Construction of an Electrochemical Impedance Spectroscopy Matching Method Based on Adaptive Multi-Error Driving and Application Testing for Biofilm Impedance Verification
Abstract
1. Introduction
2. Materials and Methods
2.1. Impedance Data Construction
2.1.1. Data Acquisition and Data Set Composition
2.1.2. Equivalent Circuit Model Selection
2.2. Optimization Method Based on Global Heuristic Algorithm
2.2.1. An Error-Driven Adaptive Optimization Approach
2.2.2. Parameter Optimization Under the DE-LM Synergistic Approach
2.2.3. Integration of Physical Constraints in the Optimization Framework
3. Results and Discussion
3.1. Analysis of Data Sets
3.2. Optimization Analysis
3.2.1. Validation of Error-Driven Optimization Efficacy and Multi-Model Parallel Fitting Results Through Multi-Threaded Implementation
3.2.2. Performance Verification of the DE-LM Parameter Optimization Framework
3.3. Application Detection of BSA-CLB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Tran, M.-K.; DaCosta, A.; Mevawalla, A.; Panchal, S.; Fowler, M. Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA. Batteries 2021, 7, 51. [Google Scholar] [CrossRef]
- Tran, M.-K.; Mathew, M.; Janhunen, S.; Panchal, S.; Raahemifar, K.; Fraser, R.; Fowler, M. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. J. Energy Storage 2021, 43, 103252. [Google Scholar] [CrossRef]
- Zhu, S.; Sun, X.; Gao, X.; Wang, J.; Zhao, N.; Sha, J. Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. J. Electroanal. Chem. 2019, 855, 113627. [Google Scholar] [CrossRef]
- Tamtaji, M.; Gao, H.; Hossain, M.D.; Galligan, P.R.; Wong, H.; Liu, Z.; Liu, H.; Cai, Y.; Goddard, W.A.; Luo, Z. Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A 2022, 10, 15309–15331. [Google Scholar] [CrossRef]
- Giordano, G.F.; Ferreira, L.F.; Bezerra, Í.R.; Barbosa, J.A.; Costa, J.N.; Pimentel, G.J.; Lima, R.S. Machine learning toward high-performance electrochemical sensors. Anal. Bioanal. Chem. 2023, 415, 3683–3692. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Ruan, S.-J.; Chen, Y.-X.; Li, Y.-F. Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy. Renew. Sustain. Energy Rev. 2023, 188, 113807. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Z.; Wu, J.; Huang, J.; Zheng, Y.; Sullivan, N.P.; O’Hayre, R.; Zhong, Z.; Pan, Z. Prediction of impedance responses of protonic ceramic cells using artificial neural network tuned with the distribution of relaxation times. J. Energy Chem. 2023, 78, 582–588. [Google Scholar] [CrossRef]
- Wang, C.; Hao, T.; Wang, Z.; Lin, H.; Wei, W.; Hu, Y.; Wang, S.; Shi, X.; Guo, Z. Machine learning-assisted cell-imprinted electrochemical impedance sensor for qualitative and quantitative analysis of three bacteria. Sens. Actuators B Chem. 2023, 384, 133672. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Shen, J.; Zhou, Z.; Zhu, G. Research on differential pulse voltammetry detection method for low concentration glucose based on machine learning model. Int. J. Electrochem. Sci. 2024, 19, 100479. [Google Scholar] [CrossRef]
- Bongiorno, V.; Gibbon, S.; Michailidou, E.; Curioni, M. Exploring the use of machine learning for interpreting electrochemical impedance spectroscopy data: Evaluation of the training dataset size. Corros. Sci. 2022, 198, 110119. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Akbarzadeh, K.; Ramezanzadeh, M.; Naderi, R.; Mahdavian, M.; Olivier, M.-G. Corrosion resistance enhancement of a sol-gel coating by incorporation of modified carbon nanotubes: Artificial neural network (ANN) modeling and experimental explorations. Prog. Org. Coat. 2023, 174, 107296. [Google Scholar] [CrossRef]
- Wang, Q.-K.; He, Y.-J.; Shen, J.-N.; Ma, Z.-F.; Zhong, G.-B. A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach. Energy 2017, 138, 118–132. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Liu, X. Grid search with a weighted error function: Hyper-parameter optimization for financial time series forecasting. Appl. Soft Comput. 2024, 154, 111362. [Google Scholar] [CrossRef]
- Serrano, M.C.R.; Tovar, M.M. Impedance Analysis for the Study of Biofilm Formation on Electrodes: An Overview. J. Mex. Chem. Soc. 2023, 67, 547–565. [Google Scholar] [CrossRef]
