The Role of Electrochemical Immunosensors in Clinical Analysis
Abstract
:1. Introduction
1.1. What Is Immunosensor?
1.1.1. Direct Immunosensors
1.1.2. Indirect Immunosensors
Competitive Immunosensors
Non-Competitive Immunosensors
1.2. Electrochemical Immunosensing
1.2.1. Amperometric Immunosensors
1.2.2. Potentiometric Immunosensors
1.2.3. Impedimetric Immunosensors
1.2.4. Conductometric Immunosensors
1.3. Immobilization Methods
1.3.1. Physical Adsorption
1.3.2. Trapping Methods
1.3.3. Covalent Binding
1.3.4. Affinity Immobilization Techniques
2. Recent Applications of Electrochemical Immunosensors in Clinical Analyses
3. Conclusions
Conflicts of Interest
Abbreviations
References
- Ghindilis, A.L.; Atanasov, P.; Wilkins, M.; Wilkins, E. Immunosensors: Electrochemical sensing and other engineering approaches. Biosens. Bioelectron. 1998, 13, 113–131. [Google Scholar] [CrossRef]
- Morgan, C.L.; Newman, D.J.; Price, C.P. Immunosensors: Technology and opportunities in laboratory medicine. Clin. Chem. 1996, 42, 193–209. [Google Scholar] [PubMed]
- Warsinke, A.; Benkert, A.; Scheller, F.W. Electrochemical immunoassays. Fresenius J. Anal. Chem. 2000, 366, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Voller, A.; Bidwell, D.E.; Bartlett, A. Enzyme immunoassays in diagnostic medicine. Bull. World Health Organ. 1976, 53, 55–65. [Google Scholar] [PubMed]
- Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical sensors for clinic analysis. Sensors 2008, 8, 2043–2081. [Google Scholar] [CrossRef] [PubMed]
- Hosu, O.; Selvolini, G.; Marrazza, G. Recent advances of immunosensors for detecting food allergens. Curr. Opin. Electrochem. 2018, 10, 149–156. [Google Scholar] [CrossRef]
- Skládal, P. Advances in Electrochemical Immunosensors. Electroanalysis 1997, 9, 737–745. [Google Scholar] [CrossRef]
- Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef]
- Mistry, K.K.; Layek, K.; Mahapatra, A.; RoyChaudhuri, C.; Saha, H. A review on amperometric-type immunosensors based on screen-printed electrodes. Analyst 2014, 139, 2289–2311. [Google Scholar] [CrossRef]
- Volpe, G.; Moscone, D.; Ricci, F.; Piermarini, S.; Palleschi, G.; Arduini, F.; Micheli, L. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [Green Version]
- Daniels, J.S.S.; Pourmand, N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 2007, 19, 1239–1257. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, I.; Cristea, C.; Hârceagǎ, V.; Marrazza, G.; Berindan-Neagoe, I.; Sǎndulescu, R. Electrochemical immunosensors in breast and ovarian cancer. Clin. Chim. Acta 2013, 425, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Mazzetti, A.P.; Fiorile, M.C.; Primavera, A.; Lo Bello, M. Glutathione transferases and neurodegenerative diseases. Neurochem. Int. 2015, 82, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Ghindilis, A.L.; Atanasov, P.; Wilkins, E. Enzyme-Catalyzed Direct Electron Transfer: Fundamentals and Analytical Applications. Electroanalysis 1997, 9, 661–674. [Google Scholar] [CrossRef]
- Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 2012, 6, 6546–6561. [Google Scholar] [CrossRef]
- Wilson, M.S. Electrochemical immunosensors for the simultaneous detection of two tumor markers. Anal. Chem. 2005, 77, 1496–1502. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lin, Y. Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta 2007, 74, 308. [Google Scholar] [CrossRef]
