Biosensors for Sustainable Food Engineering: Challenges and Perspectives
Abstract
:1. Introduction
2. Biosensing Technologies and Food Sustainability
2.1. Microfluidics in Biosensing Technology
2.2. Nanomaterials in Biosensing Technology
3. POC Biosensing Technology for Food Sustainability
4. Biosensing in Food Safety and Security
4.1. Nutrients and Qualities Detection
4.2. Pathogens Detection
4.3. Toxin Detection
4.4. Miscellaneous Compounds Detection
5. Biosensing in Food Packaging and Supply Chain
5.1. Food Packaging
5.2. Supply Chain
6. Biosensing in Food Waste Processing and Environment
6.1. Food Waste Processing
6.2. Environment Protection
7. Biosensing in Food Quality Assurance
8. Biosensing in Food Engineering
9. Current Progress, Solutions, and Future Challenges
10. Conclusions
Acknowledgments
Conflicts of Interest
References
- Garnett, T. Food sustainability: Problems, perspectives and solutions. Proc. Nutr. Soc. 2013, 72, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ghorashi, M. Technology’s Role in Eradicating Foodborne Illness. Available online: https://www.foodsafetymagazine.com/signature-series/technologye28099s-role-in-eradicating-foodborne-illness/ (accessed on 17 February 2018).
- Baldwin, C.J. Introduction to the Principles. In The 10 Principles of Food Industry Sustainability; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–14. ISBN 978-1-118-44769-7. [Google Scholar]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Adenle, A.A.; Manning, L.; Azadi, H. Agribusiness innovation: A pathway to sustainable economic growth in Africa. Trends Food Sci. Technol. 2017, 59, 88–104. [Google Scholar] [CrossRef]
- Liu, J.; Mao, G.; Hoekstra, A.Y.; Wang, H.; Wang, J.; Zheng, C.; van Vliet, M.T.H.; Wu, M.; Ruddell, B.; Yan, J. Managing the energy-water-food nexus for sustainable development. Appl. Energy 2018, 210, 377–381. [Google Scholar] [CrossRef]
- Garcia, A.B. The use of data mining techniques to discover knowledge from animal and food data: Examples related to the cattle industry. Trends Food Sci. Technol. 2013, 29, 151–157. [Google Scholar] [CrossRef]
- Neethirajan, S.; Ragavan, K.V.; Weng, X. Agro-defense: Biosensors for food from healthy crops and animals. Trends Food Sci. Technol. 2018, 73, 25–44. [Google Scholar] [CrossRef]
- Thakur, M.S.; Ragavan, K.V. Biosensors in food processing. J. Food Sci. Technol. 2013, 50, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Mungroo, N.A.; Neethirajan, S. Biosensors for the Detection of Antibiotics in Poultry Industry—A Review. Biosensors 2014, 4, 472–493. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Martínez, A.A.; Trably, E.; Milferstedt, K.; Lacroix, R.; Etcheverry, L.; Bernet, N. Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater. Water Res. 2015, 81, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Bajracharya, S.; Sharma, M.; Mohanakrishna, G.; Dominguez Benneton, X.; Strik, D.P.B.T.B.; Sarma, P.M.; Pant, D. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew. Energy 2016, 98, 153–170. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Tripathi, V.; Edrisi, S.A.; Dubey, R.K.; Bakshi, M.; Dubey, P.K.; Singh, H.B.; Ebbs, S.D. Sustainability of crop production from polluted lands. Energy Ecol. Environ. 2016, 1, 54–65. [Google Scholar] [CrossRef]
- Tripathi, V.; Edrisi, S.A.; Chen, B.; Gupta, V.K.; Vilu, R.; Gathergood, N.; Abhilash, P.C. Biotechnological Advances for Restoring Degraded Land for Sustainable Development. Trends Biotechnol. 2017, 35, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Prodromidis, M.I. Impedimetric immunosensors—A review. Electrochim. Acta 2010, 55, 4227–4233. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Suni, I.I.; Bever, C.S.; Hammock, B.D. Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges. ACS Sustain. Chem. Eng. 2014, 2, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, V.; Antonacci, A.; Lambreva, M.D.; Litescu, S.C.; Rea, G. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors. Biosens. Bioelectron. 2015, 74, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, K.V.; Rastogi, N.K.; Thakur, M.S. Sensors and biosensors for analysis of bisphenol-A. TrAC Trends Anal. Chem. 2013, 52, 248–260. [Google Scholar] [CrossRef]
- García-Cañas, V.; Simó, C.; Herrero, M.; Ibáñez, E.; Cifuentes, A. Present and Future Challenges in Food Analysis: Foodomics. Anal. Chem. 2012, 84, 10150–10159. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferranti, P. The evolution of analytical chemistry methods in foodomics. J. Chromatogr. A 2016, 1428, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Escarpa, A. Lights and shadows on Food Microfluidics. Lab Chip 2014, 14, 3213–3224. [Google Scholar] [CrossRef] [PubMed]
- López, M.A.; Moreno-Guzman, M.; Jurado, B.; Escarpa, A. Food Microfluidics Biosensors. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-444-63579-2. [Google Scholar]
- Weng, X.; Neethirajan, S. Ensuring food safety: Quality monitoring using microfluidics. Trends Food Sci. Technol. 2017, 65, 10–22. [Google Scholar] [CrossRef]
- Adami, A.; Mortari, A.; Morganti, E.; Lorenzelli, L. Microfluidic Sample Preparation Methods for the Analysis of Milk Contaminants. Available online: https://www.hindawi.com/journals/js/2016/2385267/ (accessed on 17 February 2018).
- Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim. Acta 2016, 183, 2063–2083. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, D.; Zhu, P.; Pi, F.; Ji, J.; Sun, C.; Sun, J.; Sun, X. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosens. Bioelectron. 2016, 83, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Sodano, V.; Gorgitano, M.T.; Quaglietta, M.; Verneau, F. Regulating food nanotechnologies in the European Union: Open issues and political challenges. Trends Food Sci. Technol. 2016, 54, 216–226. [Google Scholar] [CrossRef]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Alarcon-Angeles, G.; Álvarez-Romero, G.A.; Merkoçi, A. Emerging Nanomaterials for Analytical Detection. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 195–246. ISBN 978-0-444-63579-2. [Google Scholar]
- De la Escosura-Muñiz, A.; Merkoçi, A. Nanochannels for electrical biosensing. TrAC Trends Anal. Chem. 2016, 79, 134–150. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lin, Z.; Su, X.; Tang, Z. Application of Au based nanomaterials in analytical science. Nano Today 2017, 12, 64–97. [Google Scholar] [CrossRef]
- Ariyarathna, I.R.; Rajakaruna, R.M.P.I.; Karunaratne, D.N. The rise of inorganic nanomaterial implementation in food applications. Food Control 2017, 77, 251–259. [Google Scholar] [CrossRef]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Rotariu, L.; Lagarde, F.; Jaffrezic-Renault, N.; Bala, C. Electrochemical biosensors for fast detection of food contaminants—Trends and perspective. TrAC Trends Anal. Chem. 2016, 79, 80–87. [Google Scholar] [CrossRef]
- Evtugyn, G.A. Biosensor to Ensure Food Security and Environmental Control. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 121–152. ISBN 978-0-444-63579-2. [Google Scholar]
- Bari, M.L.; Kawasaki, S. Rapid Methods for Food Hygiene Inspection. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 269–279. ISBN 978-0-12-384733-1. [Google Scholar]
- Mak, W.C.; Beni, V.; Turner, A.P.F. Lateral-flow technology: From visual to instrumental. TrAC Trends Anal. Chem. 2016, 79, 297–305. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Kumar, S.; Swaraj, S.; Neethirajan, S. Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosens. Bioelectron. 2018, 105, 188–210. [Google Scholar] [CrossRef] [PubMed]
- Piriya, V.S.A.; Joseph, P.; Daniel, S.C.G.K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar] [CrossRef] [PubMed]
- Scarano, S.; Mariani, S.; Minunni, M. Label free Affinity sensing: application to food analysis. ACTA IMEKO 2016, 5, 36–44. [Google Scholar] [CrossRef]
- Roch, P.; Mandenius, C.-F. On-line monitoring of downstream bioprocesses. Curr. Opin. Chem. Eng. 2016, 14, 112–120. [Google Scholar] [CrossRef]
- Kumari, L.; Narsaiah, K.; Grewal, M.K.; Anurag, R.K. Application of RFID in agri-food sector. Trends Food Sci. Technol. 2015, 43, 144–161. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 2016, 75, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Michelini, E.; Zangheri, M.; Di Fusco, M.; Calabria, D.; Simoni, P. Smartphone-based biosensors: A critical review and perspectives. TrAC Trends Anal. Chem. 2016, 79, 317–325. [Google Scholar] [CrossRef]
- Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 2015, 74, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.M.; Hill, J.P. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- Lang, T.; Barling, D. Food security and food sustainability: reformulating the debate: Food security and food sustainability: reformulating the debate. Geogr. J. 2012, 178, 313–326. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Arduini, F.; Palleschi, G.; Rea, G. Biosensing technology for sustainable food safety. TrAC Trends Anal. Chem. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.; Wang, S.; Chen, Q.; Guo, T.; Zhang, L.; Jin, Y.; Su, H.; Tan, T. Emerging frontier technologies for food safety analysis and risk assessment. J. Integr. Agric. 2015, 14, 2231–2242. [Google Scholar] [CrossRef]
