-based origins and simple processing requirements, provides a versatile matrix for the design of biodegradable electrode structures that can be manufactured from more sustainable sources. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

24 pages, 4927 KB  
Review
Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications
by Kazim Haider and Colin Dalton
Micromachines 2025, 16(8), 929; https://doi.org/10.3390/mi16080929 - 13 Aug 2025
Viewed by 965
Abstract
Microneedles have emerged as a versatile technology for biosensing across biomedical domains and are increasingly being explored for other applications like agriculture. This review highlights recent advancements in the development of microneedle-based biosensors in novel areas. Biomedical applications include continuous glucose monitoring, multiplexed [...] Read more.
Microneedles have emerged as a versatile technology for biosensing across biomedical domains and are increasingly being explored for other applications like agriculture. This review highlights recent advancements in the development of microneedle-based biosensors in novel areas. Biomedical applications include continuous glucose monitoring, multiplexed biomarker detection beyond glucose, and numerous recent works presenting fully integrated systems comprising microneedle arrays alongside miniaturized wearable electronics. Agricultural applications largely focus on the detection of plant growth markers, hormones, and nutrient levels. Despite significant progress, challenges remain in overcoming biofouling and electrode degradation, optimizing electrode longevity for long-term (weeks to months) in situ monitoring, and creating scalable sensor fabrication processes. Additionally, there is a need for standardized mechanical and electrical testing protocols, and guidelines specifying critical performance metrics that should be reported to facilitate accurate literature comparisons. The review concludes by outlining key opportunities for future research to address these persisting challenges. Full article
(This article belongs to the Special Issue Current Trends in Microneedles: Design, Fabrication and Applications)
Show Figures

Figure 1

15 pages, 2370 KB  
Article
Microneedle–Tissue Interaction Across Varying Biological and Mechanical Conditions
by Elham Lori Zoudani, Prabuddha De Saram, Kyle Engel, Nam-Trung Nguyen and Navid Kashaninejad
Biosensors 2025, 15(8), 521; https://doi.org/10.3390/bios15080521 - 9 Aug 2025
Viewed by 548
Abstract
Microneedle (MN)–tissue interactions play a critical role in the efficiency and reliability of transdermal drug delivery and biosensing, yet their mechanistic understanding remains limited. This study systematically investigates the effects of biological (tissue type and temperature) and mechanical (needle design, material, and insertion [...] Read more.
Microneedle (MN)–tissue interactions play a critical role in the efficiency and reliability of transdermal drug delivery and biosensing, yet their mechanistic understanding remains limited. This study systematically investigates the effects of biological (tissue type and temperature) and mechanical (needle design, material, and insertion velocity) parameters on the performance of microneedle insertion and extraction. Experiments were performed on porcine skin, chicken breast, and agarose gel to represent varying tissue properties. Additionally, the effect of tissue temperature on replicating physiological conditions, such as hypo- and hyperthermia, was evaluated using porcine skin as the sample. A novel conical MN design integrated with surface suction-cup structures was developed to improve tissue adhesion. Mechanical responses were analyzed through force–displacement measurements, evaluating insertion force, extraction force, and relaxation time. Results show that elevated tissue temperature reduces insertion and extraction forces while shortening relaxation times, indicating increased tissue compliance. The suction-cup MNs significantly enhanced needle–tissue adhesion, with the most pronounced effect observed in chicken breast tissue, achieving more than a four-fold increase in extraction force compared to conventional conical needles. These findings provide valuable insights into optimizing the design of MNs for advanced biomedical applications. Full article
(This article belongs to the Special Issue Nano/Micro Biosensors for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