- Wan, Y.; Su, Y.; Zhu, X.; Liu, G.; Fan, C. Development of electrochemical immunosensors towards point of care diagnostics. Biosens. Bioelectron. 2013, 47, 1–11. [Google Scholar] [CrossRef]
- Sadik, O.A.; Van Emon, J.M. Applications of electrochemical immunosensors to environmental monitoring. Biosens. Bioelectron. 1996, 11. [Google Scholar] [CrossRef]
- Avrameas, S.; Ternynck, T.; Guesdon, J.-L. Coupling of Enzymes to Antibodies and Antigens. Scand. J. Immunol. 1978, 8, 7–23. [Google Scholar] [CrossRef]
- Lipman, N.S.; Jackson, L.R.; Trudel, L.J.; Weis-Garcia, F. Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR J. 2013, 46, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta 2014, 130, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Martín-Yerga, D.; Costa-García, A. Towards a blocking-free electrochemical immunosensing strategy for anti-transglutaminase antibodies using screen-printed electrodes. Bioelectrochemistry 2015, 105, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Gogola, J.L.; Martins, G.; Caetano, F.R.; Ricciardi-Jorge, T.; Duarte dos Santos, C.N.; Marcolino-Junior, L.H.; Bergamini, M.F. Label-free electrochemical immunosensor for quick detection of anti-hantavirus antibody. J. Electroanal. Chem. 2019, 842, 140–145. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, Y.; Li, L.; Wang, H.; Wei, Q. Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on mesoporous graphite-like carbon nitride. Talanta 2018, 188, 729–735. [Google Scholar] [CrossRef]
- Vestergaard, M.; Kerman, K.; Tamiya, E.; Vestergaard, M.; Kerman, K.; Tamiya, E. An Overview of Label-free Electrochemical Protein Sensors. Sensors 2007, 7, 3442–3458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xueji, Z.; Huangxian, J.; Joseph, W. Electrochemical Sensors, Biosensors and Their Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 0123737389. [Google Scholar]
- Jiang, X.; Li, D.; Xu, X.; Ying, Y.; Li, Y.; Ye, Z.; Wang, J. Immunosensors for detection of pesticide residues. Biosens. Bioelectron. 2008, 23, 1577–1587. [Google Scholar] [CrossRef]
- Rapp, B.E.; Gruhl, F.J.; Länge, K. Biosensors with label-free detection designed for diagnostic applications. Anal. Bioanal. Chem. 2010, 398, 2403–2412. [Google Scholar] [CrossRef]
- Luppa, P.B.; Sokoll, L.J.; Chan, D.W. Immunosensors-Principles and Applications to Clinical Chemistry. Clin. Chim. Acta 2001, 314, 1–26. [Google Scholar] [CrossRef]
- Aizawa, M.; Morioka, A.; Matsuoka, H.; Suzuki, S.; Nagamura, Y.; Shinohara, R.; Ishiguro, I. An enzyme immunosensor for IgG. J. Solid-Phase Biochem. 1976, 1, 319–328. [Google Scholar]
- Wang, H.; Li, X.; Mao, K.; Li, Y.; Du, B.; Zhang, Y.; Wei, Q. Electrochemical immunosensor for α-fetoprotein detection using ferroferric oxide and horseradish peroxidase as signal amplification labels. Anal. Biochem. 2014, 465, 121–126. [Google Scholar] [CrossRef]
- Tang, J.; Tang, D.; Li, Q.; Su, B.; Qiu, B.; Chen, G. Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase. Anal. Chim. Acta 2011, 697, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Liu, Y.; Jiang, L.P.; Zhu, J.J. Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres. Biosens. Bioelectron. 2011, 26, 1890–1894. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.M.; Wong, D.K.Y.; Brian Halsall, H.; Heineman, W.R. Recent developments in electrochemical immunoassays and immunosensors. In Electrochemical Sensors, Biosensors and Their Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2008; pp. 115–143. ISBN 9780123737380. [Google Scholar]