- Kintzios, S.; Banerjee, P. Mammalian cell-based sensors for high throughput screening for detecting chemical residues, pathogens, and toxins in food. In High Throughput Screening for Food Safety Assessment; Elsevier: Amsterdam, The Netherlands, 2015; pp. 123–146. ISBN 978-0-85709-801-6. [Google Scholar]
- Swaminathan, M.S.; Kesavan, P.C. Innovation Strategies to Food Security in India. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Nychas, G.-J.E.; Panagou, E.Z.; Mohareb, F. Novel approaches for food safety management and communication. Curr. Opin. Food Sci. 2016, 12, 13–20. [Google Scholar] [CrossRef]
- Bourne, M.C. Food Security: Postharvest Losses. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 338–351. ISBN 978-0-08-093139-5. [Google Scholar]
- Zhang, F.; Zhang, Q.; Zhang, D.; Lu, Y.; Liu, Q.; Wang, P. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosens. Bioelectron. 2014, 54, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.; Pemberton, R.M.; Fielden, P.R.; Hart, J.P. The design, development and application of electrochemical glutamate biosensors. TrAC Trends Anal. Chem. 2016, 79, 106–113. [Google Scholar] [CrossRef]
- Arugula, M.A.; Simonian, A.L. Biosensors for Detection of Genetically Modified Organisms in Food and Feed. In Genetically Modified Organisms in Food; Elsevier: Amsterdam, The Netherlands, 2016; pp. 97–110. ISBN 978-0-12-802259-7. [Google Scholar]
- Meriç, S.; Çakır, Ö.; Turgut-Kara, N.; Arı, Ş. Detection of genetically modified maize and soybean in feed samples. Genet. Mol. Res. 2014, 13, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Templier, V.; Roux, A.; Roupioz, Y.; Livache, T. Ligands for label-free detection of whole bacteria on biosensors: A review. TrAC Trends Anal. Chem. 2016, 79, 71–79. [Google Scholar] [CrossRef]
- Silva, N.F.D.; Magalhães, J.M.C.S.; Freire, C.; Delerue-Matos, C. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment. Biosens. Bioelectron. 2018, 99, 667–682. [Google Scholar] [CrossRef] [PubMed]
- Rees, C.E.D.; Swift, B.M.C.; Botsaris, G. Bacteriophage-Based Techniques for Detection of Foodborne Pathogens. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 194–202. ISBN 978-0-12-384733-1. [Google Scholar]
- Jiang, Y.; Yang, X.; Liang, P.; Liu, P.; Huang, X. Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges. Renew. Sustain. Energy Rev. 2018, 81, 292–305. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Bandyopadhyay, R.; Müller, J.; Vanlauwe, B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017, 72, 110–122. [Google Scholar] [CrossRef]
- Lucas, J.A. Fungi, Food Crops, and Biosecurity: Advances and Challenges. In Advances in Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 1–40. ISBN 978-0-12-813079-7. [Google Scholar]
- Patra, S.; Roy, E.; Madhuri, R.; Sharma, P.K. A technique comes to life for security of life: The food contaminant sensors. In Nanobiosensors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 713–772. ISBN 978-0-12-804301-1. [Google Scholar]
- Saucedo, N.M.; Mulchandani, A. Sensing of Biological Contaminants. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 73–91. ISBN 978-0-444-63579-2. [Google Scholar]
- Bahadır, E.B.; Sezgintürk, M.K. Biosensor technologies for analyses of food contaminants. In Nanobiosensors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 289–337. ISBN 978-0-12-804301-1. [Google Scholar]
- Burris, K.P.; Stewart, C.N. Fluorescent nanoparticles: Sensing pathogens and toxins in foods and crops. Trends Food Sci. Technol. 2012, 28, 143–152. [Google Scholar] [CrossRef]
- Moran, K.L.M.; Fitzgerald, J.; McPartlin, D.A.; Loftus, J.H.; O’Kennedy, R. Biosensor-Based Technologies for the Detection of Pathogens and Toxins. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 93–120. ISBN 978-0-444-63579-2. [Google Scholar]
- Beck, M.B.; Villarroel Walker, R. On water security, sustainability, and the water-food-energy-climate nexus. Front. Environ. Sci. Eng. 2013, 7, 626–639. [Google Scholar] [CrossRef]