- Guo, B.; Yu, J.; Bao, H.; Rao, Z.; Xu, Y. Construction of a time-frequency measurement system and its application in sensing biofilms based on XGboost model. Measurement 2025, 246, 116735. [Google Scholar] [CrossRef]
- Haeverbeke, M.V.; Stock, M.; De Baets, B. Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application Domains. IEEE Access 2022, 10, 51363–51379. [Google Scholar] [CrossRef]
- Rai, B. Comparison of Machine Learning Algorithms on Binary Classification Data. Master’s Thesis, Colorado State University at Pueblo, Pueblo, CO, USA, 8 June 2025. [Google Scholar]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 2019, 52, 803–855. [Google Scholar] [CrossRef]
- Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J. Promot. Commun. Stat. Stata 2020, 20, 3–29. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Hou, X.; Xu, H.; Pan, L.; Tian, Y.; Zhang, X.; Ma, L.; Li, Y.; Zhao, J. Adsorption of bovine serum albumin on superparamagnetic composite microspheres with a Fe3O4/SiO2 core and mesoporous SiO2 shell. RSC Adv. 2015, 5, 103760–103766. [Google Scholar] [CrossRef]
- Montero, E.; Riff, M.-C.; Rojas-Morales, N. Tuners review: How crucial are set-up values to find effective parameter values? Eng. Appl. Artif. Intell. 2018, 76, 108–118. [Google Scholar] [CrossRef]
- Tatsis, V.A.; Parsopoulos, K.E. Differential Evolution with Grid-Based Parameter Adaptation. Soft Comput. 2017, 21, 2105–2127. [Google Scholar] [CrossRef]
- Macdonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388. [Google Scholar] [CrossRef]
- Ciucci, F. Modeling electrochemical impedance spectroscopy. Curr. Opin. Electrochem. 2019, 13, 132–139. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. A New Additive Ratio Assessment (Aras) Method in Multicriteria Decision-Making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- Vivier, V.; Orazem, M.E. Impedance Analysis of Electrochemical Systems. Chem. Rev. 2022, 122, 11131–11168. [Google Scholar] [CrossRef]
- Lasia, A. The Origin of the Constant Phase Element. J. Phys. Chem. Lett. 2022, 13, 580–589. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Breitkopf, C. Determination of Diffusion Coefficients Using Impedance Spectroscopy Data. J. Electrochem. Soc. 2018, 165, E826–E831. [Google Scholar] [CrossRef]
- Arof, A.K.; Amirudin, S.; Yusof, S.Z.; Noor, I.M. A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 1856–1867. [Google Scholar] [CrossRef]
- Backholm, J.; Georen, P.; Niklasson, G.A. Determination of solid phase chemical diffusion coefficient and density of states by electrochemical methods: Application to iridium oxide-based thin films. J. Appl. Phys. 2008, 103, 023702. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Yu, S.; Zou, Y.; Wang, J.; Chen, Z.; Alharbi, N.S.; Alsaedi, A.; Hayat, T.; Chen, Y.; et al. Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater. Chem. Eng. J. 2016, 306, 280–288. [Google Scholar] [CrossRef]
Selected Features | R2 |
---|---|
R_1 | 0.9218 |
R_1 + W_0 | 0.9772 |
R_1 + W_0 + CPE1_F | 0.9925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, H.; Yu, F.; Dai, P.; Guo, B.; Xu, Y. Construction of an Electrochemical Impedance Spectroscopy Matching Method Based on Adaptive Multi-Error Driving and Application Testing for Biofilm Impedance Verification. Biosensors 2025, 15, 604. https://doi.org/10.3390/bios15090604
Bao H, Yu F, Dai P, Guo B, Xu Y. Construction of an Electrochemical Impedance Spectroscopy Matching Method Based on Adaptive Multi-Error Driving and Application Testing for Biofilm Impedance Verification. Biosensors. 2025; 15(9):604. https://doi.org/10.3390/bios15090604
Chicago/Turabian StyleBao, Hanyang, Fan Yu, Peiyan Dai, Boyu Guo, and Ying Xu. 2025. "Construction of an Electrochemical Impedance Spectroscopy Matching Method Based on Adaptive Multi-Error Driving and Application Testing for Biofilm Impedance Verification" Biosensors 15, no. 9: 604. https://doi.org/10.3390/bios15090604
APA StyleBao, H., Yu, F., Dai, P., Guo, B., & Xu, Y. (2025). Construction of an Electrochemical Impedance Spectroscopy Matching Method Based on Adaptive Multi-Error Driving and Application Testing for Biofilm Impedance Verification. Biosensors, 15(9), 604. https://doi.org/10.3390/bios15090604