- Giannetto, M.; Bianchi, M.V.; Mattarozzi, M.; Careri, M. Competitive amperometric immunosensor for determination of p53 protein in urine with carbon nanotubes/gold nanoparticles screen-printed electrodes: A potential rapid and noninvasive screening tool for early diagnosis of urinary tract carcinoma. Anal. Chim. Acta 2017, 991, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Gong, L.; Zang, L.; Dai, H.; Xu, G.; Zhang, S.; Lin, Y. Dual-responsive competitive immunosensor for sensitive detection of tumor marker on g-CN/rGO conjugation. Sens. Actuators B Chem. 2016, 230, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, L.; Dong, X.; Zhao, G.; Li, Y.; Miao, J.; Fang, J.; Cui, M.; Wei, Q.; Cao, W. Dual mode competitive electrochemical immunoassay for B-type natriuretic peptide based on GS/SnO2/polyaniline-Au and ZnCo2O4/N-CNTs. Biosens. Bioelectron. 2019, 126, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Dai, K.; Bai, R.; Ma, Y.; Deng, Y.; Li, D.; Zhang, X.; Hu, R.; Yang, Y. A competitive microcystin-LR immunosensor based on Au NPs@metal-organic framework (MIL-101). Chin. Chem. Lett. 2019, 30, 664–667. [Google Scholar] [CrossRef]
- Kämäräinen, S.; Mäki, M.; Tolonen, T.; Palleschi, G.; Virtanen, V.; Micheli, L.; Sesay, A.M. Disposable electrochemical immunosensor for cortisol determination in human saliva. Talanta 2018, 188, 50–57. [Google Scholar] [CrossRef]
- Ricci, F.; Adornetto, G.; Palleschi, G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta 2012, 84, 74–83. [Google Scholar] [CrossRef]
- Ho, J.-A.A.; Chiu, J.-K.; Hong, J.-C.; Lin, C.-C.; Hwang, K.-C.; Hwu, J.-R.R. Gold-Nanostructured Immunosensor for the Electrochemical Sensing of Biotin Based on Liposomal Competitive Assay. J. Nanosci. Nanotechnol. 2009, 9, 2324–2329. [Google Scholar] [CrossRef]
- Weng, S.; Chen, M.; Zhao, C.; Liu, A.; Lin, L.; Liu, Q.; Lin, J.; Lin, X. Label-free electrochemical immunosensor based on K3[Fe(CN)6] as signal for facile and sensitive determination of tumor necrosis factor-alpha. Sens. Actuators B Chem. 2013, 184, 1–7. [Google Scholar] [CrossRef]
- Liu, L.; Chao, Y.; Cao, W.; Wang, Y.; Luo, C.; Pang, X.; Fan, D.; Wei, Q. A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Anal. Chim. Acta 2014, 847, 29–36. [Google Scholar] [CrossRef]
- Mollarasouli, F.; Serafín, V.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M.; Asadpour-Zeynali, K. Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Anal. Chim. Acta 2018, 1011, 28–34. [Google Scholar] [CrossRef] [PubMed]
- ErtuğruL, H.D.; Uygun, Z. State of the Art in Biosensors—General Aspects; IntechOpen: London, UK, 2013; ISBN 9535110047. [Google Scholar]
- Ganganboina, A.B.; Doong, R.A. Graphene Quantum Dots Decorated Gold-Polyaniline Nanowire for Impedimetric Detection of Carcinoembryonic Antigen. Sci. Rep. 2019, 9, 7214. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.G. Conductometric immunosensors for the detection of staphylococcal enterotoxin B based bio-electrocalytic reaction on micro-comb electrodes. Bioprocess Biosyst. Eng. 2008, 31, 345–350. [Google Scholar] [CrossRef]
- Schramm, W.; Paek, S.H.; Voss, G. Strategies for the Immobilization of Antibodies. Immunomethods 1993, 3, 93–103. [Google Scholar] [CrossRef]