- Liao, W.; Lu, X. Determination of chemical hazards in foods using surface-enhanced Raman spectroscopy coupled with advanced separation techniques. Trends Food Sci. Technol. 2016, 54, 103–113. [Google Scholar] [CrossRef]
- Stadler, R.H. Foreword for Food Processing—Derived Contaminants in Food Analysis. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Verma, N.; Kaur, G. Trends on Biosensing Systems for Heavy Metal Detection. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 33–71. ISBN 978-0-444-63579-2. [Google Scholar]
- Pola-López, L.A.; Camas-Anzueto, J.L.; Martínez-Antonio, A.; Luján-Hidalgo, M.C.; Anzueto-Sánchez, G.; Ruíz-Valdiviezo, V.M.; Grajales-Coutiño, R.; González, J.H.C. Novel arsenic biosensor “POLA” obtained by a genetically modified E. coli bioreporter cell. Sens. Actuators B Chem. 2018, 254, 1061–1068. [Google Scholar] [CrossRef]
- Singh, M.; del Valle, M. Arsenic Biosensors. In Handbook of Arsenic Toxicology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 575–588. ISBN 978-0-12-418688-0. [Google Scholar]
- Sinha, K.; Ghosh, J.; Sil, P.C. New pesticides: A cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control. In New Pesticides and Soil Sensors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 47–79. ISBN 978-0-12-804299-1. [Google Scholar]
- Rapini, R.; Marrazza, G. Biosensor Potential in Pesticide Monitoring. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 3–31. ISBN 978-0-444-63579-2. [Google Scholar]
- Gheorghe, I.; Czobor, I.; Lazar, V.; Chifiriuc, M.C. Present and perspectives in pesticides biosensors development and contribution of nanotechnology. In New Pesticides and Soil Sensors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 337–372. ISBN 978-0-12-804299-1. [Google Scholar]
- Husu, I.; Rodio, G.; Touloupakis, E.; Lambreva, M.D.; Buonasera, K.; Litescu, S.C.; Giardi, M.T.; Rea, G. Insights into photo-electrochemical sensing of herbicides driven by Chlamydomonas reinhardtii cells. Sens. Actuators B Chem. 2013, 185, 321–330. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Y.; Li, Z.; Wu, T. A review of biosensing techniques for detection of trace carcinogen contamination in food products. Anal. Bioanal. Chem. 2015, 407, 2711–2726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lu, Y.; Zhang, Q.; Yao, Y.; Li, S.; Li, H.; Zhuang, S.; Jiang, J.; Liu, G.L.; Liu, Q. Nanoplasmonic monitoring of odorants binding to olfactory proteins from honeybee as biosensor for chemical detection. Sens. Actuators B Chem. 2015, 221, 341–349. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Freitas, A.C.; Duarte, A.C.; Santos, T.A.P.R. Sensors and biosensors for monitoring marine contaminants. Trends Environ. Anal. Chem. 2015, 6–7, 21–30. [Google Scholar] [CrossRef]
- Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Ragavan, K.V.; Raghavarao, K.S.M.S.; Thakur, M.S. Nano-aptamer Based Quantitative Detection of Chloramphenicol. In Biotechnology and Biochemical Engineering; Prasanna, B.D., Gummadi, S.N., Vadlani, P.V., Eds.; Springer: Singapore, 2016; pp. 187–195. ISBN 978-981-10-1919-7. [Google Scholar]
- Stadler, R.H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.A.; Robert, M.-C.; Riediker, S. Food chemistry: Acrylamide from Maillard reaction products. Nature 2002, 419, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, K.V.; Rastogi, N.K.; Srivastava, A.K. Industrial Food Processing Contaminants. In Food Toxicology; Bagchi, D., Swaroop, A., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 395–432. ISBN 978-1-4987-0875-3. [Google Scholar]
- Batra, B.; Lata, S.; Sharma, M.; Pundir, C.S. An acrylamide biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper nanoparticles/polyaniline hybrid film. Anal. Biochem. 2013, 433, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Food Authenticity and Quality—EU Science Hub—European Commission. Available online: https://ec.europa.eu/jrc/en/research-topic/food-authenticity-and-quality (accessed on 21 February 2018).