19 pages, 3018 KB  
Article
Development and Characterisation of a Microneedle Sensor for Intrapartum Fetal Monitoring
by J. M. Mitchell, C. V. Thatte, R. Sebastian, C. O’Mahony, R. A. Greene, J. R. Higgins, P. Galvin, F. P. McCarthy and S. R. Teixeira
Biosensors 2025, 15(8), 517; https://doi.org/10.3390/bios15080517 - 8 Aug 2025
Viewed by 408
Abstract
This study presents the in vitro and preliminary ex vivo development of a novel microneedle-based pH sensor for continuous intrapartum fetal monitoring. The objective was to evaluate the feasibility of using microneedle sensors to monitor fetal pH during labour and to develop a [...] Read more.
This study presents the in vitro and preliminary ex vivo development of a novel microneedle-based pH sensor for continuous intrapartum fetal monitoring. The objective was to evaluate the feasibility of using microneedle sensors to monitor fetal pH during labour and to develop a proof-of-principle microneedle pH sensor that meets clinical requirements such as high sensitivity to small pH changes (0.05 units) within a relevant range (6.50–7.45), minimal tissue disruption, and a compact design suitable for transcervical placement on the fetal scalp (<40 mm diameter). Platinum microneedles were passivated with ArCare medical adhesive and coated with iridium oxide via electrodeposition. Sensitivity was tested in phosphate buffered saline (PBS) and artificial interstitial fluid (ISF), using both external Ag/AgCl and internal platinum pseudo-reference electrodes. In PBS, the sensor exhibited linear responses in increments of 0.05 pH units over the clinically relevant range (6.5–7.45), with slopes of −60.49 mV/pH (R2 = 0.946, accuracy = 97.65%) and −63.2 mV/pH (R2 = 0.910, accuracy = 93.70%) in the external and internal configurations, respectively. In ISF, a slope of −25.5 mV/pH (R2 = 0.979) was obtained. Ex vivo testing on human skin confirmed successful microneedle penetration without visible iridium oxide transfer or tissue damage, as indicated by methylene blue staining. These findings support the potential for continuous minimally invasive fetal pH monitoring during labour, representing a significant step toward more objective and specific intrapartum assessment. Full article
(This article belongs to the Special Issue Nano/Micro Biosensors for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

20 pages, 3766 KB  
Review
Challenges, Unmet Needs, and Future Directions for Nanocrystals in Dermal Drug Delivery
by Muzn Alkhaldi and Cornelia M. Keck
Molecules 2025, 30(15), 3308; https://doi.org/10.3390/molecules30153308 - 7 Aug 2025
Viewed by 652
Abstract
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical [...] Read more.
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical factors that influence their stability and incorporation into final products. A key focus of the review is the advantages offered by nanocrystals in dermal applications. It also highlights their ability to enhance passive diffusion into the skin and facilitate penetration via particle-assisted dermal penetration. Additionally, the review discusses their capacity to penetrate into hair follicles, enabling targeted drug delivery, and their synergistic potential when combined with microneedles, which further enhance the dermal absorption of active compounds. The review also addresses several commercial products that successfully employ nanocrystal technology, showcasing its practical applications. Summary: Nanocrystals with their special properties are an emerging trend for dermal applications, particularly the development of plantCrystals—natural nanocrystals sourced from plant materials—which represent a promising path for future research and formulation strategies. These advancements could lead to more sustainable and effective dermal products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

29 pages, 2060 KB  
Review
Revitalizing Colchicine: Novel Delivery Platforms and Derivatives to Expand Its Therapeutic Potential
by Natallia V. Dubashynskaya, Anton N. Bokatyi, Mikhail M. Galagudza and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(15), 7591; https://doi.org/10.3390/ijms26157591 - 6 Aug 2025
Viewed by 916
Abstract
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, [...] Read more.
Colchicine is a potent alkaloid with well-established anti-inflammatory properties. It shows significant promise in treating classic immune-mediated inflammatory diseases, as well as associated cardiovascular diseases, including atherosclerosis. However, its clinical use is limited by a narrow therapeutic window, dose-limiting systemic toxicity, variable bioavailability, and clinically significant drug–drug interactions, partly mediated by modulation of P-glycoprotein and cytochrome P450 3A4 metabolism. This review explores advanced delivery strategies designed to overcome these limitations. We critically evaluate lipid-based systems, such as solid lipid nanoparticles, liposomes, transferosomes, ethosomes, and cubosomes; polymer-based nanoparticles; microneedles; and implants, including drug-eluting stents. These systems ensure targeted delivery, improve pharmacokinetics, and reduce toxicity. Additionally, we discuss chemical derivatization approaches, such as prodrugs, codrugs, and strategic ring modifications (A-, B-, and C-rings), aimed at optimizing both the efficacy and safety profile of colchicine. Combinatorial nanoformulations that enable the co-delivery of colchicine with synergistic agents, such as glucocorticoids and statins, as well as theranostic platforms that integrate therapeutic and diagnostic functions, are also considered. These innovative delivery systems and derivatives have the potential to transform colchicine therapy by broadening its clinical applications while minimizing adverse effects. Future challenges include scalable manufacturing, long-term safety validation, and the translation of research into clinical practice. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

2 pages, 1081 KB  
Correction
Correction: Khalid et al. Development of Rapidly Dissolving Microneedles Integrated with Valsartan-Loaded Nanoliposomes for Transdermal Drug Delivery: In Vitro and Ex Vivo Evaluation. Pharmaceutics 2025, 17, 483
by Ramsha Khalid, Syed Mahmood, Zarif Mohamed Sofian, Zamri Chik and Yi Ge
Pharmaceutics 2025, 17(8), 1001; https://doi.org/10.3390/pharmaceutics17081001 - 31 Jul 2025
Viewed by 254
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

Back to TopTop