- Salimi, A.; Kavosi, B.; Fathi, F.; Hallaj, R. Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid-carbon nanotubes modified electrode: Application as cancer biomarker for prostate biopsies. Biosens. Bioelectron. 2013, 42, 439–446. [Google Scholar] [CrossRef]
- Matharu, Z.; Bandodkar, A.J.; Gupta, V.; Malhotra, B.D. Fundamentals and Application of Ordered Molecular Assemblies to Affinity Biosensing. ChemInform 2012, 41, 1363–1402. [Google Scholar] [CrossRef]
- Luckarift, H.R.; Spain, J.C.; Naik, R.R.; Stone, M.O. Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 2004, 22, 211–213. [Google Scholar] [CrossRef]
- Rao, S.V.; Anderson, K.W.; Bachas, L.G. Oriented immobilization of proteins. Mikrochim. Acta 2005, 128, 127–143. [Google Scholar] [CrossRef]
- Brena, B.; González-Pombo, P.; Batista-Viera, F. Immobilization of enzymes: A literature survey. Methods Mol. Biol. 2013, 1051, 15–31. [Google Scholar] [PubMed]
- Jung, Y.; Jeong, J.Y.; Chung, B.H. Recent advances in immobilization methods of antibodies on solid supports. Analyst 2008, 133, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Yang, G.; Shao, H.; Qin, A. A label-free impedimetric immunosensor for detection of 1-aminohydantoin residue in food samples based on sol-gel embedding antibody. Food Control 2014, 39, 185–191. [Google Scholar] [CrossRef]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef] [PubMed]
- Florea, A.S. Electrochemical Affinity Sensors for Biomedical, Food and Environmental Applications. Ph.D. Thesis, Université Claude Bernard - Lyon I, Villeurbanne, France, November 2015. [Google Scholar]
- Tuncagil, S.; Kayahan, S.K.S.K.; Bayramoglu, G.; Arica, M.Y.Y.; Toppare, L. l-Dopa synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Catal. B Enzym. 2009, 58, 187–193. [Google Scholar] [CrossRef]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Biebuyck, H.A.; Whitesides, G.M. Patterning Self-Assembled Monolayers: Applications in Materials Science. Langmuir 1994, 10, 1498–1511. [Google Scholar] [CrossRef]
- Subbiah, R.; Veerapandian, M.; Yun, K.S. Nanoparticles: Functionalization and Multifunctional Applications in Biomedical Sciences. Curr. Med. Chem. 2010, 17, 4559–4577. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: A review. Microchim. Acta 2016, 183, 1–19. [Google Scholar] [CrossRef]
- Knopp, D.; Tang, D.; Niessner, R. Review: Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal. Chim. Acta 2009, 647, 14–30. [Google Scholar] [CrossRef]
- Alves, N.J.; Mustafaoglu, N.; Bilgicer, B. Conjugation of a Reactive Thiol at the Nucleotide Binding Site for Site-Specific Antibody Functionalization. Bioconjug. Chem. 2014, 25, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Guisan, J.M. (Ed.) Immobilization of Enzymes and Cells; Methods in BiotechnologyTM; Humana Press: Totowa, NJ, USA, 2006; Volume 22, ISBN 978-1-58829-290-2. [Google Scholar]
- Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7–14. [Google Scholar] [CrossRef]
- Andreescu, S.; Bucur, B.; Marty, J.-L. Affinity Immobilization of Tagged Enzymes. In Immobilization of Enzymes and Cells; Springer: Berlin/Heidelberg, Germany, 2006; pp. 97–106. [Google Scholar]
- Roy, I.; Gupta, M.N. Bioaffinity Immobilization. In Immobilization of Enzymes and Cells; Springer: Berlin/Heidelberg, Germany, 2006; pp. 107–116. [Google Scholar]
- Jones, M.L.; Kurzban, G.P. Noncooperativity of Biotin Binding to Tetrameric Streptavidin. Biochemistry 1995, 34, 11750–11756. [Google Scholar] [CrossRef]