- Lu, Y.; Xia, Y.; Liu, G.; Pan, M.; Li, M.; Lee, N.A.; Wang, S. A Review of Methods for Detecting Melamine in Food Samples. Crit. Rev. Anal. Chem. 2017, 47, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Singh, A.; Mangal, M.; Mangal, A.K.; Kumar, S. Food adulteration: Sources, health risks, and detection methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1174–1189. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Gallagher, M.J.; Tank, A.; Sousa, R. Emerging Technologies to Extend the Shelf Life and Stability of Fruits and Vegetables. In The Stability and Shelf Life of Food; Elsevier: Amsterdam, The Netherlands, 2016; pp. 399–430. ISBN 978-0-08-100435-7. [Google Scholar]
- Rossi, M.; Passeri, D.; Sinibaldi, A.; Angjellari, M.; Tamburri, E.; Sorbo, A.; Carata, E.; Dini, L. Nanotechnology for Food Packaging and Food Quality Assessment. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 82, pp. 149–204. ISBN 978-0-12-812633-2. [Google Scholar]
- Dudefoi, W.; Villares, A.; Peyron, S.; Moreau, C.; Ropers, M.-H.; Gontard, N.; Cathala, B. Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. Innov. Food Sci. Emerg. Technol. 2017. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Davoudpour, Y.; Saurabh, C.K.; Hossain, M.S.; Adnan, A.S.; Dungani, R.; Paridah, M.T.; Islam Sarker, M.Z.; Fazita, M.N.; Syakir, M.; et al. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renew. Sustain. Energy Rev. 2016, 64, 823–836. [Google Scholar] [CrossRef]
- Talegaonkar, S.; Sharma, H.; Pandey, S.; Mishra, P.K.; Wimmer, R. Bionanocomposites: smart biodegradable packaging material for food preservation. In Food Packaging; Elsevier: Amsterdam, The Netherlands, 2017; pp. 79–110. ISBN 978-0-12-804302-8. [Google Scholar]
- Mitura, K.; Wyrebski, K.; Zarzycki, P.K. Bioactive food packaging with nanodiamond particles manufactured by detonation and plasma-chemical methods. In Food Packaging; Elsevier: Amsterdam, The Netherlands, 2017; pp. 295–328. ISBN 978-0-12-804302-8. [Google Scholar]
- Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent food packaging: The next generation. Trends Food Sci. Technol. 2014, 39, 47–62. [Google Scholar] [CrossRef]
- Dilmaçünal, T. Intelligent Systems in the Food Packaging Industry. In Nanotechnology Applications in Food; Elsevier: Amsterdam, The Netherlands, 2017; pp. 287–306. ISBN 978-0-12-811942-6. [Google Scholar]
- Ghaani, M.; Cozzolino, C.A.; Castelli, G.; Farris, S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 2016, 51, 1–11. [Google Scholar] [CrossRef]
- Otles, S.; Sahyar, B.Y. Intelligent Food Packaging. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 377–387. ISBN 978-0-444-63579-2. [Google Scholar]
- Bosona, T.; Gebresenbet, G. Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control 2013, 33, 32–48. [Google Scholar] [CrossRef]
- Manzini, R.; Accorsi, R. The new conceptual framework for food supply chain assessment. J. Food Eng. 2013, 115, 251–263. [Google Scholar] [CrossRef]
- Tanner, D. Applications for RFID Technologies in the Food Supply Chain. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Durresi, M. (Bio)Sensor Integration With ICT Tools for Supplying Chain Management and Traceability in Agriculture. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 389–413. ISBN 978-0-444-63579-2. [Google Scholar]
- Aung, M.M.; Chang, Y.S. Traceability in a food supply chain: Safety and quality perspectives. Food Control 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Manzini, R.; Accorsi, R.; Ayyad, Z.; Bendini, A.; Bortolini, M.; Gamberi, M.; Valli, E.; Gallina Toschi, T. Sustainability and quality in the food supply chain. A case study of shipment of edible oils. Br. Food J. 2014, 116, 2069–2090. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Abegaz, B.W.; Datta, T.; Mahajan, S.M. Sensor technologies for the energy-water nexus—A review. Appl. Energy 2018, 210, 451–466. [Google Scholar] [CrossRef]