- Smith, C.L.; Milea, J.S.; Nguyen, G.H. Immobilization of Nucleic Acids Using Biotin-Strept(avidin) Systems. In Immobilisation of DNA on Chips II; Springer: Berlin/Heidelberg, Germany, 2005; pp. 63–90. [Google Scholar]
- Lesch, H.P.; Kaikkonen, M.U.; Pikkarainen, J.T.; Ylä-Herttuala, S. Avidin-biotin technology in targeted therapy. Expert Opin. Drug Deliv. 2010, 7, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Wilchek, M.; Bayer, E.A.; Livnah, O. Essentials of biorecognition: The (strept)avidin–biotin system as a model for protein–protein and protein–ligand interaction. Immunol. Lett. 2006, 103, 27–32. [Google Scholar] [CrossRef]
- Teulon, J.-M.; Delcuze, Y.; Odorico, M.; Chen, S.W.; Parot, P.; Pellequer, J.-L. Single and multiple bonds in (strept)avidin-biotin interactions. J. Mol. Recognit. 2011, 24, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Mazloum-Ardakani, M.; Hosseinzadeh, L.; Khoshroo, A. Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid. J. Electroanal. Chem. 2015, 757, 58–64. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, B.; Cui, Y.; Liu, B.; Chen, G.; Tang, D. One-step electrochemical immunoassay of biomarker based on nanogold-functionalized graphene sensing platform. Anal. Methods 2011, 3, 1615–1621. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Q.; Liu, Y.; Cui, J.; Liu, H.; Wang, P.; Li, Y.; Chen, L.; Zhao, Z.; Dong, Y. A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens. Bioelectron. 2017, 90, 31–38. [Google Scholar] [CrossRef]
- Feng, D.; Li, L.; Zhao, J.; Zhang, Y. Simultaneous electrochemical detection of multiple biomarkers using gold nanoparticles decorated multiwall carbon nanotubes as signal enhancers. Anal. Biochem. 2015, 482, 48–54. [Google Scholar] [CrossRef]
- Wu, J.; Yan, Y.; Yan, F.; Ju, H. Electric field-driven strategy for multiplexed detection of protein biomarkers using a disposable reagentless electrochemical immunosensor array. Anal. Chem. 2008, 80, 6072–6077. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.K.; Vaze, A.; Rusling, J.F. Fabrication of immunosensor microwell arrays from gold compact discs for detection of cancer biomarker proteins. Lab Chip 2012, 12, 281–286. [Google Scholar] [CrossRef]
- Wan, Y.; Deng, W.; Su, Y.; Zhu, X.; Peng, C.; Hu, H.; Peng, H.; Song, S.; Fan, C. Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens. Bioelectron. 2011, 30, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yan, Q.; Liu, Q.; Li, Y.; Liu, H.; Wang, P.; Chen, L.; Zhang, D.; Li, Y.; Dong, Y. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens. Bioelectron. 2018, 99, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Tang, J.; Huang, J.; Yang, H.; Qiu, B.; Chen, G.; Tang, D. Graphene and Nanogold-Functionalized Immunosensing Interface with Enhanced Sensitivity for One-Step Electrochemical Immunoassay of Alpha-Fetoprotein in Human Serum. Electroanalysis 2010, 22, 2720–2728. [Google Scholar] [CrossRef]
- Du, D.; Zou, Z.; Shin, Y.; Wang, J.; Wu, H.; Engelhard, M.H.; Liu, J.; Aksay, L.A.; Lin, Y. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal. Chem. 2010, 82, 2989–2995. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.; Akter, R.; Han, O.H.; Rhee, C.K.; Rahman, M.A. Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: Highly sensitive electrochemical immunosensor for protein detection. Anal. Chem. 2013, 85, 1784–1791. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, P.; Li, F.; Chu, Q.; Li, Y.; Dong, Y. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core–shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite. Biosens. Bioelectron. 2017, 87, 752–759. [Google Scholar] [CrossRef]
- Han, J.; Feng, J.; Dong, Y.; Chen, Z.; Li, Y.; Li, M.; Wang, P. A novel sandwich-type immunosensor for detection of carcino-embryonic antigen using silver hybrid multiwalled carbon nanotubes/manganese dioxide. J. Electroanal. Chem. 2017, 786, 112–119. [Google Scholar] [CrossRef]
- Qian, J.; Dai, H.; Pan, X.; Liu, S. Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosens. Bioelectron. 2011, 28, 314–319. [Google Scholar] [CrossRef]
- Lin, D.; Wu, J.; Wang, M.; Yan, F.; Ju, H. Triple signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing. Anal. Chem. 2012, 84, 3662–3668. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, N.; Ma, Z. Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens. Bioelectron. 2014, 53, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, C.; Angelopoulou, M.; Economou, A.; Prodromidis, M.; Florou, A.; Haasnoot, W.; Petrou, P.; Kakabakos, S. Lab-on-a-membrane foldable devices for duplex drop-volume electrochemical biosensing using quantum dot tags. Anal. Chem. 2016, 88, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.C.B.; Costa-Rama, E.; Viswanathan, S.; Nouws, H.P.A.; Costa-García, A.; Delerue-Matos, C.; González-García, M.B. Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15-3 and HER2-ECD. Sens. Actuators B Chem. 2018, 255, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Jensen, G.C.; Krause, C.E.; Sotzing, G.A.; Rusling, J.F. Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys. Chem. Chem. Phys. 2011, 13, 4888–4894. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Patel, V.; Vaqué, J.P.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 2010, 82, 3118–3123. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Yu, H.; Wu, D.; Ma, H.; Li, H.; Du, B.; Wei, Q. Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Anal. Biochem. 2013, 434, 123–127. [Google Scholar] [CrossRef]
- Jensen, G.C.; Yu, X.; Gong, J.D.; Munge, B.; Bhirde, A.; Kim, S.N.; Papadimitrakopoulos, F.; Rusling, J.F. Characterization of Multienzyme-Antibody-Carbon Nanotube Bioconjugates for Immunosensors. J. Nanosci. Nanotechnol. 2009, 9, 249–255. [Google Scholar] [CrossRef]
- Kavosi, B.; Salimi, A.; Hallaj, R.; Moradi, F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens. Bioelectron. 2015, 74, 915–923. [Google Scholar] [CrossRef]
- Mani, V.; Chikkaveeraiah, B.V.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 2009, 3, 585–594. [Google Scholar] [CrossRef]
- Chikkaveeraiah, B.V.; Mani, V.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens. Bioelectron. 2011, 26, 4477–4483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyerhoff, M.E.; Duan, C.; Meusel, M. Novel nonseparation sandwich-type electrochemical enzyme immunoassay system for detecting marker proteins in undiluted blood. Clin. Chem. 1995, 41, 1378–1384. [Google Scholar] [PubMed]
- Raeisi, H.; Ganjali, M.R.; Safarnejad, M.R.; Norouzi, P.; Haji-Hashemi, H.; Habibi, M.M.; Larijani, B. Sensitive electrochemical immunosensor for citrus bacterial canker disease detection using fast Fourier transformation square-wave voltammetry method. J. Electroanal. Chem. 2018, 820, 111–117. [Google Scholar]