- Topić Popović, N.; Strunjak-Perović, I.; Klobučar, R.S.; Barišić, J.; Babić, S.; Jadan, M.; Kepec, S.; Kazazić, S.P.; Matijatko, V.; Beer Ljubić, B.; et al. Impact of treated wastewater on organismic biosensors at various levels of biological organization. Sci. Total Environ. 2015, 538, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kokare, C. Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, The Netherlands, 2017; pp. 267–298. ISBN 978-0-12-803725-6. [Google Scholar]
- An, N.; Zhou, C.H.; Zhuang, X.Y.; Tong, D.S.; Yu, W.H. Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. Clay Sci. 2015, 114, 283–296. [Google Scholar] [CrossRef]
- Venugopal, V. Enzymes from Seafood Processing Waste and Their Applications in Seafood Processing. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 78, pp. 47–69. ISBN 978-0-12-803847-5. [Google Scholar]
- Muzaddadi, A.U.; Devatkal, S.; Oberoi, H.S. Seafood Enzymes and Their Application in Food Processing. In Agro-Industrial Wastes as Feedstock for Enzyme Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 201–232. ISBN 978-0-12-802392-1. [Google Scholar]
- Ferranti, P. Food Production and Ecosystem Protection. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Pinto, G.; Ferranti, P. Impact of Climate Change on the Food Chain. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Anten, N.P.R.; Vermeulen, P.J. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems. Trends Ecol. Evol. 2016, 31, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Thiele-Bruhn, S.; Bloem, J.; de Vries, F.T.; Kalbitz, K.; Wagg, C. Linking soil biodiversity and agricultural soil management. Curr. Opin. Environ. Sustain. 2012, 4, 523–528. [Google Scholar] [CrossRef]
- Dumitru, L.M.; Irimia-Vladu, M.; Sariciftci, N.S. Biocompatible Integration of Electronics into Food Sensors. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 247–271. ISBN 978-0-444-63579-2. [Google Scholar]
- Silletti, S.; Rodio, G.; Pezzotti, G.; Turemis, M.; Dragone, R.; Frazzoli, C.; Giardi, M.T. An optical biosensor based on a multiarray of enzymes for monitoring a large set of chemical classes in milk. Sens. Actuators B Chem. 2015, 215, 607–617. [Google Scholar] [CrossRef]
- Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J. Aptamers as Synthetic Receptors for Food Quality and Safety Control. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 155–191. ISBN 978-0-444-63579-2. [Google Scholar]
- Sundramoorthy, A.K.; Gunasekaran, S. Applications of graphene in quality assurance and safety of food. TrAC Trends Anal. Chem. 2014, 60, 36–53. [Google Scholar] [CrossRef]
- Vasilescu, A.; Marty, J.-L. Electrochemical aptasensors for the assessment of food quality and safety. TrAC Trends Anal. Chem. 2016, 79, 60–70. [Google Scholar] [CrossRef]
- Dridi, F.; Marrakchi, M.; Gargouri, M.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Nanomaterial-based electrochemical biosensors for food safety and quality assessment. In Nanobiosensors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 167–204. ISBN 978-0-12-804301-1. [Google Scholar]
- Hao, N.; Wang, K. Recent development of electrochemiluminescence sensors for food analysis. Anal. Bioanal. Chem. 2016, 408, 7035–7048. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.K.; Timperio, A.M.; Zolla, L.; Bansal, V.; Shukla, R.; Rakwal, R. Biomarker discovery and applications for foods and beverages: Proteomics to nanoproteomics. J. Proteomics 2013, 93, 74–92. [Google Scholar] [CrossRef] [PubMed]
- Raje, V.P.; Morgado, P.I.; Ribeiro, M.P.; Correia, I.J.; Bonifácio, V.D.B.; Branco, P.S.; Aguiar-Ricardo, A. Dual on–off and off–on switchable oligoaziridine biosensor. Biosens. Bioelectron. 2013, 39, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, D. Laser Scanning Approaches for Crop Monitoring. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 343–361. ISBN 978-0-444-63579-2. [Google Scholar]