- Eletxigerra, U.; Martinez-Perdiguero, J.; Merino, S. Disposable microfluidic immuno-biochip for rapid electrochemical detection of tumor necrosis factor alpha biomarker. Sens. Actuators B Chem. 2015, 221, 1406–1411. [Google Scholar] [CrossRef]
- Say, R.; Özkütük, E.B.; Ünlüer, Ö.B.; Uğurağ, D.; Ersöz, A. Nano anti-tumor necrosis factor-alpha based potentiometric sensor for tumor necrosis factor-alpha detection. Sens. Actuators B Chem. 2015, 209, 864–869. [Google Scholar] [CrossRef]
Biomarker | Type of Illness | Immunosensor | Electrochemical Technique | Linear Range | LOD | Reference | |
---|---|---|---|---|---|---|---|
AFP | Liver, Ovarian, Testicular Cancers | Nanogold/TH-f GRNS-AuE | Amperometry | 0.1–200 ng·mL−1 | 0.05 ng·mL−1 | [76] | |
AFP | Liver, Ovarian, Testicular cancers | AuNPs/graphene-doped CS/TH-GCE | Amperometry | 1–10 ng·mL−1 | 0.7 ng·mL−1 | [83] | |
AFP | Liver, Ovarian, Testicular Cancers | GRS/CS-CE | Square wave voltammetry | 0.05–6 ng·mL−1 | 0.02 ng·mL−1 | [84] | |
AXL | Prostate | anti-AXL/GQDs/SPCE | Differential pulse voltammetry | 1.7–1000 pg·mL−1 | 0.5 pg·mL−1 | [45] | |
CEA | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers | GOx/HRP MWCNT anti/CEA TH/AuNPs-decorated dendrimer-cysteamine/AuE | Square wave voltammetry | 10 pg·mL−1–50 ng·mL−1 | 4.4 ± 0.1 pg·mL−1 | [85] | |
CEA | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers | Nitrogen-doped GQDs/Pt-PdBiMNP AuNPs/GCE | Amperometry | 5 fg·mL−1–50 ng·mL−1 | 2 fg·mL−1 | [77] | |
CEA | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers | Trimetallic NiAuPt NPs(GRNS/β–cyclodextrin/GONS/GCE | Amperometry | 0.001–100 ng·mL−1 | 0.27 pg·mL−1 | [86] | |
CEA | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers | AgNPs/MWCNTs/MnO2 labeled anti-CEA antibodies β–cyclodextrin/MWCNT/GCE | Amperometry | NS | 0.03 pg·mL−1 | [87] | |
CEA | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers | Bismuth film/GCE | Square wave voltammetry | 0.05–25 ng·mL−1 | 5 pg·mL−1 | [88] | |
CEA | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers | AuNPs/poly(styrene-co-acrylic acid) microbead labeled anti-CEA antibodies CS/graphene oxide film/GCE | Linear sweep voltammetry | 0.5 pg·mL−1–0.5 ng·mL−1 | 0.12 pg·mL−1 | [89] | |
CEA AFP | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers Liver, Ovarian, Testicular Cancers | Cd (II)/Au NPs@MWCNTs labeled anti-CEA antibodies Pb (II)/Au NPs@MWCNTs labeled anti-AFP antibodies AuNPs/AuE | Square wave voltammetry | 0.01–60 ng·mL−1 | 3 pg·mL−1 CEA 4.5 pg·mL−1 AFP | [78] | |
CEA AFP | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers Liver, Ovarian, Testicular Cancers | PtPNPs/Cd(II) labeled anti-CEA antibodies PtPNPs/Cu(II) labeled anti-AFP antibodies Graphene oxide/GCE | Amperometry | 0.05–200 ng·mL−1 0.05–200 ng·mL−1 | 0.002 ng·mL−1 CEA 0.05 ng·mL−1 AFP | [90] | |
CAS | Bladder Cancer | Bismuth film-modified nylon membrane-foldable SPCE | Square wave voltammetry | 0–5 µg·mL−1 CAS | 0.04 µg·mL−1 CAS | [91] | |
CEA CA 125 CA 153 CA 199 | Breast Colorectal and Pancreatic, Liver, Lung, Ovarian, Colon, Bladder Cancers Breast Cancer | 4-electrode SPCE array | Differential pulse voltammetry | 0.16–9.2 ng·mL CEA 0.084–16 U·mL−1 CA 153 0.11–13 U·mL−1 CA 125 0.16–15 U·mL−1 CA 199 | 0.04 ng·mL−1 CEA 0.06 U·mL−1 CA 153 0.03 U·mL−1 CA 125 0.1 U·mL−1 CA 199 | [79] | |
HER2-ECD CA 15-3 | Breast Cancer | SPCE-AuNPs | Square wave voltammetry | 0–50 ng·mL−1 (HER2-ECD) 0–70 U·mL−1 (CA 15-3) | 2.9 ng·mL−1 (HER2-ECD) 5.0 U·mL−1; (CA 15-3) | [92] | |
IL-6 | Rheumatoid Arthritis Systemic Lupus Erythematosus | Poly-HRP labeled anti-IL-6 antibodies Gold compact disc 8-electrode array | Amperometry | 10–1300 fg·mL−1 | 10 fg·mL−1 | [80] | |
IL-6 | Rheumatoid Arthritis Systemic Lupus Erythematosus | HRP labeled anti-IL-6 antibodies AuNPs-modified 8-electrode array | Amperometry | 20–400 pg·mL−1 | 20 pg·mL−1 | [93] | |
IL-6 | Rheumatoid arthritis Systemic lupus erythematosus | HRP/MWCNT labeled anti-IL-6 antibodies Single-wall-PGDE | Amperometry | NS | 0.5 pg·mL−1 | [94] | |
PSA | Prostate | Silver hybridized mesoporous silica nanoparticles Signal amplifier-modified GCE | Amperometry | 0.15–20 ng·mL−1 | 0.06 ng·mL−1 | [95] | |
PSA | Prostate | Multi-HRP/MWCNT labeled anti-PSA antibodies SWCN-CE | Amperometry | NS | [96] | ||
PSA | Prostate | AuNPs/PAMAM/HRP labeled PSA aptamer Graphene oxide/CS/TH film-modified GCE | Electrochemical impedance spectroscopy | 5 pg·mL−1–35 ng·mL−1 | 5 pg·mL−1 | [97] | |
PSA | Prostate | Au/Ag-graphene oxide/GQDs labeled anti-PSA antibodies Signal amplifier-modified GCE | Electrochemiluminescent | 1 pg·mL−1–10 ng·mL−1 | 0.29 pg·mL−1 | [25] | |
PSA | Prostate | HRP-modified magnetic particles labeled anti-PSA antibodies AuNPs-modified pyrolytic graphite disk electrode | Amperometry | 4–10 ng·mL−1 | 0.5 pg·mL−1 | [98] | |
PSA | Prostate | Anti-PSA/MWCNTs/IL/GCE | Differential pulse voltammetry | 0.2–1.0 ng·mL−1 1-40 ng·mL−1 | 20 pg·mL−1 | [50] | |
PSA IL-6 | Prostate Rheumatoid Arthritis Systemic Lupus Erythematosus | AuNPs-microfluidic 8-electrode SPCE array | Amperometry | 0.23 pg·mL−1 PSA 0.30 pg·mL−1 IL-6 | [99] | ||
PSA hCG | Prostate Cancer Ovarian, Testicular, Trophoblastic Cancers | Porous membrane-coated 2-electrode gold array | Amperometry | NS | 0.4 µg L−1 PSA 2.5 U L−1 hCG | [100] | |
PSA IL-8 | Prostate Rheumatoid Arthritis, Inflammatory Bowel Disease, Psoriasis, Acute Respiratory Distress Syndrome | 16-electrode SPCE array | Amperometry | - | 5 pg·mL−1 PSA 8 pg·mL−1 IL-8 | [81] | |
PthA | Citrus Bacterial Cancer Disease | AuNP/PB/CILE/GCE | Square wave voltammetry | 0.03–100 nM | 0.01 nM | [101] | |
TNF-α | Rheumatoid Arthritis | PA+PAA/GCE | Amperometry | 0.02–200.00 ng·mL−1 | 0.01 ng·mL−1 | [34] | |
TNF-α | Rheumatoid Arthritis | K3[Fe(CN)6]-CHT/GA/NA/mouse anti-human TNF-α | Cyclic voltammetry | 0.02–34 ng·mL−1 | 10 pg·mL−1 | [43] | |
TNF-α | Rheumatoid Arthritis | C60-fMWCNT-IL | Differential pulse voltammetry | 5.0–75 pg·mL−1 | 2.0 pg·mL−1 | [75] | |
TNF-α | Rheumatoid Arthritis | Microfluidic | Differential pulse voltammetry | 3.25–50 ng·mL−1 | 4.1 ng·mL−1 | [102] | |
TNF-α | Rheumatoid Arthritis | Dibutyl phthalate/polyvinyl chloride matrix | Potentiometry | 0.1–1.0 mg·L−1 | 0.015 mg·L−1 | [103] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S.A. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors 2019, 9, 86. https://doi.org/10.3390/bios9030086
Mollarasouli F, Kurbanoglu S, Ozkan SA. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors. 2019; 9(3):86. https://doi.org/10.3390/bios9030086
Chicago/Turabian StyleMollarasouli, Fariba, Sevinc Kurbanoglu, and Sibel A. Ozkan. 2019. "The Role of Electrochemical Immunosensors in Clinical Analysis" Biosensors 9, no. 3: 86. https://doi.org/10.3390/bios9030086
APA StyleMollarasouli, F., Kurbanoglu, S., & Ozkan, S. A. (2019). The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors, 9(3), 86. https://doi.org/10.3390/bios9030086