- Siontorou, C.G.; Georgopoulos, K.N. A biosensor platform for soil management: the case of nitrites. J. Clean. Prod. 2016, 111, 133–142. [Google Scholar] [CrossRef]
- Wu, H.; Aoki, A.; Arimoto, T.; Nakano, T.; Ohnuki, H.; Murata, M.; Ren, H.; Endo, H. Fish stress become visible: A new attempt to use biosensor for real-time monitoring fish stress. Biosens. Bioelectron. 2015, 67, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.K.; Issac, A.; Minhas, N.; Sarkar, B. Image processing based method to assess fish quality and freshness. J. Food Eng. 2016, 177, 50–58. [Google Scholar] [CrossRef]
- Mohammad, R.; Ahmad, M.; Heng, L.Y. Chilli hotness determination based on optical capsaicin biosensor using stacked immobilisation technique. Sens. Actuators B Chem. 2014, 190, 593–600. [Google Scholar] [CrossRef]
- Siva balan, K.C. Robotic-Based Agriculture for Rural Renaissance. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 363–375. ISBN 978-0-444-63579-2. [Google Scholar]
- Mutlu, M. Biosensors in Food Processing, Safety, and Quality Control; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4398-1986-9. [Google Scholar]
- Sun, D.-W. Thermal Food Processing: New Technologies and Quality Issues, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-138-19963-7. [Google Scholar]
- Reay, D.A.; Ramshaw, C.; Harvey, A.P. Preface. In Process Intensification, 2nd ed.; Isotopes in Organic Chemistry; Butterworth-Heinemann: Oxford, UK, 2013; p. 17. ISBN 978-0-08-098304-2. [Google Scholar]
- Choi, H.S.; Ahn, K.H. Assessing the sustenance and evolution of social and cultural contexts within sustainable urban development, using as a case the MAC in South Korea. Sustain. Cities Soc. 2013, 6, 51–56. [Google Scholar] [CrossRef]
- Alfieri, F. Politics, Economics, and Demographics of Food Sustainability and Security. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Hefferon, K.L. Politics for Global Food Security. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y. Challenges in the determination of engineered nanomaterials in foods. TrAC Trends Anal. Chem. 2016, 84, 149–159. [Google Scholar] [CrossRef]
- Caira, S.; Ferranti, P. Innovation for Sustainable Agriculture and Food Production. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Chae, T.U.; Choi, S.Y.; Kim, J.W.; Ko, Y.-S.; Lee, S.Y. Recent advances in systems metabolic engineering tools and strategies. Curr. Opin. Biotechnol. 2017, 47, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Siedler, S.; Stahlhut, S.G.; Malla, S.; Maury, J.; Neves, A.R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab. Eng. 2014, 21, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Bui, M.-P.N.; Abbas, A. Paper-based chemical and biological sensors: Engineering aspects. Biosens. Bioelectron. 2016, 77, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Saguy, I.S. Challenges and opportunities in food engineering: Modeling, virtualization, open innovation and social responsibility. J. Food Eng. 2016, 176, 2–8. [Google Scholar] [CrossRef]
- Biosensors for Sustainable Food - New Opportunities and Technical Challenges. In Comprehensive Analytical Chemistry; Scognamiglio, V.; Rea, G.; Arduini, F.; Palleschi, G. (Eds.) Biosensors for Sustainable Food—New Opportunities and Technical Challenges; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, N.; Ranjan, S.; Mundekkad, D.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanotechnology in agro-food: From field to plate. Food Res. Int. 2015, 69, 381–400. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Fraceto, L.F.; Grillo, R.; Medeiros, D.A.G.; Scognamiglio, V.; Rea, G.; Bartolucci, C. Nanotechnology in Agriculture: Which Innovation Potential Does It Have? Front. Environ. Sci. 2016, 4. [Google Scholar] [CrossRef]
- Adesina, O.; Anzai, I.A.; Avalos, J.L.; Barstow, B. Embracing Biological Solutions to the Sustainable Energy Challenge. Chem 2017, 2, 20–51. [Google Scholar] [CrossRef]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 2015, 478, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Commercially Available (Bio)sensors in the Agrifood Sector. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 315–340. ISBN 978-0-444-63579-2. [Google Scholar]
- Potyrailo, R.A.; Nagraj, N.; Tang, Z.; Mondello, F.J.; Surman, C.; Morris, W. Battery-free Radio Frequency Identification (RFID) Sensors for Food Quality and Safety. J. Agric. Food Chem. 2012, 60, 8535–8543. [Google Scholar] [CrossRef] [PubMed]
- Smits, E.; Schram, J.; Nagelkerke, M.; Kusters, R.; van Heck, G.; van Acht, V.; Koetse, M.; van den Brand, J.; Gerlinck, G. Development of printed RFID sensor tags for smart food packaging. In Proceedings of the IMCS, Nuremberg, Germany, 20–23 May 2012; pp. 403–406. [Google Scholar]
Region | Cereals | Roots & Tubers | Fruits & Vegetables |
---|---|---|---|
Europe | 4 | 9 | 5 |
North America & Oceania | 2 | 10 | 4 |
Industrialized Asia | 10 | 7 | 8 |
Sub-Saharan Africa | 8 | 18 | 9 |
North Africa, West & Central Asia | 8 | 10 | 10 |
South, Southeast Asia | 7 | 19 | 9 |
Latin America | 4 | 14 | 10 |
Species | Temperature (°C) | Water Activity (Aw) | |||
---|---|---|---|---|---|
Minimum | Optimum | Maximum | Minimum | Optimum | |
Aspergillus ruber | 5 | 24 | 38 | 0.72 | 0.93 |
A. amstelodami | 10 | 30 | 42 | 0.70 | 0.94 |
A. flavus | 12 | 35 | 45 | 0.80 | 0.99 |
A. fuminatus | 12 | 40 | 52 | 0.83 | 0.99 |
A. niger | 10 | 35 | 45 | 0.77 | 0.99 |
Penicillium martensii | 5 | 24 | 32 | 0.90 | 0.99 |
Temperature (°C) | 24 h | 48 h | 96 h | 168 h |
---|---|---|---|---|
0 | 2400 | 2100 | 1850 | 1400 |
4 | 2500 | 3600 | 218,000 | 4,200,000 |
8 | 3100 | 12,000 | 1,480,000 | |
10 | 11,600 | 540,000 | ||
15 | 180,000 | 28,000,000 | ||
30 | 1,400,000,000 |
Target | Company | Country |
---|---|---|
Ethanol, Methanol, Glucose, Lactate, Glycerol | Analox Instruments | UK, USA |
Water soluble vitamins, Veterinary residues (Chemical), and Mycotoxins | Biacore AB | Sweden |
Microorganisms | Biomerieux | France |
Microorganisms, Biochemical oxygen demand | Biosensores S.L. | Spain |
Alcohol, Allergen, Acids, Sulfites | Biosentec | France |
Allergens, Vitamins, Microorganisms | Biotech-IgG | Sweden |
Microorganisms, Drug residue | Eurofins | Luxembourg |
Glucose, Lactate, Ammonia, Pyruvate | Gwent Sensors | UK |
Bio Profile chemistry analyzer | Nova Biomedical | USA |
Ethanol, Malate, d-Lactate, l-Lactate, Glucose, Fructose | Tectronik | Italy |
Glucose, l-Glutamate, l-Glutamine | Trace Analytics | Germany |
Glucose, Sucrose, Ethanol, Lactose, l-lactate, Galactose, l-glutamate, H2O2, Glutamine, Choline | Yellow Springs Instruments | USA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neethirajan, S.; Ragavan, V.; Weng, X.; Chand, R. Biosensors for Sustainable Food Engineering: Challenges and Perspectives. Biosensors 2018, 8, 23. https://doi.org/10.3390/bios8010023
Neethirajan S, Ragavan V, Weng X, Chand R. Biosensors for Sustainable Food Engineering: Challenges and Perspectives. Biosensors. 2018; 8(1):23. https://doi.org/10.3390/bios8010023
Chicago/Turabian StyleNeethirajan, Suresh, Vasanth Ragavan, Xuan Weng, and Rohit Chand. 2018. "Biosensors for Sustainable Food Engineering: Challenges and Perspectives" Biosensors 8, no. 1: 23. https://doi.org/10.3390/bios8010023
APA StyleNeethirajan, S., Ragavan, V., Weng, X., & Chand, R. (2018). Biosensors for Sustainable Food Engineering: Challenges and Perspectives. Biosensors, 8(1), 23. https://doi.org/10.3390/bios8010023